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Properties of the square-well fluid of variable width.
V. Equation of state for intermediate ranges
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ABSTRACT. An equation of state (EOS), based on a perturbation expansion, is presented for the
square-well (SW) fluid of intermediate ranges, 1.2 < A < 1.75, which are the most important for
applications. This EOS complements previous theories for short and long ranges and is in very
good agreement with computer simulation results for the SW internal energy and pressure for
the ranges considered, for densities up to twice the critical and not too low temperatures. This
equation compares favourably with other EOS from the literature. The vapor-liquid equilibrium
predicted by the EOS agrees well with recent Gibbs ensemble MC calculations of Vega et al. except
close to the critical point.

RESUMEN. Se presenta una ecuacién de estado (EE) para el fluido de pozos cuadrados (PC),
basado en un desarrollo perturbativo, para los alcances intermedios, 1.2 < A < 1.75, que son de
interés en las aplicaciones. Esta EE complementa teorias previas para alcances cortos y largos, y
concuerda bien con resultados simulados por computadora de la energia interna y la presién para
los alcances considerados, y para densidades hasta el doble de la critica y temperaturas no muy
bajas. La EE propuesta se compara favorablemente con otras EE de la literatura. El equilibrio
liquido-vapor predicho por la EE concuerda también con los recientes calculos de Vega et al.,
basados en el ensemble de Gibbs, excepto cerca del punto critico.

PACS: 05.70.Ce; 64.10.+h

1. INTRODUCTION

During the last decade, the square-well (SW) fluid has played an important role as a model
for thermodynamic [1-4] and transport [5-7] properties of classical fluids, and more recent-
ly, for adsorption and percolation phenomena [8,9]. The SW incorporates intermolecular
repulsions and attractions in the simplest way, and is used as a reference in perturbation
theory [10], and as a basis for theoretical equations of state of realistic simple fluids [11-13].
These applications require accurate equations for the thermodynamic properties of the
SW system of variable width.

*Work performed while on sabbatical leave at the Departamento de Quimica Fisica, Universidad
Complutense de Madrid, 28040, Madrid, Spain.
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For two particles a distance r apart, the SW potential of diameter o depth ¢ and range
R is given by

oo, 0<r<ao,
uswi(r)={ - e <r<R, (1)

0, R<r.

The thermodynamic properties of this system are quite well known from molecular
dynamics (MD) and Monte Carlo (MC) simulations for various values of A = R/o [14-20].
The vapour-liquid equilibrium, including the critical properties as a function of A, has also
been studied recently using the Gibbs ensemble MC technique [21]. The requirements of
applications have induced the proposal of equations of state (EOS) for the SW fluid, which
include EOS based on coordination number models [2,16,22-25] and on perturbation
theory [1,4,26-28]. In spite of these extensive efforts, the predicted SW properties do not
agree well with the simulated results away from its short (A — 1) and long (A >> 1) range
limits.

This work reports and equation for the free energy of the SW fluid at the intermediate
ranges (1.2 < A < 1.75) which are relevant in applications [1,3,4,10,13]. Although the
short- and long-range regions are theoretically interesting, the theories developed for these
ranges fail for the practically important intermediate widths. A discussion of the accuracies
obtained with the various approximations for long ranges has been presented recently [20].
The EOS obtained here improves the accuracy of the known SW EOS and agrees well with
the simulation results for the SW pressure and internal energy [14-19] at intermediate
ranges, p* = po? < 0.65, and T* = kT/e > 0.8, although it fails at higher densities and
lower temperatures.

The high-temperature expansion of the SW free energy is analyzed in Sect. 2, and the
main points needing improvement are identified and tackled in Sect. 3. The pressures and
internal energies are compared in Sect. 3 with the MC and MD results [14-19]. Section 4
is devoted to a comparison with other EOS from the literature, and Sect. 5 discusses the
SW thermodynamics as a function of A, and its vapor-liquid equilibrium in comparison
with Gibbs ensemble and MD results [21,29]. The conclusions are summarized in Sect. 6.

