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ABSTRACT.We apply Salpeter's approach to the calculation of relativistic two-body bound stales.
In addition to the intermediate propagation of lwo partic!es, Salpeter's approach allows for the
propagation of two antipartic!es (Z-graphs). As a consequence, Salpeter's equation becomes iden-
tical in structure to a random phase approximation equation familiar from the study of nuclear
collective excitations. Thus, for a sufficiently attractive interaction, Salpeter's equation might give
rise to imaginary eigenvalues. The occurrence of imaginary eigenvalues is an indication oí a pairing
instability against the formation of strongly bound partic!e and antipartic!e pairs. We show that
this pairing instability develops once the energy gap between two-partic!e and two-antipartic!e
states, originally at 4M, disappears. To further illustrate Salpeter's approach, we calculate the
relativistic two-body amplitude and bound state energy for the deuteron in Walecka's scalar-vector
mode!. These results are then compared with those obtained in a calculation that neglects the
Z-graphs and with nonrelativistic results.

RESUMEN.Aplicamos la formulación de Salpeter al cálculo relativista de estados ligados de dos
cuerpos. Además de la propagación intermedia de dos partículas, la aproximación de Salpeler
permite la propagación de dos antipartículas (Z-graphs). Como consecuencia, la ecuación de
Salpeter se vuelve idéntica en estructura a una ecuación de fases al azar (RPA) conocida en el
estudio de excitaciones nucleares colectivas. Por lo tanto, para una interacción suficientemente
fuerte, la ecuación de Salpeter puede dar lugar a eigcnvalores imaginarios. La existencia de
eigenvalores imaginarios indica la presencia de una inestabilidad en la formación de pares de
partículas y antipartículas fuertemente ligadas. Mostramos que la formación de esta inestabilidad
ocurre tan pronto como la banda de energías prohibidas entre estados de dos partículas y dos
antipartículas, originalmente con valor 4M, desparece. Para ilustrar la aproximación de Salpeter
hemos también calculado la amplitud relativista y la energía del deulerón, usando el modelo de
Walecka. Estos resultados son posteriormente comparados con aquéllos obtenidos en la ausencia
de Z-graphs y con resultados no-relativistas.

PACS: 11.10.St; 21.45.+v

l. INTRODUCTION

The two-nucleon problem has played a central role in nuclear physics for over half a
century. In principIe, one could use quantum chromodynamics (QCD) to calculate the
nucleon-nucleon (NN) force and, ultimately, to solve the nuclear many-body problem. In
practice, however, establishing the quark-gluon content of the NN interaction has proven
to be an exceedingly difficult task. Although QCD has made important contributions to
our understanding of the NN force, the theory has not yet been developed to a point
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where it can have a real impact in our understanding of the nuclear many-body problem.
In trying to solve the nuclear many-body problem one must therefore rely on phenomeno-
logical descriptions of the NN force. These approaches attempt to construct a NN force
that, while being sophisticated enough to reproduce a large body of two-nucleon data, is
still simple enough to be used as input for many-body calculations.
The commission of more powerful and sophisticated machines (e.g., CEBAF, Mainz,

MIT-Bates, NIKHEF) will, more then ever, challenge our understanding of the nuclear
many-body problem. The picture of the nucleus as a collection of particles moving inde-
pendently in a smooth mean-field potential will, clearly, not be suflicient. In fact, there is
already ample evidence, based on a large body of experimental data, in support of large
deviations from independent-particle motion [1-3]. For example, a (model-dependent)
analysis of exclusive (e,e'p) data claims a depletion of single-particle orbits of as much as
30% [2]. It is believed that two-body (short-range) correlations, generated by the strong
repulsive NN core, are responsible for these large deviations from independent-particle
behavior [4-6]. Consequently, in trying to understand single-particle properties such as
the nucleon spectral function, one must, at the very least, address simultaneously the one-
and two-body problem. The solution of the one- and two-body problem, however, poses
formidable challenges. Since, both, the propagation of a particle and the basic two-body
interaction are modified in the medium, one must solve the problem self-consistently.
Furthermore, since most of the experiments already planned for CEBAF will probe the
nuclear response at high-momentum transfer, these calculations will need to use relativity.
In the traditional nonrelativistic approach based on the Schriidinger equation with

