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Theoretical equation of state for classical fluids.
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ABSTRACT. This paper shows how lo conslruct lhe lheorelical equalion of slale (TEOS) of a
classical simple fluid. The lheory relies on lhe mean collisional diameler and range, and maps lhe
lhermodynamical properlies of lhe fluid inlo lhose of an equivalenl square-well (ESW) fluid of
appropriale deplh l, diameler " and range R. It is shown lhal lhe ESW has lhe sarne pressure as
lhe fluid of inleresl. Ilence lhe TEOS of any simple fluid lakes lhe form of a SW EOS of lhe given
l," and R. The lheory is applied lo a Lennard-Jones (LJ) syslem in a firsl-order perlurbalion.
The mapping equalions have a physical solulion for densilies where lhe SW EOS is accurale;
lhe resulling LJ TEOS agrees very well wilh lhe resulls of compuler simulalions, and compares
favorably wilh lhe recenl TEOS developed by Song and Mason.

RESUMEN. Se mueslra cómo conslruir la ecuación leórica de eslado (ETE) de un fluido simple y
clásico. La teoría maneja el diámetro y el alcance colisionales medios y mapea las propiedades del
fluido sobre las de un sislema equivalenle de pozos cuadrados (EPC) con profundidad l, diámelro"
y alcance R apropiados. Se demueslra que las presiones del fluido de inlerés y del EPC son iguales.
Por lanlo, la ETE de cualquier fluido simple loma la forma de una EE de PC con l," Y R dados
por la leoría. Esla se aplica a un fluido de Lennard-Jones (LJ) en una aproximación perlurbaliva.
el mapeo liene solución para las densidades en que la EE de PC usada aquí es precisa; la ETE de
LJ concuerda muy bien con los resullados de simulación y se compara favorablemenle con la ETE
recientemente publicada por Song y Mason.

PACS: 05.70.Ce; 64.IO.+h

l. INTRODUCTION

Equations of state (EOS) of f1uids play an important role in physical theory and applica-
tions. For dilute neutral f1uids, the problem was essentially sol ved by the virial expansion
of the thermodynamic properties [1), but it is far from solved for dense f1uids or liquids.
Nevertheless, there have been important successes for sorne model potentials, as, e.g.,
the work on hard spheres (IlS) and several hard non-spherical partic1es, which has been
recently reviewed by Boublik and Nezbeda [2]. For repulsive and soft interactions there
are approximate theories that combine the well-know lIS EOS with perturbation methods
and the principie of corresponding states [3].
For interactions with an attractive part, the most famous result is the exact derivation

of the extended van der Waals EOS obtained by Kac el al. [14J, which corresponds to
a lIS repulsion plus a vanishingly small attraction of infinite range. Approximate results
are available for other potentials as, e.g., the adhesive hard-sphere system [5, 6], hard
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spheres with electrostatic interactions [71and the square-well fluid [8]. Sorne of the latter
equations are quite accurate and are used in the theory presented in this papero
Compared with these slow advances, numeric calculation of thermodynamic properties

of not-too-complex f1uids by means of statistical mechanics has been very successful. At
least for simple f1uids, both modern perturbation theory and integral equation techniques
allow to calculate the equilibrium thermodynamic properties with an accuracy of the order
of computer simulations [9].
The purpose of this work is to present a theory of the EOS of classical f1uids and

illustrate it for a simple realistic case. The theory is based on simple new concepts of
kinetic theory developed by one of the authors and collaborators [10-13], and has already
lead to EOS of simple purely repulsive f1uids which are exact over the whole fluid density
range [14]. An alternative approach to obtain the EOS of f111idsfrom statistical mechanics
has been presented recently by Mason and collaborators [15]. In this paper we make an
initial comparison between both methods.
The theoretical EOS of a fluid with interaction potential u(r), is an explicit equation

for a thermodynamic property in terms of the state variables. In this work we will obtain
the pressure Pasan explicit function of density P and temperature T:

P = P(p, T, A),

where A is a set of parameters characterizing the particular fluid of interest. For a theo-
retical EOS (TEOS) one requires that: a) The dependence of P on p, T and A be derived
from statistical mechanics; b) the EOS parameters A be well defined as functionals of
the potential u( r); c) the dependency of the EOS parameters A on p and T can be
parametrized analytically, and d) the theory should provide the EOS for all f1uids in a
given class [16].
This article shows how to obtain aTEOS with the aboye qualities. In Sect. 2 we review

briefly the generalized collision frequencies which are essential to the theory. In Sect. 3,
these frequencies are used to build the mean diameter (s) and mean attractive range
(I) [131. These quantities allow to write P(p, T) exactly as the pressure of a square-well
fluid whose diameter (7 and range R are respectively proportional to (s) and (I). In Sect. 4
we refer to the square-well EOS used here, which is discussed in detail in Ref. [8], and
show how the other relevant SW properties are obtained. In order to illllstrate the use of
this theory, Sect. 5 is devoted to obtain the TEOS of a Lennard.Jones 12/6 fluid. This
is done in the simplest way, which relies on a perturbative approximation. The equation
thus obtained is compared with empirical EOS for the LJ fluid and with the Song-Mason
equation for the same system [151.The TEOS developed here is quite accurate for T aboye
80% the critical Tc, and p smaller than twice the critical Pe.

2. G ENERALIZED COLLISION FREQUENCIES

1t is simpler to introduce the collision frequencies in reference to a spherically symmetric
discontinuous potentia! u¡(r), of the type shown in Fig. 1 [11]. At a step of height 6< =
u((7+) - u((7-), at r = (7, one identifies three types of collisions illllstrated in Fig. I.
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Bounces (B), for relative kinetic energy eK < 1&1, and collisions up-the-step (US) or down-
the-step (OS), when eK > 1&1 and the kinetic energy after the collision is respectively
smaller or greater than eK' The collision frequency for each type of event is written
in terms of the mean relative velocity (v,) and the radial distribution function g(r) as
follows [10-12]:

v. = :i:7ro.2p(V,) óg(<7) ,

Vus= Vos= 1I"<72p(v,)g(<7'f),

(1)

(2)

where óg(<7) = g(<7+) - g(<7-). The signs depend on the sign of &, and are ehosen such
that V. > O and <7'1' is at the top of the step [10-12]. When & --> 00, Vos= Vus --> O, and
V. reduces to Enskog's result for the HS collision frequency [17]. These expressions were
confirmed by a molecular dynamics simulation [11J. The contribution to the pressure P
from the force at an impulsive step equals the flux of momentum [18, 191. The contribution
to the momentum flux from repulsive bounces from the step at r = <7 is found to be

f3p. 2<7v.
P = 3(v,) ,

where f3= l/kT. Substituting V. from (1) one obtains

f3p. 211" 3 < ( )-- = -<7 pog <7 ,
P 3

(3)

(4)

(5)

which is identical to the result obtained by the viria! theorem of Clausius for the contribu-
tion P of all the forces acting at <7. In the kinetic approach, only the bounces contribute
to the pressure, because Pos = -Pus and hence P = p•. This is not so if the effect of the
forces is calculated via the virial theorem. In the ¡atter, all forces have contributions of
the same sign (which is given by the sign of &) and P~s = P~s > O, but are such that the
total pressure P~+ P~s + P~s is again identical to p. in Eq. (4) [10, 11].
The transition to a continuous potential u(r) can be made from the impulsive u;(r) in

Fig. 1 in the limit of infinitely many steps [12, 13]. For collisions at distances s < r < s+ds,
the differential frequency for repulsive or attractive bounces, dVR/A(S), follows from (1)
when Óf --> O and is

2 a[exp( -f3u)]
dVR/A(S) = :i:1I"Sp(v,)y(s) as ds,

where the (+) sign applies to repulsive (R) and the (-) to attractive (A) parts of u(r),
and y( r) = g( r) exp(f3u).

3. MEAN COLLISION PARAMETERS AND EQUIVALENT SW FLUID

Consider a realistic spherical potential u(r) with its minimum -f at r = rm' For a pair
of partides with r < rm and relative energy e one can define the collision diameter s as
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FIGURE 1. Discontinuous potential u¡(r) with repulsive and attractive impulsive forces. At any
step oC height 6< the bouncing eollisions oeeur when the relative kinetie energy eK is insuflicient to
surmount the step.

the smallest distan ce at which the kinetie energy vanishes, i.e., u(s) = e, so that s is
the distan ce when a bounee oeeurs. Henee, the average diameter can be obtained from
Eq. (5) as

(s)(p, T) = 2- J dVR S
VR

7rp(vr) ¡rm d 3 ( )8[exp( -,Bu)]
=-- ssys 8 '

VR o S
(6)

where VR is the total repulsive frequeney, i.e., the integral of (5) for s between O and Tm.

