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Theoretical equation of state for classical fluids.
I. Test by perturbation theory
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ABSTRACT. This paper shows how to construct the theoretical equation of state (TEOS) of a
classical simple fluid. The theory relies on the mean collisional diameter and range, and maps the
thermodynamical properties of the fluid into those of an equivalent square-well (ESW) fluid of
appropriate depth ¢, diameter ¢ and range R. It is shown that the ESW has the same pressure as
the fluid of interest. Hence the TEOS of any simple fluid takes the form of a SW EQOS of the given
€,0 and R. The theory is applied to a Lennard-Jones (LJ) system in a first-order perturbation.
The mapping equations have a physical solution for densities where the SW EQS is accurate;
the resulting LJ TEOS agrees very well with the results of computer simulations, and compares
favorably with the recent TEOS developed by Song and Mason.

RESUMEN. Se muestra cémo construir la ecuacién teérica de estado (ETE) de un fluido simple y
clasico. La teoria maneja el didmetro y el alcance colisionales medios y mapea las propiedades del
fluido sobre las de un sistema equivalente de pozos cuadrados (EPC) con profundidad €, didmetro o
y alcance R apropiados. Se demuestra que las presiones del fluido de interés y del EPC son iguales.
Por tanto, la ETE de cualquier fluido simple toma la forma de una EE de PC con ¢,0 y R dados
por la teoria. Esta se aplica a un fluido de Lennard-Jones (LJ) en una aproximacién perturbativa.
el mapeo tiene solucién para las densidades en que la EE de PC usada aqui es precisa; la ETE de
LJ concuerda muy bien con los resultados de simulacién y se compara favorablemente con la ETE
recientemente publicada por Song y Mason.

PACS: 05.70.Ce; 64.10.+h

1. INTRODUCTION

Equations of state (EOS) of fluids play an important role in physical theory and applica-
tions. For dilute neutral fluids, the problem was essentially solved by the virial expansion
of the thermodynamic properties [1], but it is far from solved for dense fluids or liquids.
Nevertheless, there have been important successes for some model potentials, as, e.g.,
the work on hard spheres (HS) and several hard non-spherical particles, which has been
recently reviewed by Boublik and Nezbeda [2]. For repulsive and soft interactions there
are approximate theories that combine the well-know HS EOS with perturbation methods
and the principle of corresponding states [3].

For interactions with an attractive part, the most famous result is the exact derivation
of the extended van der Waals EOS obtained by Kac et al. [14], which corresponds to
a HS repulsion plus a vanishingly small attraction of infinite range. Approximate results
are available for other potentials as, e.g., the adhesive hard-sphere system [5, 6], hard
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spheres with electrostatic interactions [7] and the square-well fluid [8]. Some of the latter
equations are quite accurate and are used in the theory presented in this paper.

Compared with these slow advances, numeric calculation of thermodynamic properties
of not-too-complex fluids by means of statistical mechanics has been very successful. At
least for simple fluids, both modern perturbation theory and integral equation techniques
allow to calculate the equilibrium thermodynamic properties with an accuracy of the order
of computer simulations [9].

The purpose of this work is to present a theory of the EOS of classical fluids and
illustrate it for a simple realistic case. The theory is based on simple new concepts of
kinetic theory developed by one of the authors and collaborators [10-13], and has already
lead to EOS of simple purely repulsive fluids which are exact over the whole fluid density
range [14]. An alternative approach to obtain the EOS of fluids from statistical mechanics
has been presented recently by Mason and collaborators [15]. In this paper we make an
initial comparison between both methods.

The theoretical EOS of a fluid with interaction potential u(r), is an explicit equation
for a thermodynamic property in terms of the state variables. In this work we will obtain
the pressure P as an explicit function of density p and temperature 7"

P =P(p,T,A),

where A is a set of parameters characterizing the particular fluid of interest. For a theo-
retical EOS (TEOS) one requires that: a) The dependence of P on p,T and A be derived
from statistical mechanics; b) the EOS parameters A be well defined as functionals of
the potential u(r); ¢) the dependency of the EOS parameters A on p and T can be
parametrized analytically, and d) the theory should provide the EOS for all fluids in a
given class [16].