static two-body potentials, the two-body problem can be solved exactly in free space.
Once the dynamical equation to be solved has been selected, the only remaining task
consists in constructing a NN force that will reproduce the empirical two-body data, ¡.e.,
deuteron properties and NN scattering observables. This NN force then serves as input
for parameter-free calculations of the many-body system.
While the goals remain unchanged in relativistic approaches to the many-body problem,

the means to achieve these goals get substantially more complicated. The main diflicul-
ty lies in the fact that a simple extension of Schriidinger's equation to the relativistic
two-body problem is not yet available. Strictly speaking, there is no relativistic two-body
problem [7). Due to pair creation and annihilation the number of bodies in the two-body
problem is actually undefined (only the conserved baryon number has a well defined
meaning). In addition, retardation elfects, which introduce an extra relative-time variable
into the problem, have posed very serious challenges to the search for eflicient methods of
solution. In elfect, retardation converts the three-dimensional Schriidinger (or Lippmann-
Schwinger) equation into the four-dimensional Bethe-Salpeter [8J. In fact, most methods
of solution rely on three-dimensional reductions of the Bethe-Salpeter [9-U]. Although it
is widely agreed that the these three-dimensional equations should satisfy fundamental
physical principies such as relativistic covariance and two-body unitarity, there is still
ample freedom, and hence ambiguity, on how to implement the three-dimensional reduc-
tion. Unfortunately, most, if not all, three-dimensional reductions of the Bethe-Salpeter
equation contain undesirable features. These range from ignoring meson retardation and
negative-energy intermediate states in the Blankenbecler-Sugar [9]and the Thompson [10]
reductions, to the presence of spurious singularities in the Gross spectator [U]. In the case
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of Salpeter's [12], the equation employed throughout this work, the most serious draw-
back is the use of an instantaneous (energy independent) kernel. In Salpeter's original
work on hydrogen-like atoms retardation effects were incorporated perturbatively. While
a perturbative scheme may be appropriate for weak-coupling theories (e.9., QED), one
must be cautious whenever applying Salpeter's approach to the study of strongly inter-
acting systems. Nevertheless, in this work we adopt the position advocated in Ref. [131,
namely, if a simplification concerning the meson propagator has to be done, to simply
ignore retardation is probably the best choice. In all cases, however, once a particular
three-dimensional equation has been chosen, one then proceeds, as in the nonrelativistic
case, to construct a phenomenological NN interaction that will reproduce the two-body
data and which will serve as input for many-body calculations.

Our paper has been organized as follows. In Sect. 2 we show how Salpeter's equation
can be derived from the four-point (or two-body) Green's function in the two-body limito
In this limit, the analytic structure of the two-body propagator reveals singularities 10-
cated at the exact energies of a system containing, either, two baryons (B = +2) or two
antibaryons (B = -2). The interacting two-time, two-body Green's funetion is obtained
as a solution to the Bethe-Salpeter equation using an instantaneous one-boson exehange
kernel. Salpeter's eigenvalue equation is then obtained by isolating the singularities at the
bound-state poles. It is not our intention to provide yet another derivation of Salpeter's
equation. After all, Salpeter's equation has been known for forty years [12]. What is
perhaps not well known, however, is the implementation of Salpeter's approaeh in the
ealculation of relativistie two-body bound states in the nuclear medium. The behavior of
bound pair states in the nuclear medium is a topie attraeting considerable interest from
theorists as well as experimentalists [14-17]. The purpose of presenting a derivation of
Salpeter's equation based on Green's funetion theory is to illustrate that its generaliza-
tion to bound states in the medium is straightforward. Indeed, a nonrelativistic study
of bound pair states in nuclear matter (using Green's funetion theory) is based on a set
of equations identical in strueture to Salpeter's equation [16]. An interesting feature of
Salpeter's approaeh is that it leads, in eontrast to most three-dimensional reduetions, to a
non-hermitian Hamiltonian matrix having the same strueture as a random phase approx-
imation (RPA) matrix [181. As a eonsequenee, the solution of Salpeter's equation can lead
to imaginary eigenvalues, usually, associated with the development of a p"iring instability.
In Seet. 3, we show how the instability develops using a simple sealar-exehange model. To
further illustrate the method, we ealculate the relativistie amplitude and binding energy
of the deuteron in Waleeka's sigma-omega model [19]. Due to the absenee of isoveetor
mesons from the Waleeka model, however, the ealculation should only be regarded as
sehematic. Finally, our eonclusions and direetions for future work are diseussed in Seet. 4.