2. ANALYSIS OF THE HIGH TEMPERATURE EXPANSION

To write the EOS of the SW fluid of density p = N/V and temperature T, we start from
the high-temperature perturbation expansion (HTE) of the Helmholtz free energy Asw,
as introduced by Barker and Henderson [30]. If asw = A/NkT is the free energy per
particle,

s A . X
asw(n, T") = aus(n) + al(;:']- ) ¥ 1 az’?iz )

+ aﬂ(naT*$)‘)' (2)
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In this equation, 7 = 7po3/6 and ays is the hard-sphere (HS) free-energy, which will
be taken from the Carnahan-Starling formula [31]. The SW mean-field term a, was ob-
tained by Del Rio and Lira for all ranges [28], and in the Percus-Yevick approximation
by Flemming and Brugman [4]. For intermediate A the mean-field approximation gives
asw with an accuracy better than 1% only for T* > 20, hence higher-order terms are
needed [20]. Truncation of Eq. (2) after ay is quite accurate (with error below 107?) for
T* > 5 [20]. At small densities, aj is given by the Barker-Henderson local and macroscopic
compressibility approximations (LCA, MCA) [30], and for A > 2 by the Benavides-Del
Rio long-range approximation (LRA) [27]. The last term in (2) is the sum of all the
higher-order contribution in the HTE

o0

aR(naT*, /\) = Z 9}-(11-?,;;_”: (3)
1=3

and will be called the remainder term. This term is necessary to predict adequately the SW
vapor-liquid equilibrium for intermediate ranges. An expression for ag can be obtained
by using the LCA at all orders [32], but this result underestimates the free energy at
moderate and high densities [33].

Therefore, in order to obtain an EOS for SW fluids of intermediate range, accurate
at subcritical temperatures, it is necessary to improve the accuracy of the mean-field
pressure derived from a; and of the known approximations (MCA, LCA and LRA) for
a2, and find an approximate expression for the remainder term ag.

3. Eos THE SQUARE-WELL FLUID

The mean-field term can be writte as [27,28]

a1(n,A) = a13()A® + e10(n) + 1sr(n, A). (4)

The van der Waals term a3 = —47, added to an exact ays, gives the augmented VDW
approximation (AVDW) which becomes exact in the Kac limit: € — 0 and A — oo, with
€A® = const. [34,35]. The second term in Eq. (4) is the correction due to a finite range,

a10(n) = 3[1 — Kus(n)], (5)

where Kys = kT(0p/0Pys)r. The last or short-range term in (4) is

o0
osr(m A) = 12nf dr 2¥hys(z), (6)
A

and tends to zero when A — oo. Interpolating a; between short and long ranges [26-28]
gives ajsp for all A withing 2% of the MC data [18], but error amplification makes the
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pressure to deviate as much as 30%. In order to overcome this difficulty we propose a
different interpolation form. Defining b(n, A) = a1sr(7n, A)/127, we let

e~ V¢
b(, A) = (1C+—ﬂ£)” conlp-+- (L 42} (7)

where £ = A—1, and ((7n), v(7), ¢(n) are determined from the known short-range expansion
(SRE), £ — 0 (see Appendix A). the parameters n, # and v are chosen to optimize the
shape of b(n, A) for 1.375 < A < 1.75 and p* < 0.6. Their values are

n = 0.860044, B =05.487716, and ~y = —0.415748.

When Eqgs. (5) and (7) are used in (4), the mean-field compressibility factor Z; =
n[0a; /0n] has a r.m.s. deviation of 0.06 from the MC results [18,33,36] in 0.1 < p* < 0.8,
for A =1.375,1.5,1.625 and 1.75.

For the term ay we start from the simple MCA which can be expressed as

a2mca = —%al(ﬂ,’\)Kﬂs(ﬂ), (8)

and is obtained in closed form once a; is written as in (4). Nevertheless, for intermediate
ranges, Eq. (8) is only good for p* < 0.2. The LCA improves slightly the MCA, but at
the cost of introducing in the pressure terms like 8%b(n, A)/8n?%, which amplify the error
in b(n, A) itself. In this work we correct the MCA to reproduce the MC results and write

_ a2MCA(ns }‘)Q(T]! A)
ag =

a-nF ®)

with
Qn, A) = L+ 2 (A)p* + Q2(A)p*? + Q3(A)p* + Qu(A)p™, (10)

where the coefficients (); are given in Appendix B. The a; obtained from Egs. (9) and
(10) is within 1.4% of the MC results for 1.325 < A < 1.75.