This article shows how to obtain a TEOS with the above qualities. In Sect. 2 we review
briefly the generalized collision frequencies which are essential to the theory. In Sect. 3,
these frequencies are used to build the mean diameter (s) and mean attractive range
(1) [13]. These quantities allow to write P(p,T) exactly as the pressure of a square-well
fluid whose diameter ¢ and range R are respectively proportional to (s) and (l). In Sect. 4
we refer to the square-well EOS used here, which is discussed in detail in Ref. 8], and
show how the other relevant SW properties are obtained. In order to illustrate the use of
this theory, Sect. 5 is devoted to obtain the TEOS of a Lennard-Jones 12/6 fluid. This
is done in the simplest way, which relies on a perturbative approximation. The equation
thus obtained is compared with empirical EOS for the LJ fluid and with the Song-Mason
equation for the same system [15]. The TEOS developed here is quite accurate for 7" above
80% the critical T¢, and p smaller than twice the critical pc.

2. GENERALIZED COLLISION FREQUENCIES

It is simpler to introduce the collision frequencies in reference to a spherically symmetric
discontinuous potential u;(r), of the type shown in Fig. 1 [11]. At a step of height ée =
u(oct) — u(o™), at r = o, one identifies three types of collisions illustrated in Fig. 1.
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Bounces (B), for relative kinetic energy ex < |é¢, and collisions up-the-step (US) or down-
the-step (DS), when ex > |6¢| and the kinetic energy after the collision is respectively
smaller or greater than ex. The collision frequency for each type of event is written
in terms of the mean relative velocity (v;) and the radial distribution function g(r) as
follows [10-12]:

vs = £ma’p(v;) 6g(0), (1)
Vys = Vps = WUZP('Ur)g(U:F)a (2)

where 8g(c) = g(o%) — g(¢7). The signs depend on the sign of ¢, and are chosen such
that vy > 0 and o7 is at the top of the step [10-12]. When ée — oo, vps = vys — 0, and
vg reduces to Enskog’s result for the HS collision frequency [17]. These expressions were
confirmed by a molecular dynamics simulation [11]. The contribution to the pressure P
from the force at an impulsive step equals the flux of momentum [18, 19]. The contribution
to the momentum flux from repulsive bounces from the step at r = ¢ is found to be

ﬁPB _ 20'1/3 (3)
14 3(vr)’
where 3 = 1/kT. Substituting vz from (1) one obtains
'y 27
o = pt(o), @

which is identical to the result obtained by the virial theorem of Clausius for the contribu-
tion P of all the forces acting at o. In the kinetic approach, only the bounces contribute
to the pressure, because Pps = —Pys and hence P = Pg. This is not so if the effect of the
forces is calculated via the virial theorem. In the latter, all forces have contributions of
the same sign (which is given by the sign of é¢) and P} = P{s > 0, but are such that the
total pressure P} + Plg + Pl is again identical to P in Eq. (4) [10, 11].

The transition to a continuous potential u(r) can be made from the impulsive u;(r) in
Fig. 1 in the limit of infinitely many steps [12, 13]. For collisions at distances s < r < s+ds,
the differential frequency for repulsive or attractive bounces, dvg,.(s), follows from (1)
when de — 0 and is

dunya(s) = ms?p(onyy() LZRP 4, (5)

where the (+) sign applies to repulsive (R) and the (=) to attractive (A) parts of u(r),
and y(r) = g(r) exp(Bu).
3. MEAN COLLISION PARAMETERS AND EQUIVALENT SW FLUID

Consider a realistic spherical potential u(r) with its minimum —e at r = . For a pair
of particles with r < r,, and relative energy e one can define the collision diameter s as



516 ALEJANDRO GIL-VILLEGAS ET AL.

up the step
down the step

+ bounces - .
B K+

(o}

k+1 T

<.-_____

FiGURE 1. Discontinuous potential u;(r) with repulsive and attractive impulsive forces. At any
step of height ée the bouncing collisions occur when the relative kinetic energy ey is insufficient to
surmount the step.

the smallest distance at which the kinetic energy vanishes, i.e., u(s) = e, so that s is
the distance when a bounce occurs. Hence, the average diameter can be obtained from

Eq. (5) as
(5. T) = - / et

— WP(U,.) Ar 3 ( ) [eXp( )Bu')], (6)

Vr

where vy is the total repulsive frequency, i.e., the integral of (5) for s between 0 and rp,.
For a pair of particles with 7 > rp, and negative energy €/, i.e., for a “van der Walls’
dimer”, one can also define the collisional attractive range [, where u(l) = €' < 0. Its
average is

(I)(,O,T) ﬂ'p(vr)./ Eﬂla (I) [exp( ﬂu)] (7)

where v, is the total frequency of attractive collisions. The average collision parameters
(s) and (l), and the frequencies v, and vy concentrate the information about the collision
processes in the fluid, and have been discussed in detail elsewhere [13].