2. SALPETER'S EQUATION

The starting point in our derivation of Salpeter's equation is the two-time two-body
propagator defined in terms of a time-ordered produet of fermion-field operators [18]
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where x~ = xg '= xO; y~ = yg '= yO, and Wo represents the exact vacuum wave function. The
Lehmann representation of the two-body propagator is particularly useful for displaying
its analytic structure. This is done by using the integral representation of the Heaviside
step-function, the explicit time evolution of the fermion-field operators and, finally, by
inserting a complete set of states (Wn) of the exact Hamiltonian i.e.,

G ( . ) -100 dw -iw(xO-.O)G ( . .)
o./3¡>'a Xl,X2,Yl,Y2 - -00 27r e af3;)"a X¡,X2,Yl,Y2,W ,

_ (WOI'¡;"(Y2)'¡;~(Y¡)IWn}(Wnll/l"(XI)I/I¡!(X2)IWo)] . (2)
w+E~-)+¡'1

The Lehmann representation reveals that the two-body propagator is an analytic function
of w except for the presence of single-poles located infinitesimally close to the real axis.
The poles are located at the exact energies E~+)and E~-) ofthe system with two baryons,
either, added or removed from the exact ground state. The residue at the pole, given by

(wolI/I,,(X¡)I/I¡!(X2)lwn}(w nl'¡;"(Y2)'¡;~(y¡)IWo) '= X,,¡!(XI, X2; n )X,,~(Y2, YI; n), (3a)

(wOI'¡;"(Y2)'¡;~(YI)IWn}(wnll/l,,(x¡)I/I¡!(X2)lwo) '= 'P,,~(Y2, YI; n) cp,,¡!(x}, X2; n), (3b)

represents, on the other hand, the relativistic two-body wave function which is related to
the two-baryon (or two-antibaryon) removal amplitude.
The concept of a two-particle removal amplitude is clearly basis dependent; one is posing

the question of what is the probability of removing two particles having, for example,
momentum kI and k2 from the system. To address this issue it is convenient to expand
the fermion-field operator in terms of a, yet unspecified, single-particle basis,

I/I(x) =¿[Ui(x)bi + Vi (x)d1] , (4)

where Ui and Vi are the positive- and negative-energy eigenstates of a one-body Dirac
I1amiltonian and bi and di are second-quantized operators that, respectively, annihilate
a baryon or create an antibaryon in the corresponding single-particle sta te. The single-
particle states are orthonormal,

J dxUl(x)Uj(x) = J dxV!(x)Vj(x) = Óij,

J dxUl(x)Vj(x) = J dxV!(x)Uj(x) = 0, (5)
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and, in addition, satisfy the completeness relation

¿[U,(x)U.'(y) +V¡(x)V!(y)] = ó(x - y)l.

Inserting the expansion of the fermion-field operator into Eq. (3a) yields,

X,,¡¡(x¡, X2;n) =¿([U¡(x¡)]" [Uj(x2)]¡¡(Wo!b;bj!Wn)
ij

+ [V,(x¡)jJVj(x2)]¡¡(Wo!dld}IWn)

+ [U, (x¡)]" [Vj(x2)]¡¡(Wolb,d}IWn)

+ [V,(x¡)jJUj(X2)] ¡¡(WoldlbjIWn)).

(6)

(7)

Since the basis functions are chosen as the eigenstates of a one-body Dirac-Hamiltonian
they are, in principIe, known and aH dynamical information is therefore contained in the
four two-baryon removal amplitudes. The first of these amplitudes, namely, (wolb,bjlwn),
is the two-nucleon removal amplitud e familiar from nonrelativistic approaches. The other
three amplitudes, containing at least one antinucleon creation operator, have a relativistic
origin and, hence, have no counterpart in a nonrelativistic formalism.