For a pair of partides with T > Tm and negative energy e', i. e., for a "van der Walls'
dimer", one can also define the eollisional attraetive range 1, where u(I) = e' < O. Its
average is

(I)(p, T) = _ 7rp(vrll°O d113y(I) 8[exp~~,Bu)} ,
VA rm

(7)

where VA is the total frequeney of attraetive eollisions. The average eollision parameters
(s) and (1), and the frequencies VA and VR eoneentrate the information about the eollision
proeesses in the fluid, and have been diseussed in detail elsewhere [13}.

We will now show how to define an equivalent fluid with exaetly the same pressure
as the system of interest at the same (p, T). This equivalent system has a square-well
(SW) interaetion of depth 'sw, hard-eore diameter (1 and attraetive range R sueh that its
pressure is

,BPsw 27rp [ 3 IJ ~, IJ ]-- = 1 + - (1 Ysw((1)e 'sw - trYsw(R)(e 'sw - 1) .
P 3

(8)
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There are several ways to define the equivalent SW fluid. Here we will follow the simplest
approach and choose: 1) The SW depth to be identical to that ofu(r) : 'sw = ,; and 2) the
SW diameter and range to be the (renormalized) mean collision diameter and range of
the molecules, i. e.,

(9)

and

(10)

(11)

Since v~w and v;w are obtained from Eq. (1), the SW pressure in (8) then becomes

f3Psw 2 ( ) ( sw R SW)--=l+3"vr uVR - VA ,
P

which by (9) and (10) gives

f3Psw = 1+ ~(v,)((S)VR - (l)vA).
p

Substitution of Eqs. (6) and (7) in (11) then shows that its right-hand side is identical
to the desired pressure P as given by the virial theorem. It is then clear how this ap-
proach leads to build the TEOS of the fluid of interest. The pressure is expressed by two
components: 1) the SW EOS

(12)

and 2) the quantities u(p, T) and R(p, T) obtained from the mapping Eqs. (9) and (10).
The SW EOS will thus be a universal component of the TEOS of all fluids for which the
mapping equations have a solution. The latter are written explicitly as

and

3 Q rm
3 ó(exp( -f3u)]

u (p, T)Ysw(u)e'" = Jo ds s y(s) ós ' (13)

(14)

At low densities, one can expand the pair distribution functions ysw(r) and y(r) in
powers of p so that

and

u(p, T) = uo(T) + u¡ (T)p + u¡ (T)p2 + ...

R(p, T) = Ro(T) + R¡(T)p + R2(T)p2 + ...

(15a)

(15b)
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Previous evidence indicates that Eqs. (15) are quite convergent and can be safely
truncated after a few terms [3,13,14,20,21]. The results of this work confirm that such
is the case. It is interesting that ao(T) and 1?{¡(T), are respectively equal to the p -; O
limits of the liS diameter in the WCA theory [22], and of the SW range in the SW blip
perturbation theory [20).

4. PROPERTIES OF TIIE SW SYSTEM

The properties ofthe SW fluid needed in this theory are: an expression for Psw(pa3,/3€, A),
with A = R/a, and the vallles of ysw(a) and ysw(R) used in the mapping Eqs. (13) and
(14). The first is simply obtained from the SW Helmholtz free energy Asw. It has also
been shown that [23]

1 [Dasw(7],T,A)]
ysw(R) = -127][exp(/3€) - 1] DA ' (16)

where asw = /3Asw/N and 7]= 7rpa3/6. Finally, ysw(a) is obtained from Eqs. (8) ano (16).
A paper submitted together with this [81 presents an equation for asw which can be

used at intermediate ranges (1.375 < A < 1.75) appropriate for simple fluids [20,211. This
SW EOS is quite accurate for T ~ 0.6Tc and p :S 2pc. The reader is referred to Ref. [81
for details. The values of Ysw(a) and ysw(R) obtained in this way are quite close to the
Monte CarIo results of Henderson and collaborators [24,25] for S\V of various A, T and p.