We will now show how to define an equivalent fluid with exactly the same pressure
as the system of interest at the same (p,7T). This equivalent system has a square-well
(SW) interaction of depth esw, hard-core diameter o and attractive range R such that its
pressure is

ﬁPsw 2mp

=14 =5 [Pen(0)eP ™ = Roysw(R)(ESY — 1] (8)
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There are several ways to define the equivalent SW fluid. Here we will follow the simplest
approach and choose: 1) The SW depth to be identical to that of u(r) : €esw = €; and 2) the
SW diameter and range to be the (renormalized) mean collision diameter and range of
the molecules, i.e.,

7= e lo), ©)
and
R= ;‘;Lw(z). (10)

Since v§% and v§"V are obtained from Eq. (1), the SW pressure in (8) then becomes

P,
ﬂﬁ =1+ %(v,) (a’ygw — Ru3Y),

which by (9) and (10) gives

BPsw

P
Substitution of Egs. (6) and (7) in (11) then shows that its right-hand side is identical
to the desired pressure P as given by the virial theorem. It is then clear how this ap-

proach leads to build the TEOS of the fluid of interest. The pressure is expressed by two
components: 1) the SW EOS

=1+ 2(v) ((s)vm — (U)va)- (11)

P = Psw(P"a: Be, R/O’), (12)

and 2) the quantities o(p,T) and R(p,T) obtained from the mapping Egs. (9) and (10).
The SW EOS will thus be a universal component of the TEOS of all fluids for which the
mapping equations have a solution. The latter are written explicitly as

o0, T)yow(0)e% = f " dasty(s) 222CL) (13)
and
(5, T)ysw(R)(e — 1) = — f :, ity AXRB] (14)

At low densities, one can expand the pair distribution functions ysw(r) and y(r) in
powers of p so that

o(p,T) = o0(T) + 01(T)p + 01(T)p* + - -- (15a)
and

R(p,T) = Ro(T) + Ry(T)p+ Ra(T)p? + - (15b)
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Previous evidence indicates that Egs. (15) are quite convergent and can be safely
truncated after a few terms [3,13,14,20,21]. The results of this work confirm that such
is the case. It is interesting that oo(7") and Ry(T"), are respectively equal to the p — 0
limits of the HS diameter in the WCA theory [22], and of the SW range in the SW blip
perturbation theory [20].

4. PROPERTIES OF THE SW SYSTEM

The properties of the SW fluid needed in this theory are: an expression for Psy (po?, B¢, A),
with A = R/o, and the values of ysw(o) and ysw(R) used in the mapping Eqgs. (13) and
(14). The first is simply obtained from the SW Helmholtz free energy Asw. It has also
been shown that [23]

ysw(R) =

1 [aasw(ﬂ?,Tw\)} (16)

" 12n[exp(Be) — 1] O0A

where asw = BAsw/N and n = 7pa? /6. Finally, ysw(c) is obtained from Egs. (8) and (16).

A paper submitted together with this [8] presents an equation for asw which can be
used at intermediate ranges (1.375 < A < 1.75) appropriate for simple fluids [20,21]. This
SW EOS is quite accurate for T > 0.67¢ and p < 2pc. The reader is referred to Ref. [8]
for details. The values of ysw(c) and ysw(R) obtained in this way are quite close to the
Monte Carlo results of Henderson and collaborators [24,25] for SW of various A, T" and p.

5. THEORETICAL EOS For THE LJ 12/6 FLUID

The main question confronting this theory is whether the mapping equations, (9) and
(10), or (13) and (14), have solution, i.e., whether the variable-width SW system is flexible
enough to represent the properties of the fluid. From the argument leading to Eq. (11),
it follows that any solution of the mapping equations will give the pressure of the system
with an error which only reflect the accuracy with which the system’s r.d.f. is obtained.
(This function is the input in Egs. (13) and (14).) This means that any errors in the SW
EOS will not affect the accuracy of the pressure, as long as the mapping equations have
real solutions for ¢ and R. Nevertheless, the inaccuracy of the SW EQOS will be reflected
in the behaviour of o(p,T') and R(p, T). These questions will be answered and illustrated
here by applying this theory to a fluid interacting with the Lennard-Jones 12/6 potential.