As an illustration of the aboye ideas, and also because of its importance in deriving
Salpeter's equation, we now proceed to evaluate the free two-body propagator. Starting
from Eq. (1), but with Wo now representing the noninteracting vacuum state, the free
two-body propagator can be readily evaluated with the aid of Wick's theorem

G~¡¡;.x,,(X¡,X2;Y¡,Y2) = i[G~.x(x¡,y¡)G~,,(x2,Y2) - G~u(X¡'Y2)G~.x(X2,Y¡)], (8)

in terms ofthe free (one-body) nucleon propagator G~.x(x¡, y¡). This expression shows that
the noninteracting two-body propagator consists of direct-plus-exchange contributions
representing the free propagation of two identical particles. In the two-time limit [see
Eq. (2)1, where only a single underlying energy variable is necessary, the free two-body
propagator becomes

with the free nucleon propagator
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written in terms of eigenstates of the free Dirac-Hamiltonian. These free eigenstates of
well-defined momentum k and energy fk = +v'kz + MZ are given by

(11)

U(k,s) =

(12)

are positive- and negative-energy plane-wave spinors expressed in terms of conventional
two-component Pauli spinors,

(13)

The integral in Eq. (9) can be readily evaluated by contour integration. Because of the
analytic strllcture of the free two-time two-body propagator the only contriblltions to the
integral arise from either two partic1e or two antipartic1e poles. Conseqllently, the free
two-body propagator can be written as

G~¡¡:.\u(XI,XZ;Yl,YZ;W) = 2:=
k)SI
k2S2

[
X~¡¡(X¡' XZ; nO)x~.\ (YZ~ YI; nO)

W - fk, - fk, + tll

where InO) == Ik¡SI; kzsz) labels the free two-particle, or two-antipartic1e, state and the
free relativistic two-body wave fllnctions are given by

1
X~¡¡(Xl, Xz; nO) = .j2 (IUk", (X¡)]a [Uk", (xz)j¡¡ - [Uk",(X¡)]a[Uk", (xz))¡¡), (15)

4>~¡j(Xl,Xz; nO) = ~ ([Vk¡', (x¡))a [Vk",(XZ)J¡j - [Vk", (x¡))a [Vk", (xz)]¡¡). (16)
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So far, we have been referring to Salpeter's equation as an eigenvalue equation. Notice,
however, that the relative sign difference in the energy E between Eq. (22a) and Eq. (22b),
precludes us from writing Salpeter's equation as a Hermitian eigenvalue equation. Instead,
Salpeter's eigenvalue equation has the same algebraic structure as an RPA equation fa-
miliar from the study of nuclear collective excitations [18]. In contrast to most relativistic
approaches that calculate the two-body propagator by only allowing two positive-energy
particles to propagate in the intermediate state, Salpeter's approach enables, in addition,
the propagation of negative-energy particles. In particular, this gives rise to the so-called
Z-graphs, known to be present in the one-body Dirac equation. Ignoring these Z-graphs,
by retaining only two-nucleon intermediate states, is tantamount to the Tamm-Dancoff
approximation (TDA) in the study of nuclear collective excitations. As in the simpler
TDA case, the rcsulting equation is indeed a Hermitian eigenvalue equation and thus
guaranteed to yield real eigenvalues. In contrast, the RPA equation can be transformed
into a Hermitian eigenvalue equation but for the square of the energy [20]. In principIe,
then, although guaranteed to be real, E2 can become negative and give rise to imagi-
nary eigenvalues. In the case of nuclear collective excitations the presence of imaginary
eigenvalues signals the instability of the mean-field ground state against the formation
of particle-hole pairs. In analogy, imaginary eigenvalues of Salpeter's equation gives an
indication of a pairing instability against the formation of strongly bound particle and
antiparticle pairs. AIso notice, that because of the structure of Salpeter's equation, the
binding energy is independent of the sign of the coupling potential V+- = V-+. In
particular, the coupling potential, which arises from the inclusion of Z-graphs, always
leads to additional binding as compared to the Breit (non Z-graph) equation.
Salpeter's equation was solved in the center of momentum frame after a partial wave de-

composition was performed (details ofthis procedure are given in the appendix). Salpeter's
integral equation was formally evaluated using a Gauss quadrature scheme. After trans-
forming Salpeter's equation into a Hermitian eigenvalue equation for the square of the
energy, it was, then, solved by direct matrix diagonalization [20]. The outcome of the
diagonalization procedure was a set of eigenvalues (bound-state energies) and eigenvectors
(two-baryon removal amplitudes) with the latter ones given by

