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ABSTRACT. An equation of state (EOS), based on a perturbation cxpansion, is prcsented for the
squarc-well (SW) fluid of intermediate ranges, 1.2 ~ A ~ 1.75, which are the most important for
applications. This EOS complements previous theories for short and long ranges and is in very
good agreement with computer simulation results for the S\V internal energy and pressure for
the ranges considered, for densities up to twice thc critical and nol too low temperatures. This
equation compares favourably with other EOS from the lilerature. The vapor-liquid equilibrium
predieted by the EOS agrces well with recent Gibbs ensemble MC calculations of Vega el al. except
close to the critical point.

RESUMEN.Se presenta una ecuación de estado (EE) para el fluido de pozos cuadrados (PC),
basado en un desarrollo perturbativo, para los alcances intermedios, 1.2 :5 A :5 1.75, que son de
interés cn las aplicaciones. Esta EE complementa teorías previas para alcanccs cortos y largos, y
concuerda bien con resultados simulados por computadora de la energía interna y la presión para
los alcances considerados, y para densidades hasta el doble de la crítica y temperaturas no muy
baja..c;.La EE propuesta se compara favorablemente con otras EE de la literatura. El equilibrio
líquido-vapor predicho por la EE concuerda también con los recientes cálculos de Vega el al.,
basados en el ensemble de Gibbs, excepto cerca del punlo crítico.

I'ACS: 05.70.Ce; 61.10.+h

l. 1NTRODUCTION

During the last decade, the square-well (SW) fluid has played an important role as a model
for thermodynamic [1-4] and transport [5-7] properties of c1assical fluids, and more recent-
Iy, for adsorption and percolation phenomena [8,9]. The SW incorporates intermolecular
repulsions "mi at!r"ctions in the simplest way, and is used as a reference in perturbation
theory [la], and as a basis for theoretical equations of state of reaHstic simple fluids [11-131.
These applications require accurate equations for the thermodynamic properties of the
SW system of variable width .

• \Vork performcd while on sabbaticalleave at the Departamento de Química Física, Universidad
Complutense de Madrid, 28040, Madrid, Spain.
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For two particles a distance r apart, the SW potential of diameter (1 depth f and range
R is given by

{

00, O < r < (1,

usw(r) = -f (1 < r < R,

O, R < r.

(1)

The thermodynamic properties of this system are quite well known from molecular
dynamics (MO) and Monte Carlo (MC) simulations for various values of A = RI(1 [14-20).
The vapour-liquid equilibrium, including the critical properties as a function of A, has also
been studied recently using the Gibbs ensemble MC technique [21]. The requirements of
applications have induced the proposal of equations of state (EOS) for the SW fluid, which
include EOS based on coordination number models [2,16,22-25] and on perturbation
theory [1,4,26-28]. In spite of these extensive efforts, the predicted SW properties do not
agree well with the simulated results away from its short (A - 1) and long (A » 1) range
limits.
This work reports and equation for the free energy of the SW fluid at the intermediate

ranges (1.2 ~ A ~ 1.75) which are relevant in applications [1,3,4,10,13]. Although the
short- and long-range regions are theoretically interesting, the theories developed for these
ranges faH for the practically important intermediate widths. A discussion ofthe accuracies
obtained with the various approximations for long ranges has been presented recently [20).
The EOS obtained he re improves the accuracy of the known SW EOS and agrees well with
the simulation results for the SW pressure and internal energy [14-19] at intermediate
ranges, p' = pa3 ~ 0.65, and T' = kT If 2: 0.8, although it faHs at higher densities and
lower temperatures.
The high-temperature expansion of the SW free energy is analyzed in Sect. 2, and the

main points needing improvement are identified and tackled in Sect. 3. The pressures and
interna! energies are compared in Sect. 3 with the MC and MO results [14-19]. Section 4
is devoted to a comparison with other EOS from the literature, and Sect. 5 discusses the
SW thermodynamics as a function of A, and its vapor-liquid equilibrium in comparison
with Gibbs ensemble and MO results [21,29]. The conclusions are summarized in Sect. 6.