5. TIIEORETICAL EOS FOR TIIE LJ 12/6 FLUID

The main question confronting this theory is whether the mapping equations, (9) and
(10), or (13) Rnd (11), have solution, i.e., whether the variable-width SW system is flexible
enough to represent the properties of the fluid. From the argument leading to Eq. (11),
it follows that any solution of the mapping equations will give the pressure of the system
with an error which only reflect the accuracy with which the system's r.d.f. is obtained.
(This function is th __input in Eqs. (13) and (14).) This means that any errors in the SW
EOS will not affect the accuracy of the pressure, as long as the mapping equations have
real solutions for a and R. Nevertheless, the inaccuracy of the SW EOS will be reflected
in the behaviour of a(p, T) and R(p, T). These questions will be answered and illustrated
here by applyillg this theory to a fluid interacting with the Lennard-Jones 12/6 potential.
To obtain the TEOS of a fluid one needs the r.d.f. for the desired u(r) and use it in

Eqs. (13) al,'l (14) to calculate a and R at one state (p, T). At low densities, y(r) is
expanded in a virial series from which the coefficients ao(T), 1?{¡(T), cte., in Eqs. (15)
are obtained by simple quadrature. This procedure gives the exact low density behaviour
of a(p, T) and R(p, T). For the L.! 12/6 fluid, the zeroth-order coefficients are shown in
Fig. 2. When T" -; O, both ao and 1?{¡....•rm, because at T" = O all pairs are a distance rm
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FIGURE 2. Temperature dependence of the first virial coefficients of the mean diameter and range
ror LJ molecules. The value at T' = Ois the minimum oí the LJ poten tial.

apart. When T' - 00, 170 - O slowly and Ro - I.556517w. The next coefficients 17¡(T)
and R¡ (T) were also calculated and behave smoothly for T' > T(;.

At high densities, YLJ(r) can be obtained from simulations or any of several theories
already applied to the LJ 12/6 fluid. In this paper we will follow the simplest approach and
calculate YLJ from first-order perturbation theory. This approach is particularly appealing
because the SW fluid is an adequate reference system for the perturbative calculation [26].
In this case

YLJ(r; p, T) "" Ysw(r; ,', 17', R'; p, T), (17)

which, for the LJ system, improves the already good results of the WCA HS perturbation
theory [26]. The values of ,', 17' and R' that define the SW reference in (17) are provided
by perturbation theory. In all cases, , = ,', but at least two possibilities arise in regard
to 17' and R': The first is to use the same values 17 and R determined by the mapping
Eqs. (13) and (14), this assumes that the ESW, which has the same pressure as the fluid
of interest, is also a good reference in the perturbation scheme. This choice will be referred
to as the "pressure" option. The second choice is to determine 17' and R' by the common
blip procedure which provides a good approximation to the Helmholtz free-energy of the
system [20,26]. This will be called the "free-energy" option.

For both options one still needs to calculate Ysw. Following the same work [26], Ysw(r)
can be parametrized in terms of the well known YHS(r) as

Ysw(r) = L(r)YlIs(r), (18)

where L(r) is a linear polynomial in r fitted to give the correct values of Ysw(r) at r = 17

and r = R. The latter are then obtained from asw as described in the previous section.
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In the pressure option, one uses approximation (17) and (18) in the coupled set (13)
and (14). For the LJ 12/6 fluid, the resulting values for u. = U/ULJ and R' = R/uLJ are
respectively shown in Figs. 3 and 4 as functions of p' = pU~J for several temperatures. The
diameter u is remarkably constant for p' :5 0.6, which is the density range where our SW
EOS is accurate. Nevertheless, a second solution beco mes apparent at higher densities, as
is shown in Fig. 5. An analysis of gLJ(T), as obtained in the pressure option, shows that
the solution on the top branch grossly misrepresents the known structure of the LJ fluid.
Hence, the pressure option gives reliable values of u and R only for densities p' :5 0.6, or
slightly larger at high temperatures.

The values of the EOS parameters u' and R' for p' :5 0.6 were filted to fourth-order
density polynomials with coefficients un(T) and Rn(T), as in Eqs. (15), for n ~ 1 and
with the exact uo(T) and Ro(T). The lalter guarantee that the second virial coefficient is
incorporated exactly and are represented by

(T) _ UOO + uOIT' + U02T•2
Uo - 1+ U03T' + U04T'2 + Uos T.3 '

Ro(T) = TOO+ TOIT' + T02T•2 ,
1+ T03T' + T04T'2

(19)

(20)

with the coefficients UOn and TOngiven in Tables I and II. The higher-order density coef-
ficients Un and Rn, n ~ 1 are given by polynomials

M

un(T) = 2:= unmT.m,
m;;O

M

Rn(T) = 2:= Tnm/r,
m;;;Q

(21)

(22)

where (3' = f/kT. The coefficients Umn and Tnm are also given in Tables I and I1, and the
order M is implicit in these tables. These simple fits give u. and R' as shown in Figs. 3
and 4.