BLSJ(k) = ~ (sls2ISMs)(LML; SMsIJM) J dk YiML (l~)B'l.,(k), (25a)

MLMS

DLSJ(k) = ~ (sls2ISMs)(LML;SMsIJM) J dkYiMJk)D.,.,(k), (25b)

MLMS

and where the following definition have been used (JL == (_1)1/2-'4_.):

B••.,(k) == (lJIolbk.1b_k.,IIJIE),
_ -1-1D.t6,(k) = (lJIoldk8, d_k.,11JIE).

(26a)

(26b)
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In addition, the two-baryon removal amplitudes satisfy (for E> O)the RPA normalization
condition [18, 20]

(27)

The two-baryon removal amplitudes, BLSJ and DLSJ, represent the probability ampli-
tude of removing two particles from the system, or adding two antiparticles to the system,
with relative momentum k. Within the framework of Salpeter's approach, they contain
aH dynamical information about the nature of the two-body bound state. Furthermore,
given the total angular momentum (J), the parity (11") and the isospin (T) of the bound
state, the orbital angular momentum (L) and the total spin (S) of these amplitudes are
constrained, by parity and the Pauli principie, to satisfy

(_1)L=1I"; and L+S+T=odd.

In contrast, the relativistic two-body amplitude X"p(k), is not constrained by any of
the ahove two relations. The amplitude, which is readily recovered from the two-baryon
removal amplitudes, can be written as

"[ P e -(J ][x"p(k)lcsJ = ~ :F'l.s;Ls¡(k)BLSJ(k) + (-1) :F'l.s;Ls¡(k)DLSJ(k) ,
LS

(28)

where :F'l.~'Ls¡(k) has been defined in the appendix [Eq. (A6)] and ó;: 1 - C>. Due to the
presence oé lower components in the relativistic one-Lody wave functions, the two-body
amplitude contains, in addition to the conventional parity aHowed amplitudes, parity
"forbidden" amplitudes. The only constraint imposed on the quantum numbers is for
them to satisfy

In the particular case of the deuteron, where only two nonrelativistic amplitudes exist
(3S¡,3D¡), the relativistic two-hody wave function contains eight aHowedamplitudes [21];
th . b 3S++ 3D++ 3p+- Ip+- 3p-+ Ip-+ 3S-- 3D-- h hese are glven y, l' l' 1 ' 1 1 1 , 1 1 l' l' W ere we ave
used the spectroscopic notation

[] 2S+1 r"PX"p eSJ = '-J

with the +( -) sign corresponding to C> = 0(1).

3. RESULTS

In this section we apply Salpeter's formalism to the calculation of relativistic bound states.
We illustrate the mcthod developcd in the previous section by assuming that the nuclcon-
nucleon interaction consists exclusively of (isoscalar) scalar plus vector exchange. In the
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FIGURE 1. Binding energy as a funclion of the strength of lhe scalar exchange in the case of
Salpeter (soJid Jine), Breit (dashed Jine) and Schrooinger (dashed-dot Jine) approximation to the
J' = 0+; T = 1 two-body bound state.

We have also sol ved Salpeter's equation in the deuteron J" = 1+; T = O channel.
The calculations were done using Walecka-model parameters as obtained from a rela-
tivistic mean-field calculation that saturates nuclear matter at the correct energy and
density [19]. Since the nuclear matter calculation is insensitive to the presence of form-
factors, we have used monopole formfactors with the scalar cutoff parameter adjusted
to reproduce the binding energy of the deuteron Es = 2.225 MeV. The vector cutoff
parameter was (arbitrarily) fixed at Av = llOO MeV. In Table II we have listed the scalar
cutoff para meter together with channel probabilities. Since the nonrelativistic limit of a
scalar plus vector exchange does not generate a tensor force, there is no so urce of 3S[_3 DI
mixing in Schrodinger's equation. By enabJing the presence of lower components in Breit's
equation, one can generate a small D-state probability through the space part of the vector
potential. Due to the absence of isovector ('Ir, p) mesons from the Walecka model, however,
the calculated D-state probability is two orders of magnitude smaller than the accepted
value. Allowing for the presence of Z-graphs in Salpeter's approach increases the D-state
probability but only by a factor of three. More importantly perhaps, due to the RPA
normalization, i.e., [(Pt +PJj) - (Pi +Po)] = 1, one obtain a 3SI probability (Pt) that
is (slightly) bigger than one. It has recently been claimed that this normalization effect
might be responsible for solving the longstanding difficulty concerning static deuteron
moments in nonrelativistic potential mode! [21J.