2. ANALYSIS OF TIIF. IIlGII TEMPERATURE EXPANSION

To write the EOS of the SW fluid of density p = NIV and temperature T, we start from
the high-temperature perturbation expansion (liTE) of the IIelmholtz free energy Asw,
as introduced by l3arker and Henderson [30). If asw = AINkT is the free energy per
particle,

(2)
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In this equation, '1 = 1rpu3/6 and aHS is the hard-sphere (HS) free-energy, which wil!
be taken from the Carnahan-Starling formula [31]. The SW mean-lield term al was oh-
tained by Del Río and Lira for al! ranges [28]' and in the Percus- Yevick approximation
by Flemming and Brugman [4]. For intermediate .x the mean-lield approximation gives
asw with an accuracy better than 1% only for T" ~ 20, hence higher-order terms are
needed (20). Truncation of Eq. (2) after a2 is quite accurate (with error below 10-3) ror
T" > 5 [20]. At smal! densities, a2 is given by the Barker-Henderson local and macroscopic
compressibility approximations (LCA, MCA) [30), and for .x > 2 by the Benavides-Del
Río long-range approximation (LRA) [27]. The last term in (2) is the sum of al! the
higher-order contribution in the HTE

(3)

and wil! be cal!ed the remainder termo This term is necessary to predict adequately the SW
vapor-Iiquid equilibrium for intermediate ranges. An expression for aR can be obtained
by using the LCA at al! orders [32], but this result underestimates the free energy at
moderate and high densities [331.

Therefore, in order to obtain an EOS for SW f1uids of intermediate range, accurate
at subcritical temperatures, it is necessary to improve the accuracy of the mean-lield
pressure derived from al and of the known ap¡:roximations (MCA, LCA and LRA) for
a2, and lind an approximate expression for the remainder term aRo

3. Eas TIlE SQUARE-WELL FLUID

The mean-lield term can be writte as [27,281

(4)

The van der Waals term al3 = -4'1, added to an exact aHS, gives the augmented VDW
approximation (AVDW) which becomes exact in the Kac limito , - O and .x - 00, with
,.x3 = consto [34,35). The second term in Eq. (4) is the correction due to a linite range,

(5)

where [(HS = kT(8p/8Plls)r. The last or short-range ter m in (4) is

(6)

and tends to zero when .x - oo. Interpolating al between short and long ranges [26-28)
gives alSR for al! .x withing 2% of the MC data [18J, but error amplification makes the
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pressure to deviate as much as 30%. In order to overcome this difliculty we propose a
different interpolation formo Defining b(1/, A) = Q¡SR(1/, A)/121/, we let

(7)

where € = A-l, and ((1/), v(1/), <p(1/) are determined from the known short-range expansion
(SRE), € --> O (see Appendix A). the parameters n, f3 and I are chosen to optimize the
shape of b(1/, A) for 1.375 < A < 1.75 and p' :5 0.6. Their values are

n = 0.860044, f3 = 5.487716, and "Y = -0.415748.

When Eqs. (5) and (7) are used in (4), the mean-field compressibility factor Z¡ =
1/[8a¡J81/] has a r.m.s. deviation of 0.06 from the MC results [18,33,36] in 0.1 :5 p' :5 0.8,
for A= 1.375, 1.5, 1.625 and 1.75.
For the term a2 we start from the simple MCA which can be expressed as

(8)

and is obtained in c10sed form once al is written as in (4). Nevertheless, for intermediate
ranges, Eq. (8) is only good for p' :5 0.2. The LCA improves slightly the MCA, but at
the cost of introducing in the pressure terms like 82b(1/, A)/81/2, which amplify the error
in b(1/, A) itself. In this work we correct the MCA to reproduce the MC results and write

(9)

with

(10)

where the coeflicients íl; are given in Appendix B. The a2 obtained from Eqs. (9) and
(10) is within 1.4% of the MC results for 1.325 :5 A :5 1.75.
The high-order f!uctuation terms in Eq. (3) tend to zero at high densities due to the HS

repulsions. This fact is incorporated by the LRA [27],whose dominant ter m is proportional
to J(~s' Hence, we propose a generalized MCA (GMCA) for the terms with n 2: 3:

(11)

where a~ incorporates the low density behavior of each term as obtained from the second
and third SW virial coeflicients 137] (see Appendix C). The GMCA in Eq. (11) for n = 3
reproduces the MD results of Alder el al. for A = 1.5 within their uncertainty [14]. By
Eq. (3), the remainder free-energy term takes the form