In the free-energy option, u' and R' were obtained by the common blip procedure [261.
The resulting YLJ(T) was used to calculate the right-hand sides of (13) and (14), and
this set was solved for u A and RA• This option reduces the non-linearity of the mapping
equations and, as a result, only one solution is found for aH densities p' :5 1. The behaviour
of uA(p, T) and RA(p, T) is very close to that of u and R for p' :5 0.6.

As was already mentioned, the pressure obtained by this theory will carry any errors
made in calculating the r.d.f. on the right-hand sides of Eqs. (13) and (14). Comparing
the results for P obtained from the pressure and free-energy options with the empirical
LJ EOS of Nicolas el al. [27], one finds that the pressure option is the more accurate of
the two in the region p' :5 0.6. The free-energy option is less accurate in this region but
is weH behaved up to p' = 1.
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FIGURE3. Mean diameter u' = u/uL, of the Lennard-Jones 12/6 particles as function of density
calculated by perturbation theory in the "pressure" option. The curves are labeled with the values
of T'.
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FIGURE 4. Mean attractive range R' = R/uL, of the LJ 12/6 particles. as a function of density,
in the "pressure" optioo. The labels on the curves give the vaJuesoCT-.

¡¡ence, among the simple perturbation approximations he re considered, the pressure
option is the best, giving explicitly the pressure of the LJ fluid for p' :5 0.6. The resulting
LJ TEOS is given by the SW EOS. derived from Eq. (12) as described in Ref. [8J. with
the mean diameter and range given by Eqs. (19)-(22) and the Tables. The compressibility
factor Z = /3P/p thus obtained is compared in Figs. 6 and 7. for several temperatures,
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FIGURE 5. High-density behaviour or the LJ mean diameter in the pressure option, showing the
second branch.

TABLE I. Coefficients in the represcntation oC the mean diameter (1- (The numbers in parenthesis
stand ror powers or 10).

O'Om O"m 0'2m 0'3m 0'4m

1.12246158 0.048747 -0.398186 1.00951 -0.818516

6.00901754 -0.064912 0.532428 -1.34131 1.05499

1.43509877 0.0329435 -0.282827 0.717203 -0.564757

5.82320728 -0.00843135 0.0749309 -0.1918 0.151727

1.59337203 0.00114984 -0.105003 0.0271087 -2.15367(-2)

4.8564519(-3) -8.06431(-5) 7.48192(-4) -1.94275(-3) 1.54699(-3)

2.25415(-6) -2.11558(5) 5.51668(-5) -4.39803(-5)

TABLE 11. Coefficients in the represenlation of the mean range n-.
rOm rlm r2m r3m r4m

1.12246158 0.020498 0.0952729 -0.0598724 -0.150982

4.88445292 0.606147 -2.33005 6.95801 -4.2637

42.8716808 0.583052 -3.36833 -6.35626 7.2418

4.82555966 -1.54003 11.3938 -7.05945 3.03367

7.7096049 0.82185 -6.83747 3.09453 -1.84751

-0.159827 1.48099
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FIGURE 6. Companson between equations oC state Cor the LJ 12/6 fluid at lower temperatures,
as labeled. Continuous Iines: theoretical EOS Crom this work; circles: empirical EOS by Nicolas el
al. [27J;dashed Iines: Song and Mason EOS [15J.
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FIGURE 7. The same as Fig. 6, but at higher temperatures.

with the empirical equation oí Nicolas el al. EOS [27]. The agreement between both is very
good at al! temperatures and p' < 0.6. The same figures show the values oí Z obtained
Crom the simpler TEOS oC Song and Mason [15J. For T' :$ 5 the TEOS here presented is
notably more accurate than the Song and Mason EOS in the density range considered,
particularly at the lower temperatures. For T' ~ 10 both TEOS are indistinguishable.
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6. CONCLUSIONS

This artide shows how to derive a theoretical EOS of simple fluids. This TEOS relies on
mapping the system of interest into a SW fluid of suitably defined depth, diameter and
range, which are simply related to collisional averages. The mapping equations, (13) and
(14), are shown to have solution for the simple LJ 12/6 system in a first-order perturbation
approximation. The TEOS obtained within this approximation is shown to reproduce
remarkably well the pressure of the LJ system as represented by the empirical EOS of
Nicolas el al. [271 for T' /T~ > 0.8 and p/ Pe < 2. This TEOS compares favourably with
the TE OS of Song and Mason [151.

The present application of this theory is limited by the approximate SW EOS used
here and by the perturbation approximation used for the system of interest. Both can
be tackled by using a SW EOS with a more extended range of application and by using
better approximations for the r.d.f. of the fluid of interest.
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