The high-order fluctuation terms in Eq. (3) tend to zero at high densities due to the HS
repulsions. This fact is incorporated by the LRA [27], whose dominant term is proportional
to K2. Hence, we propose a generalized MCA (GMCA) for the terms with n > 3:

an = ag(ny’\9T*)K|2{s(n)9 (11)

where a® incorporates the low density behavior of each term as obtained from the second
and third SW virial coefficients [37] (see Appendix C). The GMCA in Eq. (11) for n =3
reproduces the MD results of Alder et al. for A = 1.5 within their uncertainty [14]. By

Eq. (3), the remainder free-energy term takes the form

ar(m, A, T*) = ad(n, A, T*)Ks(n), (12)
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where a9 is the sum of all the a2 for n > 3 adjusted to give the third virial coefficient at
low temperatures (for details see Appendix C) [37], and is given by

ag(m A, T*) = —4n[(A° = 1) — L5p(A)n]| W(T*) + q(A)t°7?, (13)
where
p(A) = B — 36127 — 483 4+ 574t — 2226 (14)
q(X) = 746.5 — 1701.665 A + 1300\ — 1000X%, (15)
1
t = exp (;f;) -1, (16)
and
" 1 1 05
W(T)_exp(-j—,;)—l—ﬁ—q—n‘;. (17)

The SW EOS for the Helmholtz free energy, referred to as EOSI, is obtained by sub-
stituting Eqgs. (4), (9) and (12) in Eq. (2).
The internal energy of the SW fluid is given by
AU _3 . wulnl)  walnd)

N 2t tTTra

+UR(1’!A1T.)' (18)

where u; = aj, up = 2az and ugp = =T*[0ar/IT*]. The SW internal energies predicted
from EOS1 and (18) are in excellent agreement with the MC results [15,18]. In 45 states
(with 0.4 < p* <0.8;0.8 <T* < 4; )\ =1.375, 1.5, 1.625 and 1.75) the r.m.s. deviation was
2.3%, only slightly larger than the estimated uncertainties in the simulations, although the
deviation is larger at p* = 0.8 and at the lower temperatures. Fig. 1 shows the behavior of
Augw = BU/N — 3/2 with X at T* = 2, for several p*’s and the corresponding simulation
data [15,17,18]. At not too high densities, —Ausy grows with A3, as in the VDWA, but
is more structured at higher densities.
The compressibility factor Z = SP/p is

Zl(nvA) 3 Z2(’?a/\)
T* T*2

ZSW(nsAsT*) = ZHS(”)"*‘ +Zﬂ(n’ A,Tt), (19)
where the notation explains the origin of each term. This EOS has the typical VDW
form with the HS term making the positive contribution to the pressure. The mean-field
term can be written as Z; = Zj g + Z1sg, Where Zy;x arises from a;3 and ajg and Zisx
from ajsg. For intermediate p* and T, Z; x tends to cancel Zys and the contribution
of Zisg becomes more important; this explains the difficulty in improving the attractive
part of the classical VDW EQS after correcting the repulsive part Z,s, as was done by
Longuett-Higgins and Widom [38].

Figure 2 compares Zsw at A = 1.5, obtained from the EOS1 and Eq. (19), with MC
results from the literature [15,16]. The pressures predicted by the EOS1 are in good
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FIGURE 1. Excess internal energy of the SW fluid as a function of the range A at T* = 2 and
various densities as labelled. The solid lines stand for the EQS1 in this work. Also shown are the
MC results of Henderson et al. [15,18] (while circles) and of Rosenfeld and Thieberger [17] (black
circles).

agreement with the simulation results for 7* > 0.8 and p* < 0.65. The deviation in Zsw
between theory and simulations at p* > 0.7, is more marked than for U. The comparison
with the MC results at other ranges is similar. Typical SW pressure isochores are shown
in Fig. 3, where the EOS1 is compared with recent MD results by De Lonngi et al. [19)
for A = 1.4. The agreement is excellent and similarly for A = 1.6.

4. COMPARISON WITH OTHER EOS

A detailed comparison has been made between EOS1 and other SW EOS from the liter-
ature. Among the SW EOS based on a perturbation expansion there are three first-order
EOS: The original VDW equation, the augmented VDW equation (AVDW) which used an
accurate ays, and the mean-field EOS of del Rio and Lira (DRL) [28]. Four second-order
EQOS differ in various approximations for ays, a; and ay, and are those of Ponce & Renon
(PR) [39], Aim & Nezbeda (AN) [1], Flemming & Brugman (FB) [4], and the long-range
Benavides-Del Rio equation (BDR) [20,27].