(12)
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where a~ is the sum of aH the a~ for n ~ 3 adjusted to give the third virial coefficient at
low temperatures (for details see Appendix C) [37), and is given hy

where

and

a~('7,'\, T') = -4'7 [(,\3 - 1) - 1.5p('\)'7]W(T') + q('\)t'q2,

p('\) = 2~¡ _ 36,\2 _ 48,\3 + 57,\4 _ ~ ,\6,

q('\) = 746.5 -1701.665'\+ 1300,\2 -1000,\3,

t = exp (;,) - 1,

( ') ( I ) I 0.5W T = exp - - I - - - -.T' T' T'2

(13)

(14)

(15)

(16)

(17)

(18)

The SW EOS for the Helmholtz free energy, referred to as EOSI, is obtained by sub-
stituting Eqs. (4), (9) and (12) in Eq. (2).
The internal energy of the SW fluid is ¡(iven by

f3U _ ~ u¡('7,,\) U2('7,'\) (,\ T')
N - 2 + T' + T,2 + UR '7" .

where U¡ = al, U2= 2a2 and UR = -T'[eaR/OT']. The SW internal energies predicted
from EOSI and (18) are in exceHent agreement with the MC results [15,181. In 45 states
(with 0.4 $ p' $ 0.8; 0.8 $ T' $ 4;,\ = 1.375,1.5,1.625 and 1.75) the r.m.s. deviation was
2.3%, only slightly larger than the estimated uncertainties in the simulations, although the
deviation is larger at p' = 0.8 and at the lower temperatures. Fig. I shows the behavior of
ll.usw = {3U / N - 3/2 with ,\ at T' = 2, for several p"s and the corresponding simulation
data [J.'i,17,18]. At not too high densities, -ll.usw grows with ,\3, as in the VDWA, but
is more structured at higher densities.
The compressibility factor Z = f3P/ pis

(19)

where the notation explains the origin of each termo This EOS has the typical VDW
form with the liS term making the positive contribution to the pressure. The mean-field
term can be written as Z¡ = Z¡LR + ZlSR, where ZILR arises from 0¡3 and O¡O and Z¡SR

from 0ISR' For intermediate p' and T', ZILR tends to cancel ZIlS and the contribution
of Z¡SR becomes more important; this explains the difficulty in improving the attractive
part of the classical VDW EOS after correcting the repulsive part ZIlS' as was done by
Longuett-lIiggins and Widom [38].
Figure 2 compares Zsw at ,\ = 1..'i, obtained from the EOSI and Eq. (19), with MC

results [rom the literature [15,16]. The pressures predicted by the EOSI are in good
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FIGURE 1. Excess interna! energy oC the 5W fluid as a Cunctíon oC the range ,\ at T' = 2 and
various densíties as labelled. The solid Iines stand Corthe E051 in this work. Also shown are the
Me results oC Henderson el al. [15,18J (while cireles) and oC RosenCeldand Thieberger [17J(black
cireles).

agreement with the simulation results for T' 2: 0.8 and p' ~ 0.65. The deviation in Zsw
be'tween theory and simulaiions at p' 2: 0.7, is more marked than for U. The comparison
with the MC results at other ranges is similar. Typical SW pressure isochores are shown
in Fig. 3, where the EOS1 is compared with recent MD results by De Lonngi el al. [19]
for ,\ = 1.4. The agreement is excellent and similarly for ,\ = 1.6.

4. COMPARISON WITH OTIIER EOS

A detailed comparison has been made between EOS1 and other SW EOS from the liter-
ature. Among the SW EOS based on a perturbation expansion there are three first-order
EOS: The original VDW equation, the augmented VDW equation (AVDW) which used an
accurate aHS, and the mean-field EOS of del Río and Lira (DRL) [28). Four second-order
EOS differ in various approximations for aH', al and a2, and are those of Ponce & Renon
(PR) [39]' Aim & Nezbeda (AN) [J], Flemming & Brugman (FB) [4], and the long-range
Benavides-Del Río equation (BDR) [20,27).
Several authors have proposed SW EOS based on coordination numbers [40): 1) The two

equations oC Lee, Lombardo and Sandler (LLS1 & LLS2, given respectively in Eqs. (15)
and (21) of Reí. [2]) and the more recent Lee-Sandler equation (LS) [22J; 2) the Lee-Chao
equation (LCh) [24]; and 3) the two equations of Guo, Wang and Lu (GWL1 & GWL2,
Eqs. (21) and (22) oC Reí. [16J, respectively). The last EOS considered is that oC Song and
Mason (SM) [41), which, although originally proposed Corcontinuous potentials, provides
a simple closed-Corm Cormula Cor the SW fluid.
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FIGURE2. Compressibility factor Z.w of the >. = 1.5 SW fluid along several isatherms as labelled.
The salid lines and white cirdes have the same meaning as in Fig. 3. The black drdes stand for
the MC results of Guo el al. [161.
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FIGURE3. Compressibility factor Z.w of the >. = 1.4 SW fluid along selected isachores as labelled.
Shown are EOS1 (fullline) and the MD results of De Lonngi el al. (drde.) [19J.