We conclude this section by showing resulls for the two-baryon removal amplitude. In
Fig. 2 we have plotted the large 3SI component as a function of the relative momenta for a
Salpeter (soJid line), Breit (dashed Jine) and Schrodinger (dashed-dot line) approximation
to the two-body equation. In the case of the Schrodinger equation, the two-nucleon re-
moval amplitude is simply the momentum-space wave function. Due to the small binding
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TABLE JI. Scalar cutoff parameter and channel probabilities Cora J" = 1+; T = O state in the
Walecka mode!. The caleulations were perCormed using a monopole CormCactorwith the vector
cutoff fixed at A. = 1100 MeV. The scalar cutoff was adjusted to reproduce the bindillg energy oC
the deuteron EB = 2.225 MeV.

Model A. (MeV) p+ p+ P- P- P'S D S D

Schrooinger 1552.98 ooסס.1 0.000 0.000 0.000 1.000
Breit 1941.15 0.9994 6.335 xlO-' 0.000 0.000 1.000
Salpeter 1052.25 1.0002 1.719 x 10-3 1.905 X 10-3 2.637 x 10-' 1.000

• P '" [(Pi + pi;) - (Pi + Pñ)].

energy of the deuteron, most of the removal strength is concentrated around a region
of small relative momenta where all three approaches give essentially the same result.
Sorne di!ferences, however, are clearly visible in the high-momentum tail which, although
small, will play an important role in the high-momentum transfer experiments already
scheduled at CEBAF. In addition to the large 3S1 component, the tensor force, driven
by the space part of the vector exchange, is responsible for generating a small D-state
admixtme in, both, Breit's and Salpeter's two-nucleon removal amplitudes. From these,
one can proceed to construct the fuI! two-body amplitude as given in Eq. (28). Fig. 3
shows the four two-baryon removal amplitudes as a function of the relative momenta with
the large 3Si component reduced by a factor of 20. Elucidating the e!fect of the smaller
components of the amplitude on deuteron properties using more realistic models of the
NN interaction is currently under investigation.

4. CONCLUSIONS

\Ve have calculated relativistic two-body bound states using Salpeter's instantaneous ap-
proximation to the Bethe-Salpeter equation. In addition to the intermediate propagation
of two positive-energy particles, Salpeter's approach allows for the propagation of two an-
tiparticles (Z-graphs). As a consequence, the underlying symmetry between two-particle
and two-antiparticle states present in the full Bethe-Salpeter equation is preserved in
Salpeter's approach. Although Salpeter's equation can be formulated as an eigenvalue
problem, the coupling to negative-energy states, ¡.e., Z-graphs, precludes one from writing
it as a ¡¡ermitian eigenvalue equation. Instead, Salpeter's equation becomes identical in
structme to an RPA equation and can, thus, lead to imaginary eigenvalues. The presence
of imaginary eigenvalues is associated with a pairing instability against the formation of
strongly bound particle and antiparticle pairs.
\Ve have investigated the pairing instability in a simple model of nucleons interacting via

a scalar meson exchange. By increasing the strength of the scalar coupling we showed that
a pairing instability developed once the binding energy of the two-particle bound state
became equal to twice the mass of the individual constituents. Because of the symmetry
of Salpeter's equation, this condition was equivalent to the disappearance of the energy
gap between two-particle and two-antiparticle states.
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FIGURE 2. The deuteron 3SI two-nucleon removal amplitude as a function of the relative mo-
mentum in lhe Walecka model u.ing Salpeter (solid line), Breil (dashed line) and SchrOdinger
(dashed-dol line) approximation to lhe lwo-body equation.
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FIGURE 3. The two-nucleon removal ampliludes as a function of lhe relative momenlum in lhe
Walecka model. Thc 3Si amplilude has becn reduced by a faclor of 20.