To obtain the TEOS of a fluid one needs the r.d.f. for the desired u(r) and use it in
Eqgs. (13) aud (14) to calculate ¢ and R at one state (p,T). At low densities, y(r) is
expanded in a virial series from which the coefficients oo (7T), Ro(T), etc., in Egs. (15)
are obtained by simple quadrature. This procedure gives the exact low density behaviour
of o(p, T) and R(p,T). For the LJ 12/6 fluid, the zeroth-order coefficients are shown in
Fig. 2. When T* — 0, both o9 and Ry — 7, because at T* = 0 all pairs are a distance rp,
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FIGURE 2. Temperature dependence of the first virial coefficients of the mean diameter and range
for LJ molecules. The value at T* = 0 is the minimum of the LJ potential.

apart. When 7™ — oo, g — 0 slowly and Ry — 1.55650;. The next coefficients o1(T)
and R,(T) were also calculated and behave smoothly for 7* > T2,

At high densities, y;(r) can be obtained from simulations or any of several theories
already applied to the LJ 12/6 fluid. In this paper we will follow the simplest approach and
calculate y, from first-order perturbation theory. This approach is particularly appealing
because the SW fluid is an adequate reference system for the perturbative calculation [26].
In this case

Ya(r; 0 T) = ysw(r; €,0', R p,T), (17)

which, for the LJ system, improves the already good results of the WCA HS perturbation
theory [26]. The values of €, ¢’ and R’ that define the SW reference in (17) are provided
by perturbation theory. In all cases, € = €, but at least two possibilities arise in regard
to ¢’ and R': The first is to use the same values o and R determined by the mapping
Egs. (13) and (14), this assumes that the ESW, which has the same pressure as the fluid
of interest, is also a good reference in the perturbation scheme. This choice will be referred
to as the “pressure” option. The second choice is to determine ¢’ and R’ by the common
blip procedure which provides a good approximation to the Helmholtz free-energy of the
system [20,26]. This will be called the “free-energy” option.

For both options one still needs to calculate ysw. Following the same work [26], Ysw(r)
can be parametrized in terms of the well known yys(r) as

Ysw(r) = L(r)yus(r), (18)

where L(r) is a linear polynomial in r fitted to give the correct values of ysw(r) at r = o
and r = R. The latter are then obtained from asw as described in the previous section.
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In the pressure option, one uses approximation (17) and (18) in the coupled set (13)
and (14). For the LJ 12/6 fluid, the resulting values for ¢* = o/oy; and R* = R/oy; are
respectively shown in Figs. 3 and 4 as functions of p* = po?, for several temperatures. The
diameter o is remarkably constant for p* < 0.6, which is the density range where our SW
EQOS is accurate. Nevertheless, a second solution becomes apparent at higher densities, as
is shown in Fig. 5. An analysis of g.;(r), as obtained in the pressure option, shows that
the solution on the top branch grossly misrepresents the known structure of the LJ fluid.
Hence, the pressure option gives reliable values of o and R only for densities p* < 0.6, or
slightly larger at high temperatures.

The values of the EQS parameters ¢* and R* for p* < 0.6 were fitted to fourth-order
density polynomials with coefficients o, (T) and R,(T'), as in Egs. (15), for n > 1 and
with the exact o(T") and Ro(T). The latter guarantee that the second virial coefficient is
incorporated exactly and are represented by

000 + 001 T* + 092 T*?

™ =
0'0( ) 1+ 0o3T* +0'04T"2+0'05T‘3’

(19)

roo + ro1T* + ro2T*?

T =
HolZ) 14 r0aT* + rosT*2 "’

(20)

with the coefficients o, and 7o, given in Tables I and II. The higher-order density coef-
ficients 0,, and R,, n > 1 are given by polynomials

M
on(T) = Z Onm T, (21)

m=0

M

Rn(T) = Z Tnmﬁ‘ms (22)

m=0

where 3* = ¢/kT. The coefficients oy, and rp,y, are also given in Tables I and II, and the
order M is implicit in these tables. These simple fits give c* and R* as shown in Figs. 3
and 4.

In the free-energy option, ¢’ and R' were obtained by the common blip procedure [26].
The resulting y.,(r) was used to calculate the right-hand sides of (13) and (14), and
this set was solved for o, and R.. This option reduces the non-linearity of the mapping
equations and, as a result, only one solution is found for all densities p* < 1. The behaviour
of oA(p,T) and RA(p,T) is very close to that of ¢ and R for p* < 0.6.