The EOS developed in this paper and the 14 EOS from the literature were tested against
the simulation results available. These ¡nelude results of MC [15-18] and MD [14,19]
simulations. Two-phase states were eliminated using the vapor-liquid coexistence line by
Vega el al. [21] to obtain a total of 118 MC states and 273 MD states. Restricted sets of
states were obtained by eliminating densities p' ~ 0.7, temperatures T* < 0.8 and the
extreme ranges >. = 1.125 and 2.00; these restricted MC and MD sets comprised 63 and
186 states respectively.

The r.m.s. deviations in the compressibility factor Zsw of the 15 EOS from the sets
of simulation results are shown in Table 1: from the complete wide sets (columns 2 and
3) alld restricted sets (columns 4 and 5). Deviations are smaller from the MD sets than
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TABLE I. Test of the SW EOs against simulated results. Shown are the r.m.s. deviations in the
compressibility factor Z. The columns correspond to the wide (a) and restricted (b) sets of states
for Monte Cario (MC) and molecular dynamics (MD) data.

EOS
NO.of states

VDW
AVDW
DRL
PR
AN
FB
BDR
SM
LCh
LS
GWL1
GWL2
LLS1
LLS2
EOSI

MC (a)
118

14.849
0.784
0.798
0.910
0.823
1.151
0.820
1.452
1.594
1.090
1.561
1.699
1.185
1.649
0.720

MD (a)
273

18.820
0.631
0.415
0.487
0.546
0.151
0.533
1.922
1.134
0.412
0.874
1.103
0.541
0.640
0.341

MC (b)
63

18.729
0.236
0.284
0.345
0.302
0.173
0.227
0.381
0.630
0.583
0.629
0.570
0.584
0.670
0.113

MD (b)
186

21.786
0.142
0.185
0.263
0.225
0.065
0.149
0.219
0.237
0.292
0.451
0.203
0.362
0.175
0.054

from the MC sets, perhaps because the MD simulations cover a narrower set of ranges
(1.4 :<::: A :<::: 1.6). Except for VDW, which fares equally badly for both sets, all other EOS
are much better for the restricted than for the wider sets. In general, the PT equations are
more accurate than the coordination number models. The latter, besides being simpler,
have been developed mostly for A = 1.5 and are eloser to the PT EOS for the re"trkted
MD seto It is somewhat discouraging that over the wide MC set, which ineludes A's outside
the intermediate range region, only one equation (EOS1) is better than AVDW. In the
three remaining sets (wide MD and restricted MC and MD, which are in the intermediate
range region) the two best equations are EOSI and FB.
A good EOS should be able to predict correctly the virial coefficients. The second viria!

coefficient B2 predicted by the SW EOSI is exact, but not so for the BF EOS. The third
virial coefficient obtained from EOS1 is very elose to the exact Kihara formula [371 as
shown in Fig. 4, which also ineludes the va!ues derived from the GWL2 EOS (which gives
the best B3 among the coordination number models considered by Guo el al. [16)).

5. THERMODYNAMIC BEIIAVIORAND VAPOR-LIQUIDEQUILIBRIUM

The EOSI gives the behavior of the SW properties with ,\, ¡.e., with a change in the
shape of the potential. Figure 5 shows the free energy ~asw = asw - aid for T* = 2 and
several densities. The values of ~asw at A = 1 should equal ~aHS = -~SHS' The SW
excess entropy ~ssw '" ~SHS because the mean-field term does not contribute. When A
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FIGURE 4. Third virial coefficient oC the >.= 1.5 SW as obtained CromKihara's exact expres-
sion [37) (solid line); EOSI (dashed line), and GWL2 EOS [16J (cirdes).