Several authors have proposed SW EOS based on coordination numbers [40]: 1) The two
equations of Lee, Lombardo and Sandler (LLS1 & LLS2, given respectively in Eqgs. (15)
and (21) of Ref. [2]) and the more recent Lee-Sandler equation (LS) [22]; 2) the Lee-Chao
equation (LCh) [24]; and 3) the two equaticns of Guo, Wang and Lu (GWL1 & GWL2,
Egs. (21) and (22) of Ref. [16], respectively). The last EOS considered is that of Song and
Mason (SM) [41], which, although originally proposed for continuous potentials, provides
a simple closed-form formula for the SW fluid.
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FIGURE 2. Compressibility factor Zsyw of the A = 1.5 SW fluid along several isotherms as labelled.
The solid lines and white circles have the same meaning as in Fig. 3. The black circles stand for

the MC results of Guo et al. [16].

n
T

™~
~
T

w
=

[
T

%Z/

.

i
S

e

-

o]

L I . ,
2 4 6

8

Fi1GURE 3. Compressibility factor Zs,, of the A = 1.4 SW fluid along selected isochores as labelled.
Shown are EOS1 (full line) and the MD results of De Lonngi et al. (circles) [19].

The EOS developed in this paper and the 14 EOS from the literature were tested against
the simulation results available. These include results of MC [15-18] and MD [14,19]
simulations. Two-phase states were eliminated using the vapor-liquid coexistence line by
Vega et al. [21] to obtain a total of 118 MC states and 273 MD states. Restricted sets of
states were obtained by eliminating densities p* > 0.7, temperatures 7* < 0.8 and the
extreme ranges A = 1.125 and 2.00; these restricted MC and MD sets comprised 63 and

186 states respectively.

The r.m.s. deviations in the compressibility factor Zsw of the 15 EOS from the sets
of simulation results are shown in Table I: from the complete wide sets (columns 2 and
3) and restricted sets (columns 4 and 5). Deviations are smaller from the MD sets than
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TABLE I. Test of the SW EQOs against simulated results. Shown are the r.m.s. deviations in the
compressibility factor Z. The columns correspond to the wide (a) and restricted (b) sets of states
for Monte Carlo (MC) and molecular dynamics (MD) data.

EOS MC (a) MD (a) MC (b) MD (b)
No. of states 118 273 63 186
VDW 14.849 18.820 18.729 21.786
AVDW 0.784 0.631 0.236 0.142
DRL 0.798 0.415 0.284 0.185
PR 0.910 0.487 0.345 0.263
AN 0.823 0.546 0.302 0.225
FB 1.151 0.151 0.173 0.065
BDR 0.820 0.533 0.227 0.149
SM 1.452 1.922 0.381 0.219
LCh 1.594 1.134 0.630 0.237
LS 1.090 0.412 0.583 0.292
GWLI1 1.561 0.874 0.629 0.451
GWL2 1.699 1.103 0.570 0.203
LLS1 1.185 0.541 0.584 0.362
LLS2 1.649 0.640 0.670 0.175
EOS1 0.720 0.341 0.113 0.054

from the MC sets, perhaps because the MD simulations cover a narrower set of ranges
(1.4 < A £1.6). Except for VDW, which fares equally badly for both sets, all other EOS
are much better for the restricted than for the wider sets. In general, the PT equations are
more accurate than the coordination number models. The latter, besides being simpler,
have been developed mostly for A = 1.5 and are closer to the PT EOS for the restricted
MD set. It is somewhat discouraging that over the wide MC set, which includes A’s outside
the intermediate range region, only one equation (EOS1) is better than AVDW. In the
three remaining sets (wide MD and restricted MC and MD, which are in the intermediate
range region) the two best equations are EOS1 and FB.

A good EOS should be able to predict correctly the virial coefficients. The second virial
coefficient B, predicted by the SW EOSI is exact, but not so for the BF EOS. The third
virial coefficient obtained from EOSI1 is very close to the exact Kihara formula [37] as
shown in Fig. 4, which also includes the values derived from the GWL2 EOS (which gives
the best B; among the coordination number models considered by Guo et al. [16]).

5. THERMODYNAMIC BEHAVIOR AND VAPOR-LIQUID EQUILIBRIUM

The EOSI1 gives the behavior of the SW properties with A, i.e., with a change in the
shape of the potential. Figure 5 shows the free energy Aasw = asw — a@iq for T* = 2 and
several densities. The values of Aasw at A = 1 should equal Aays = —Asus. The SW
excess entropy Assw =~ Asys because the mean-field term does not contribute. When A
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FIGURE 4. Third virial coefficient of the A = 1.5 SW as obtained from Kihara’s exact expres-
sion [37] (solid line); EOS1 (dashed line), and GWL2 EOS [16] (circles).

increases, Aasw o A* due to Augw. Due to the combined effects of Assy and Ausy,
Aasy increases with p* for A < 1.4, whereas for A > 1.8Aasyw decreases with p*; for
intermediate ranges, Aasw goes through a minimum in p*. The derivative of Aasy with
A is proportional to y(A) [28], the background correlation function at z = A, and the
attractive force is also proportional to y()). Hence, from Fig. 5, the attractive force will
be monotonic with A (the VDWA predicts y(A) = 1) at small densities or long ranges,
but will go through a minimum and a maximum for high densities.