A very simple, hence unrealistic, model of the deuteron was studied withing the frame-
work of Walecka's scalar-vector model. Since a mean-field calculation of ground-state
properties of nuclear matter is insensitive to the presence of formfactors, we have adjusted
the scalar and vector cutoff parameters to reproduce the correct binding energy of the
deuteron. We have also compared Salpeter's results with those obtained from a calculation
using the Dreit (¡.e., non Z-graphs) equation and a nonrelativistic Schrodinger equation,
Since the presence of Z-graphs invariahly leads to additional attraction, a much softer
scalar formfactor was needed in Salpeter's equation as compared with the one used in the
Breit equation. \Ve have also noticed that hecause of the (RPA) normalization condition
of the Salpeter amplitude, sorne channel probahilities were greater, albeit only slightly,
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than one. In fact, it has recently been suggested, that this normalization effect might be
responsible for solving the long-standing difficulty concerning static deuteron moments in
nonrelativistic potential models [21].
There are several directions in which we would like to proceed. For example, we would

like to use a more realistic model of the NN interaction, that will necessarily include
isovector mesons, to study deuteron properties. With a relativistic model for the deuteron,
and a suitable constructed electromagnetic current, one could then proceed to explore the
consequences of Salpeter's approach on static deuteron moments and high Q2 elastic
formfactors. In addition, one could use Salpeter's approach to study the behavior of
two-body bound states in the nuclear medium. The pairing instability develops once the
binding energy of the pair becomes equal to twice the mass of the individual constituents.
For a deuteron in free space one is clearly very far from the region of the instability. The
deuteron binding energy, however, arises from a sensitive cancellation between strongly
attractive and repulsive contributions. Since this sensitive cancellation is known to be
upset in the nuclear medium and, at least within the Walecka model, the nucleon mass
becomes substantially reduced relative to its free-space value, the question of pairing
instabilities might become interesting at finite nuclear density. In addition, a study of
bound pair states in the medium might reveal the nature of the ground state of nuclear
matter. Although, in principIe, one should attempt to solve the one- and two-body problem
self-consistently, one might start with a simple one-body propagator. In fact, using these
ideas, it has been recently suggested, on the basis of a nonrelativistic study of bound states
in nuclear matter, that the ground state of nuclear matter corresponds to a superfluid
with pairing occurring with deuteron quantum numbers [16]. Ultimately, of course, the
self-consistent solution of the one- and two-body problem might also prove essential for
the analysis of single-nucleon (e, e'p) and two-nucleon (e, e'NN) knockout experiments.
Finally, it might also be interesting to study Salpeter's equation for the quark-antiquark

(qij) problem. For example, one might calibrate the f1avor-independent interaction using
heavy quarkonia (e.g., charmonium and bottomonium) and then apply it in the study
of light mesons. Indeed, a preliminary study of light mesons using Salpeter's approach
indicates that the large vector-to-pseudoscalar mass difference arises from the strong
coupling generated by the space part (-r(I) . 'Y(2)) of the vector interaction [22] (the
importance of this ter m has already been shown in Table 1). In addition, one would
like to understand how, if at all, a pairing instability develops in these light systems.
Although there has already been sorne work done along these lines, sorne of these studies
have used, either, a simplified form of Salpeter's equation where the notion of instabilities
is ambiguous at best [23], or have failed to'identify the instabilities by discarding those
solutions of Salpeter's equation having imaginary eigenvalues [22].
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ApPENDIX: PARTIAL WAVE EXPANSION

We now proceed to perform the partial wave decomposition of the two-body amplitude.
We illustrate the procedure with the direct term of V++ IEq. (23a)J. Including spin indices
and working in the CM frame this ter m reduces to

where the Fourier-transform of the potential is given by

V(k, k') = J dx e-i(k-k')'xV(x) ==¿ YCMe (ic)V.c(k, k')YCMe (k). (A2)
CMe

In order to construct states of good total angular momentum we write the free two-body
state as a direct product of two Pauli spinors, ¡.c.,