increases, tl.asw ex >.3 due to tl.usw. Due to the combined effects of tl.ssw and tl.usw,
tl.asw increases with p' for >. < 1.4, whereas for >. > 1.8tl.asw decreases with p'; for
intermediate ranges, tl.asw goes through a minimum in p'. The derivative of tl.asw with
>. is proportional to y(>.) [28], the background correlation function at x = >., and the
attractive force is also proportional to y(>.). lIence, from Fig. 5, the attractive force will
be monotonic with >. (the VDWA predicts y(>.) = 1) at small densities or long ranges,
but will go through a minimum and a maximum for high densities.
The behavior of Zsw(>') is shown in Fig. 6 for T' = 2 and several densities, together with

the corresponding simulation results [15,17-19). In general Zsw decreases with increasing
>. as in the VDW model, but at higher densities there is a loop in Zsw(>.), also present
in the simulation results, which is due to the oscillations in y(>'). This loop cannot be
derived from the VDWA and is produced by the short-range term aISR'
Figure 7 shows the orthobaric densities for >.= 1.5 as obtained from EOSI, as well as

the AVDW orthobaric curves, and the Gibbs ensemble MC (GEMC) and MD simulation
results [21,291. The behavior shown is similar for other ranges. The orthobaric densities
obtained with the EOSI are in good agreement with the simulation data, except close to
the critical point. The prediction of the EOS agrees well with the MD simulations down
to T' = 0.8, which is the lower confidence limit of this EOS.
Figures 8 and 9 show the behavior oC Tc and Pc with >. as obtained from the EOSI

and from the AVDW approximation. These are compared with second-order perturbation
theory (PT2) results by Henderson el al. [15,18J and with the GEMC results [21], (at
>.= 1.5 one also has the MD values by Alder el al. [14]). Being effectively a two- parameter
EOS, the AVDW approximation predicts Pc = 0.25 and Zc = 0.36 for all >., whereas Tc'
(and also P;) grows with >.3 as in Fig. 8. At >. = 3, the AVDW model is essentially
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FIGURE 5. Excess Helmholtz free energy for the SW fluid as a function of the range A according
to the EOS1 of this work. The curves correspond to reduced densities from 0.1 to 0.8 and the
temperature is T. = 2.0.
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FIGURE 6. Compressibility factor of the SW fluid as a function of the range A at T' = 2 according
to EOS1 of this work (full lines) for the densities as labelled. Also shown are the MC results of
Henderson el al. [15,101 and Rosenfeld and Thieberger [17) (while cireles), and lhe MD resulls
of De Lonngi el al. {19), (black cireles). The dashed lines are polynomial interpolations of the
simulation results.
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FIGURE 7. Vapor-liquid equilibrium oC the 5W with A = 1.5. Orthobaric line Crom E051 (Cull
line), AVDW approximation (dashed line), GEMC results oC Vega et al. [21] (circles), MD results
oCChapela et al. [29J (x). The position oC the critica! point is: E051 ('), second-order perturbation
theory [18J (+), Gibbs ensemble [21J(+), and MD result oC Alder et al. [14J ( ).

exact [20]. For lower A'S, the AVDW prediction of pc is far away from the GEMC results,
but that of Tc' is surprisingly close to them.
The critical density increases over the AVDW value when A < 2, see Fig. 9, and this

tendency is picked up, although overestimated, by the EOSI. This overestimation for
A < 1.4, together with a slightly higher Tc', makes P; higher than in the GEMC results.

6. CONCLUSIONS

The EOSl is the most accurate among the SW EOS available from the literature when
tested against published simulation data, in the fluid states p' :s; 0.65 and T' ~ 0.8, and
for the intermediate ranges 1.2 :s; A :s; 1.75, except for a small region around the critical
point. The other EOS of comparable accllracy is the equation of Flemming and Brllg-
man [4]. These EOS are based on perturbation theory and are rather more complicated
than the simpler, although less accurate, EOS based on coordination number models.
Together with the SW EOS previously proposed for short and long ranges [26,27], the

EOSl provides quite accurate knowledge about the dependence of the SW thermodynamic
properties, including the vapor-liquid equilibrium, on the width of the potential well, all
the way from very narrow to very wide potential wells where the AVDW approximation
beco mes exacto The SW properties in the intermediate range regio n are the result of the
balance among several terms in the EOS, which are rather difficult to model, particularly
at high densities and close to the critical point. This work shows that the most important
term needing improvement is the short-range ter m "'ISR of the mean-field free energy.
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FIGURE 8. Reduced critica! temperature T,. of the SW fluid as a funelion of the range A. The
symbols have the samemeaning as in Fig. 7.
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FIGURE9. Reduced critica! density p, of the SW fluid as a funelion of the range A. The symbols
have the same meaning as in Fig. 8. The vertica! Iines show the error bars of the Gibbs ensemble
calculalion [21).