The behavior of Zsw(A) is shown in Fig. 6 for T* = 2 and several densities, together with
the corresponding simulation results [15,17-19]. In general Zsw decreases with increasing
A as in the VDW model, but at higher densities there is a loop in Zsw(A), also present
in the simulation results, which is due to the oscillations in y(A). This loop cannot be
derived from the VDWA and is produced by the short-range term a;sg.

Figure 7 shows the orthobaric densities for A = 1.5 as obtained from EOS1, as well as
the AVDW orthobaric curves, and the Gibbs ensemble MC (GEMC) and MD simulation
results [21,29]. The behavior shown is similar for other ranges. The orthobaric densities
obtained with the EOQS1 are in good agreement with the simulation data, except close to
the critical point. The prediction of the EOS agrees well with the MD simulations down
to T* = 0.8, which is the lower confidence limit of this EOS.

Figures 8 and 9 show the behavior of 7, and p. with A as obtained from the EOSI1
and from the AVDW approximation. These are compared with second-order perturbation
theory (PT2) results by Henderson et al. [15,18] and with the GEMC results [21], (at
A = 1.5 one also has the MD values by Alder et al. [14]). Being effectively a two- parameter
EQOS, the AVDW approximation predicts p. = 0.25 and Z. = 0.36 for all A, whereas T
(and also P?) grows with A* as in Fig. 8. At A = 3, the AVDW model is essentially
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FIGURE 5. Excess Helmholtz free energy for the SW fluid as a function of the range A according
to the EOS1 of this work. The curves correspond to reduced densities from 0.1 to 0.8 and the
temperature is T* = 2.0.

24T \& 7 %

FIGURE 6. Compressibility factor of the SW fluid as a function of the range A at T* = 2 according
to EOS1 of this work (full lines) for the densities as labelled. Also shown are the MC results of
Henderson et al. [15,10] and Rosenfeld and Thieberger [17] (white circles), and the MD results
of De Lonngi et al. [19], (black circles). The dashed lines are polynomial interpolations of the
simulation results.
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FIGURE 7. Vapor-liquid equilibrium of the SW with A = 1.5. Orthobaric line from EOS1 (full
line), AVDW approximation (dashed line), GEMC results of Vega et al. [21] (circles), MD results
of Chapela et al. [29] (x). The position of the critical point is: EOS1 (*), second-order perturbation
theory [18] (4), Gibbs ensemble [21] (+), and MD result of Alder et al. [14] ( ).

exact [20]. For lower \’s, the AVDW prediction of pc is far away from the GEMC results,
but that of T* is surprisingly close to them.

The critical density increases over the AVDW value when A < 2, see Fig. 9, and this
tendency is picked up, although overestimated, by the EOS1. This overestimation for
A < 1.4, together with a slightly higher T?*, makes P; higher than in the GEMC results.

6. CONCLUSIONS

The EOSI is the most accurate among the SW EOS available from the literature when
tested against published simulation data, in the fluid states p* < 0.65 and 7" > 0.8, and
for the intermediate ranges 1.2 < A < 1.75, except for a small region around the critical
point. The other EOS of comparable accuracy is the equation of Flemming and Brug-
man [4]. These EOS are based on perturbation theory and are rather more complicated
than the simpler, although less accurate, EOS based on coordination number models.
Together with the SW EQS previously proposed for short and long ranges [26,27], the
EOQS1 provides quite accurate knowledge about the dependence of the SW thermodynamic
properties, including the vapor-liquid equilibrium, on the width of the potential well, all
the way from very narrow to very wide potential wells where the AVDW approximation
becomes exact. The SW properties in the intermediate range region are the result of the
balance among several terms in the EOS, which are rather difficult to model, particularly
at high densities and close to the critical point. This work shows that the most important
term needing improvement is the short-range term ajsg of the mean-field free energy.
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F1GURE 8. Reduced critical temperature T of the SW fluid as a function of the range A. The
symbols have the same meaning as in Fig. 7.
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FIGURE 9. Reduced critical density p. of the SW fluid as a function of the range A. The symbols
have the same meaning as in Fig. 8. The vertical lines show the error bars of the Gibbs ensemble
calculation [21].