= C,,¡¡(k) ¿(aO;¡30I-XO) [Y.I(k)(u"U¡¡).I]o,olsIS2), (A3)
.1

where C,,¡¡(k) has been defined by

C,,¡¡(k) = yI4;(-I)" (_fk_+_M_)~,,(k)~¡¡(k);
2fk

~,,(k) = {1 k

fk+M

ifa = O;

if a = 1.
(A4)

Equation (A3) can now be combined with the partial wave expansion of the two-baryon
removal amplitudes [Eqs. (25a)] to give

¿[U(k, s¡)),,[U( -k, s2)J¡¡B".,(k) = ¿ ~~;LSJ(k)BLSJ(k)(kl['SJ M),
LSCS
JM

where we have defined

(A5)

.17~;LSJ(k)= C,,¡¡(k)¿taO; ¡301-XO) (['SJII [Y.I (u"U¡¡).I]o11LSJ). (A6)
.1

Given the total angular momentum (J), parity (1f = (_I)L) and isospin (T) (the latter
one necessary to determine the total spin (S)) one can now isolate the channel ofinterest in
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a straightforward manner. This procedure leads directly to Salpeter's equation in partial
wave form

(+E - 2fk)BLSJ(k) =¿J d(~~k):[(k; LSJ[V++/k'; L'S' J)BL's'J(k')
L'S'

+ (k; LSJ[V+-Ik'; L'S' J)DL's'J(k')], (A7a)

(-E - 2fk)DLSJ(k) =¿J ~~~~:[(k; LSJ[v-+lk'; L'S' J)BL's'J(k')
L'8'

+ (k; LSJ[v--Ik'; L'S' J)DL's'J(k')], (A7b)

where, for local interactions, i.e., non-derivative coupling, the matrix elements of the
potential are given by (a sum over greek indices is implicitly assumed and a == 1 - a)

(k; LSJ[V++¡k'; L'S'J) = (k; LSJ[V--Ik'; L' S'J) =

""' a+iJ-rOiJ ([ , ] -rO' iJ' ,L.,.( -1) .r eS;LsJ(k) Sil Ve.(k, k) aiJ;a'iJ'IIS).rC8;L'S'J(k),
es

(A8a)

(k; LSJ[v+-lk'; L'S'J) = (k; LSJ[v-+lk';L'S'J) =

¿(_l)a+iJ+C .J?~;LSJ(k)(SII[Ve.(k, k')]aiJ;a'iJ'IIS).11:~'S'J(k'). (A8b)
es

We conclude the appendix by evaluating the matrix elements of the potentiaI. Be-
fore displaying our results for an arbitrary Lorentz structure, however, we illustrate the
procedure in the case of an isoscalar vector-meson exchange, i.e.,

(SII[Ve(k, k')]aiJ;a'iJ'IIS) = Ve.(k,k')(SII [-r~a''YZiJ'- 'Yaa" 'YiJiJ']liS)

= Ve.(k,k')(-W+iJ [óaa,ÓiJiJ'- Óiia,Ó¡jiJ'(S], (A9)

where we have defined

(s == (SIIO"I . 0"2 liS) = [2S(S + 1) - 3]. (A10)

Results for an arbitrary Lorentz structure of the potential can be obtained in a similar
fashion and are given by

(SII[Ve.( k, k')]aiJ;a'iJ'liS) == Ve.(k, k')(S¡if aiJ;a'iJ'liS), (All)
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where
Óaa'Ó~~, for scalar;

(-I)a+~(Óaa'Ó~~, - Óó.a,Órw(S for vector;

(Sllra~;a'~'IIS) = 2(óaa'ó~~, + Óó.a'ÓiJ~'(S for tensor; (AI2)

Óó.a'ÓiJ~' for pscalar;

(-lt+~(Óó.a'ÓiJ~' - Óaa'Ó~~.(S) for avector.

Finally, ifthe exchanged meso n is ofisovector nature (e.g., 11" or p exchange) an additional
factor of

(T == (TIIT¡ . T2I1T) = [2T(T + 1) - 3],

multiplies the above expressions.

(AI3)
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