As was already mentioned, the pressure obtained by this theory will carry any errors
made in calculating the r.d.f. on the right-hand sides of Egs. (13) and (14). Comparing
the results for P obtained from the pressure and free-energy options with the empirical
LJ EOS of Nicolas et al. [27], one finds that the pressure option is the more accurate of
the two in the region p* < 0.6. The free-energy option is less accurate in this region but
is well behaved up to p* = 1.



THEORETICAL EQUATION OF STATE...I 521

T

FIGURE 3. Mean diameter 0* = o/, of the Lennard-Jones 12/6 particles as function of density

calculated by perturbation theory in the “pressure” option. The curves are labeled with the values
of T*.

1.60
R*

1.45 b7

FIGURE 4. Mean attractive range R* = R/o,, of the LJ 12/6 particles, as a function of density,
in the “pressure” option. The labels on the curves give the values of T*.

Hence, among the simple perturbation approximations here considered, the pressure
option is the best, giving explicitly the pressure of the LJ fluid for p* < 0.6. The resulting
LJ TEOS is given by the SW EOS, derived from Eq. (12) as described in Ref. [8], with
the mean diameter and range given by Eqs. (19)-(22) and the Tables. The compressibility
factor Z = BP/p thus obtained is compared in Figs. 6 and 7, for several temperatures,
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D*

FIGURE 5. High-density behaviour of the LJ mean diameter in the pressure option, showing the

second branch.

TABLE I. Coefficients in the representation of the mean diameter o* (The numbers in parenthesis
stand for powers of 10).

Tom Tim T2m T3m Oam
1.12246158 0.048747 —0.398186 1.00951 —0.818516
6.00901754 —0.064912 0.532428 —1.34131 1.05499
1.43500877 0.0329435 —0.282827 0.717203 —0.564757
5.82320728 —0.00843135 0.0749309 —0.1918 0.151727
1.59337203 0.00114984 —0.105003 0.0271087 —2.15367(-2)
4.8564519(-3) —8.06431(-5) 7.48192(-4) —1.94275(-3) 1.54699(-3)

2.25415(-6) —2.11558(5) 5.51668(-5) —4.39803(-5)
TABLE 11. Coefficients in the representation of the mean range R*.

Tom Tim T2m T3m T4m
1.12246158 0.020498 0.0952729 —0.0598724 —0.150982
4.88445292 0.606147 —2.33005 6.95801 —4.2637
42.8716808 0.583052 —3.36833 —6.35626 7.2418
4.82555966 —1.54003 11.3938 —7.05945 3.03367
7.7096049 0.82185 —6.83747 3.09453 —1.84751

—0.159827 1.48099
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FIGURE 6. Comparison between equations of state for the LJ 12/6 fluid at lower temperatures,
as labeled. Continuous lines: theoretical EOS from this work; circles: empirical EOS by Nicolas et
al. [27]; dashed lines: Song and Mason EOS [15).
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FIGURE 7. The same as Fig. 6, but at higher temperatures.

with the empirical equation of Nicolas et al. EOS [27]. The agreement between both is very
good at all temperatures and p* < 0.6. The same figures show the values of Z obtained
from the simpler TEOS of Song and Mason [15]. For 7* < 5 the TEOS here presented is
notably more accurate than the Song and Mason EOS in the density range considered,
particularly at the lower temperatures. For 7* > 10 both TEOS are indistinguishable.
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6. CONCLUSIONS

This article shows how to derive a theoretical EOS of simple fluids. This TEOS relies on
mapping the system of interest into a SW fluid of suitably defined depth, diameter and
range, which are simply related to collisional averages. The mapping equations, (13) and
(14), are shown to have solution for the simple LJ 12/6 system in a first-order perturbation
approximation. The TEOS obtained within this approximation is shown to reproduce
remarkably well the pressure of the LJ system as represented by the empirical EOS of
Nicolas et al. [27] for T*/T% > 0.8 and p/pc < 2. This TEOS compares favourably with
the TEOS of Song and Mason [15].

The present application of this theory is limited by the approximate SW EOS used
here and by the perturbation approximation used for the system of interest. Both can
be tackled by using a SW EOS with a more extended range of application and by using
better approximations for the r.d.f. of the fluid of interest.
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