The SW EOS here proposed can be used to generate EOS of more realistic fluids, i.e.,
with continuous potentials, an application that will be presented by the authors in a
future communication.
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APPENDIX A

The short-range expansion of b(7n, A) reads

b(m,A) = ) b(n)(A-1)™, (A1)

where b,(7) = 8™b(n,A)/dA™ evaluated at A = 1. Defining b] = b, /by, the desired
functions in Eq. (7) are obtained from (A1) as

v=pu—np, (A2)
w? = [nf? — 203 + 296} — 2u(b} — ) — u?], (A3)
o = LT (A4)
w
—_ b(}

and where p is the solution of
2yu? + [—697 + 4vb} + b3? — 203 + nfB?| p+

[~69%85 + (665 — 30" — bi%)y + (b} — B)np” + b1b; — 3b5] =0 (46)
From the previous work of Del Rio and Lira [28], it is known that

1 Kys-—1

bo=3+ 00 (A7)
by =1-yps, (A8)
b = by — 2 0 (49)
5326_1_2%5_132938 (A10)

3 3 0z 6 0z’

where z = r/a, y0 is the contact value of the HS cavity function, obtained from the CS
EOS, and its first and second z—derivatives are known functions of the density [26].
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APPENDIX B

The polynomials Q,()) of Eq. (10) for the SW EOS1 are
Q1(X) = —150.4141 + 295.5278 A — 188.7726 A? + 39.05170 A®,
Q2(A) = 651.0186 — 1182.422 ) + 701.2853A% — 135.4891 A3,
Q3(A) = —86.89659 — 15.0961 A + 127.1438 A? — 51.78439 A3,
Qq(A) = —775.5074 + 1603.865 A — 1089.664 A2 + 243.7498 A3,

APPENDIX C

At low densities, the SW pressure is given by the virial expansion

% =14 Ba(T*, Ny + Bs(T*, \)n* + -+ -, (C1)
whose coefficients By, are functions of T* and A. The first two are
By(T*,\) = 4[1 = (A® = 1)¢], (C2)
and, for A < 2 [37],
B3(T*,)) = 10 + L(A)t + L(A\)E + L(\)E, (C3)

where t = exp(1/T*) — 1, and I, I3, I3 are polynomials in A with different coefficients for
A < 2 and A > 2. Expanding the exponential in ¢ in powers of the inverse temperature
1/T*, the SW virial series (C1) can be used to find the low density expansion of the terms
an. One finds that the for a; and a3 in Egs. (4) and (9), give the correct contribution to
B; but not to Bs. In the last case, the discrepancy comes from the densities derivative of
b(n, A) and the factor (n, A) used to correct the MCA in a,.

The third-order term a3 must be, when n — 0,

a3(n,A) = =2(W = g+ p(N)n* + -+ - (cy)

where p(A) is the polynomial of equation (14), for A < 2.

For the next terms a2 one obtains equations similar to (C4) and (14). The contribution
proportional to 7 in al is —4(A% — 1)/n!, but it is not possible to express in a similar
condensed formula the term proportional to 72, because to each al corresponds a different
sixth-degree polynomial in A. However, an analysis of a? for n = 3,4 and 5 shows that
they have very similar behavior for supercritical temperatures, which we will assume to

hold for all orders. Hence the a9 will be approximated by

n[4(X% — 1) + 6p(\)n]
n!

(n23), (C5)

a3, ) = -
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where the exact contribution to the second virial coefficient (C2) is already included. By
(C5), the low-density remainder term in (3) can now be expressed in closed form

a(n, A, T*) = —a[(%® = 1) = L5 p(A)n] W(T*). (C6)

where W (T*) = exp(1/T*) — 1 —1/T* — 0.5/T*2. At subcritical temperatures, where the
approximation (C5) falls, Eq. (6) is corrected by introducing a term proportional to .
This term determines the low temperature behavior of B; and does not contribute with
terms proportional to 1/T* or 1/T*2, which are already considered in a? and aJ. The final
expression for a2 is Eq. (13), where g(}), Eq. (15), was obtained by adjusting the values
of the third virial coefficient, calculated from the SW EOS1, with the exact Kihara result
(RC3R), in the X interval considered in this work.
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