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ABSTRACT.We present a unified derivation of the plasmon dispersion relation for three, two and
one dimensional systems. We obtain exact results in the long-wavelength limit with the help of a
hydrodynamic mode!. A heuristic description is also developed to help understanding the physics
behind the plasmon in the three different dimensionalities and a quantnm derivation is briefty
presented in order to corroborate the hydrodynamic results.

RESUMEN. Presentamos de una manera unificada la derivación de la relación de dispersión para
plasmones en tres, dos y una dimensión. Obtenemos resultados exactos en la aproximación de onda
larga con la ayuda del modelo hidrodinámico. También se presenta un modelo heurístico como
ayuda para el entendimiento de la física detrás del plasmón en las diferentes dimensionalidades, y
un tratamiento cuántico es presentado brevemente para corroborar los resultados hidrodinámicos.

PACS: 71.45.Gm

1. INTRODUCTION

In this article we would like to present a unified picture of plasmons in three (3D), two
(2D) and one (ID) dimensional systems. Although there is a vast literature for plasmons in
either dimension [1-lOj, it is very difficult to find a picture that gives the basic ingredients
of these modes in a simple and unified way. We will use a hydrodynamic picture that
suffices in the long wavelength approximation. Thus, the electrons will be considered like
a fluid of charged particles that in 3D move without constraints, but in 2D and ID will be
restricted to move in two and one dimensions, respectively (see Appendix A for the precise
meaning of a one dimensional system). We will present as well, a heuristic argument for
the plasmon frequency that will give a clear and direct physical picture of the electron 's
motion as they participate to form the collective mode or plasmon. For completeness, we
will derive the results from a purely quantum mechanical point of view, and will show
that in the long-wavelength limit the results are identical with those of the hydrodynamic
mode!.
A plasmo n is a collective (normal) mode of a collection of identical charged particles.

The usual model is that of a 3D system uniformly and isotropically filled with electrons
and positive charges (background), so the system is neutral in equilibrium. But, plasmons'
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their individual equilibrium position in an orderly way. Each and every electron will leave
behind a positive charge from the background. If the electrons are then "released" they
will move towards their equilibrium positions (due to the Coulombic attraction of the
positive charge), but due to their inertia they will go past these positions, and thus the
electrons will start an oscillatory motion about these equilibrium positions. The organized
or collective motion of all the electrons, that is the normal modes of the electrons as a
whole, constitute a plasmon. This collective oscillations will propagate through the systcm
and correspond to compression waves in the electron gas. The very aim of the present
artielc is to clucidatc the frcqucncy of such collective modes whcn the electron gas is
confined to different dimensionalities.
The artiele is organized as follows. In Scct. 2 we present the hydrodynamic model, in

Sect. 3 wc prescnt the heuristic argument and in Sect. 4 we corroborate the results of the
hydrodynamic picture using a microscopic formulation. In Sect. 5 we give the conelusions.
Finally, in Appendix A we define the one dimensional system, in Appendix B we derive
the Fourier transform of the Coulomb potential for the three different dimensionalities
and in Appendix C we obtain ¡ts long wavelength limit in ID.

2. IIVDRODVNAMIC MODEL

\Ve start by defining the hydrodynamic model which will give the dynamical behavior of
the electrons. First, there is a linearized Navier-Stokes equation of motion [lI],

oj(r, t) = noe2 E( t) _ (32'VÓ ( t)ot m r, p r, , (1)

which attributes the acceleration of electrons to direct eleetrical forces and to density
gradients. In Eq. (1), Óp(r, t) is the induced density, j(r, t) is the current density, m is the
mass of the electron, and (3 is defined as the stiffness parameter, which ineludes the effects
of compressibility and spatial dispersion. The total charge density was separated into an
equilibrium valuc Po and a deviation Óp(r, t) = Po + Óp(r, t). The equilibrium number
density is given by Po = eno, with e < O an electron's charge. Also, E is the total electric
field, and is found (in the eiectrostatic limit) from E = _'V</JIOI, with the sea lar potential
given by

</JIOI(r, t) = </J<XI(r, t) +J dr' ~:~' ~~, (2)

where we have separated the total </JIOIinto external and induced parts. Notice that for
simplicity we have not includcd damping processes, but they can be easily included in this
formalism by adding phenomenologically a friction in the relaxation time approximation.
Second, to relate the induced density Óp(r, t) and the current density j(r, t), we use the
equation of continuity

OÓP •
-+'V'J=Oot ' (3)
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Eqs. (1)-(3) and related definitions form a c10sedset and specify our hydrodynamic mode!.
It is to be understood that the vector quantities as well as the number and charge densities,
take the values of the particular dimensionality that is chosen.
Now, we proceed to salve Eqs. (1)-(3) for their normal modes. To this end we set ",exl

to zero, and derivate the equation of continuity, (3), with respect to t, to yield

(4)

and use the equation of motion to get

To continue, we Fourier transform according to

óp(r, t) =¿óp(q,w)e-iwleiq.r,
q.W

"'(r,t) = ¿v(q)óp(q,w)e-iwleiq.r,
q.W

(5)