The SW EOS here proposed can be used to generate EOS of more realistic f1uids, i.e.,
with continuous potentials, an application that will be presented by the authors in a
future communication.
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ApPENDIX A

The short-range expansion of b(r¡, A) reads

b(r¡,A) = I:b(r¡)(A _l)m,

where bm(r¡) = f)ffib(r¡, A)j8Am evaluated at A = 1. Defining bi =
functions in Eq. (7) are obtained from (A 1) as

v = p. - nf3,

w2 = [nf32 - 2b; + 2)"bi - 2p.(bi -)") - 1,2],
b' + p.tan</>= __1__ ,

W

bo(=--,
eos</>

and where p. is the solution of

(Al)

b¡fbo, the desired

(A2)

(A3)

(A4)

(A5)

2W2 + [_6)"2 + 4)"bi +W - 2b; + nf32]p.+

[-6)"2bi + (6b; - 3nf32 - bi2)-y + (bi - f3)nf32 + bib; - 3b;] = O (A6)

From the previous work of Del Río and Lira [28]' it is known that

b _ ~ KHS - 1
o - 3 + 24r¡

bl = 1 - y~s,

b
2
= b

1
_ ~ oy~s

2 OX '

b
a
_ ~ _ ~ ay~s _ .!.a2y~s
- 3 3 ox 6 ox2 '

(A7)

(A8)

(A9)

(Ala)

where x = Tj", y~s is the eontaet value of the HS eavity funetion, obtained from the es
EOS, and its first and seeond x-derivatives are known funetions of the density [26J.
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ApPENDIX B

The polynomials I1n(.~)of Eq. (10) for the SW EOS1 are

111(A) = -150.4141 + 295.5278A- 188.7726A2+ 39.05170 A3,

112(A)= 651.0186 - 1182.422A+ 701.2853A2 - 135.4891 A3,

113(A)= -86.89659 - 15.0961A+ 127.1438A2 - 51.78439 A3,

11.(A)= -775.5074 + 1603.865A- 1089.6602 + 243.7498A3•

ApPENDIX C

At low densities, the SW pressure is given by the viria! expansion

whose coefficients BL are functions of T' and A. The first two are

B2(T*,A) = 4[1- (A3 -l)t],

and, for A< 2 [37],

(G1)

(G2)

(G3)

where t = exp(1/T') -1, and 11, 12, la are polynomials in Awith different coefficients for
A < 2 and A > 2. Expanding the exponential in t in powers of the inverse temperature
l/T', the SW viria! series (G1) can be used to find the low density expansion ofthe terms
an' One finds that the for al and a2 in Eqs. (4) and (9), give the correct contribution to
B2 but not to B3. In the last case, the discrepancy comes from the densities derivative of
b(r¡,A) and the factor 11('1,A) used to correct the MCA in a2.
Thc third-order term a3 must be, when '1 -+ O,

(G4)

where p(A) is the polynomial of equation (14), for A$ 2.
For the next terms a~one obtains equations similar to (G4) and (14). The contribution

proportiona! to '1 in a~ is -4(A3 - 1)/n!, but it is not possible to express in a similar
condensed formula the ter m proportional to '12, because to each a~corresponds a different
sixth-degree polynomial in A. However, an analysis of a~ for n = 3,4 and 5 shows that
they have vcry similar behavior for supercritical temperatures, which we will assume to
hold for all orders. Hence the a~will be approximated by

'1 [4(A3 - 1) + 6p(A)r¡]
n!

(n 2: 3), (G5)
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where the exact contribution to the second virial coeflicient (C2) is already included. By
(C5), the low-density remainder term in (3) can now be expressed in closed form

a~(1J,,x,T') = -41J[(,x3 -1) -1.5p(,x)1JJW(T'). (C6)

where W(T*) = exp(l/T') - 1 - l/T' - 0.5/T'2• At subcritical temperatures, where the
approximation (C5) falls, Eq. (6) is corrected by introducing a term proportional to t3•
This term determines the low temperature behavior of B3 and does not contribute with
terms proportional to l/T' or 1/T'2, which are already considered in a? and ag. The final
expression for a~ is Eq. (13), where q(,x), Eq. (15), was obtained by adjusting the values
of the third virial coeflicient, calculated from the SW EOS1, with the exact Kihara result
(RC3R), in the ,x interval considered in this work.
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