(6)

(7)

where v(q) is the Fourier transform of Ir-r'1-1 (the Coulomb potential), w is the frequency
and q is the wave vector (being q its magnitude). In Eqs. (6) and (7), the sum stands
for an integration over q and W. From Appendix B we get that v(q), depends on the
dimensionality of the system according lo

V(q) (10),

2" (20),v(q) = Iq\ (8)

4" (3D),Iql2

where V(q) is the one-dimensional Fourier transform of the Coulomb potential in the
chosen "one-dimensional geometry" (see Appendix A). For instance, for a f1at strip of
width a (see Appendix B), V(q) = Ko(qa), where Ko is the modified Bessel function of
zeroth order [121. Taking Eqs. (6) and (7) into (5) gives

(9)
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hence the normal modes of the system are given by

noe2 2 [ (32]= -q v(q) 1+ 2 •

m n:n v(q)
(lO)

Since the Fourier transform of the Coulomb potential v(q) diverges as q --+ O [see Eq. (8)]'
Eq. (lO) reduces to

(11)

in the long wavelength limit (q --+ O). This equation gives the plasmon frequency within
the hydrodynamic mode!. In view of (8), this frequency will depend upon dimensionality.
Then, substituting v(q) from (8) into (11), the plasmon frequency for 3D plasmons, 2D
plasmons and 1D plasmons is given by

2
noe V(q)q2 (ID),
m

w2(q) = 21l'noe2
(2D), (12)q

m

41l'noe2
(3D).

m

We notice immediately in a very simple and unified fashion, the always referred to, but
not always easily demonstrated qualitative behavior that as q --+ O (see Fig. 1): the 3D
plasmon is dispersionless and starts at a finite frequency at q = O, the 2D plasmons starts
with zero frequency and follows the (q)1/2 behavior, and the ID plasmon also starts at
zero frequency and follows a q(V(q)1/2 dispersion. We remark that no is the equilibrium
density per unit length in 1D, per unit area in 2D and per unit volume in 3D.

We should mention that according to (12) and Appendix B, in ID w ()( q(2Ko(qa))1/2.
From Fig. 1, we notice that the dispersion of the mode seems to be almost acoustic, ¡.e.,
linear with q, for sorne range of q. However, as we approach q --+ O,we show in Appendix C
that V(q) --+ -210g(qa), and thus the dominant behavior of q in the aforementioned
range, no longer controls the mode's dispersion for low q. A more careful analysis on the
actual numbers, reveals that the deviation of the dispersion from linear for low q is quite
noticeable [13).

The stiffness parameter (3 of Eq. (2) can be chosen so that this hydrodynamic model
will mimic a more rigorous microscopic theory [141. Doing so, will actually allow liS to
set quantitatively how small q should be for the q --+ O limit to be quantitatively valido
We mention though, that this choice is not unique and depends on the particular system
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FIGUREl. The dispersion relalion is shown for lhe lhree differenl plasmons. Nolice lhal bolh axis
are given in arbitrary units since we are just interested in the qualitative functional dependence
of w wilh q. (See lexl for delails).

chosen to be described by the hydrodynamic approach. Therefore, we do not put any
emphasis on numerics.

3. HEURISTIC DESCRIPTION

In this section we give a heuristic approach to the functional q dependence or plasmo n
dispersion obtained in Sect. 2. This will give a more direct insight into the physical nature
of the three differential plasmons [15}.We start from Newton's second Law by writing for
an individual electron

d2
m dt2r(t) = eE(t). (13)

Assuming the usual time dependence r(t) = r(w)e-iw', inherited from a similar behavior
of E(t), we get that the frequency of the electron's harmonic motion, ¡.e., the plasmon,
is proportional to the force,

w2 ex F = eE. (14)

Let's start with the 3D plasmon. In 3D, once a perturbing oscillation is introduced, the
perturbed charges are in the form of oscillating sheet charges normal to q and separated by
a distance f ~ A = l/q, with A the associated wavelength (see Fig. 2). Since the system is
3D, and these sheets are infinite, then from Gauss's Law, it is straightforward to show that
the electric field produced by them is independent of the distance away from the sheet.
Thus, the restoring Coulomb force acting between these sheets being proportional to the
electric field is independent of fas well. Therefore, from (14) we get that w2 is independent
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FIGURE2. We schematically represent the perturbed charges that give rise to the plasmon in the
three different dimensionalities. The positive (+ive) and negative (-ive) "charges" are shown. (See
text for details).

of e or q, in accordance with (12) for 3D. On the other hand in 2D the corresponding
perturbed charges are line charges again normal to q and separated by e ~ A = l/q (see
again Fig. 2). Now, Gauss's Law gives that the restoring Coulomb force between this lines
of charge is proportional to l/e, implying from (14) that w2 is proportional to l/e or q,
thereby giving the w ex: (q)1/2 behavior obtained in Eq. (12) for 2D. Finally, in 10 the
corresponding perturbed charges are points separated by e ~ A = l/q (Fig. 2), and then,
the restoring force is simply the usual Coulomb force whieh is proportional to 1/e2• From
Eq. (14), we get that wex: q (whieh gives the quasi-aeoustie behavior eharaeteristie of ID
plasmons), as previously obtained in (12) for the ID case. We should mention that the
heuristie argument doesn't give the logarithmie divergent term, which is only obtained
through the Fourier transform (see Appendix C).

4. MICROSCOPIC MODEL

For eompleteness, in this seetion we review the derivation of the plasmo n frequency from
a quantum mechanical point of view. Aetually, our derivation is very similar to the ones
appearing in most textbooks [16-19], however in eontrast with these, we present it in
a unified way for 3D, 2D and ID systems, as we just did for the hydrodynamie mode!.
We restrict ourselves to the so ealled Self-Consistent Field approximation (SCF) [201
and eventually to its long-wavelength limit, which agrees with the result obtained in
Eq. (12). The SCF approximation foeuses on one eleetron out of the N eleetrons and
calculates its interaction with the N - 1 remaining neighbors through the self-consistent
field produced by these. The SCF reduces the N-partide hamiltonian to an effeetive one-
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partide hamiltonian H = Ho + t?tot, where Ho = p2/2m is the unperturbed hamiltonian
and t?tot(r, t) is the self-consistent ¡¡eld which acts as a time dependent linear perturbation
upon the system. To formally solve the problem, we will fol!ow the dielectric response
formalism by which we calculate the induced number density, 8n(r, t), which is related to
the total potential by [21]

8n(r, t) = X°t?tot(r, t),

where (see Eq. (2) and recal! that e4> = 19)

t?tot(r, t) = t?ext(r, t) + e2 J dr' ~~~' ~~i'
(15a)

( 15b)

with t?ext the external potential and XO is the local non-interacting susceptibility. The
se1f-consistent solution of these two equations as we will see, gives among other very
important physical functions (like XO), the plasmons of the system. To proceed further,
let's use also the density matrix formalism [18]. Then, let r¡ represent the one partide
density matrix of the system, which equation of motion is given by

ih ~~ = [If, r¡], ( 16)

with [ , ] denoting a commutator. The density matrix is split into r¡= r¡o+8r¡(r, t), where

r¡olk) = f(k)lk}, (17)

with f the Fermi-Dirac distribution function and Ik) an eigenstate of the unperturbed
hamiltonian with E(k) its eigenvalue,

On the other hand, 8r¡ is given by
Holk} = E(k)lk}. (18)

(19)

where ór¡ is linear in the perturbation and higher order terms in the perturbation have
been neglected, which is consistent with the linear response being presented. Assuming
the usual e-iw' harmonic dependance, and taking matrix elements between k and k', we
get from Eq. (18)

with

(k'lF(r)lk) = J dr Wk,(r)F(r)Wk(r),

(20)

(21 )

and Wk(r) = (rlk).
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The induced number density ón(r,w) is given by

ón(r,w) = tr(ó(r - re)Ó1/(r,w)), (22)

where the delta function is the quantum mechanical operator for the number density, with
re the position operator for the electron, and tr is the trace,

ón(r,w) = 2:)kló(r - re)lk')(k'ló1/(r,w)lk).
k,k'

(23)

Using (20) on (23) and Wk(r) = e'k.r (a plane-wave normalized to unit "volume"), we get

ón(r w) = '" ón(q w)eiq.r = '" __ f(_k_)_-_f_(k_+_q_)_1?tot(q w)eiq.r
, LJ' LJE(k)-E(k+q)+ñw' ,

q k,q

where we used the fact that

(q + kIF(r)lk) = J dr F(r)eiq.r = F(q)

(24)

(25)

is the Fourier transform of F(r). Notice that the inverse Fourier transform of F(q) is
consistent with Eqs. (6) and (7). From Eqs. (15b) and (7) we have that

1?tot(q,w) = 1?ext(q,w) + e2v(q)ón(q,w),

and therefore from (24) we get

(26)

[
2 '" f(k + q) - f(k) ]

1- e v(q) "i: E(k + q) _ E(k) _ ñw ón(r,w) =

'" f(k + q) - f(k) 1?ext(q,w). (27)"i: E(k + q) - E(k) - ñw

For the normal modes, we set 1?ext= O,and thus require

_ 2 '" f(k + q) - f(k) _
f(q,W) = 1- e v(q) LJ E(k + q) _ E(k) _ ñw O,

k

(28)

which is the SCF wavevector and frequency dependent dielectric function, also known as
the Linhard function [221,explicitly written for any dimensionality. To get the plasmon
frequency in the long-wavelength limit, we need then to take q -+ O, for fixed w, in the
sum of Eq. (28). We rewrite the sum appearing in Eq. (28) as

_ '" E(k + q) - E(k)
S(q) = LJ 2f(k) [ñwj2 _ [E(k + q) - E(k)]2'

k

(29)
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where, using E(k) = h2k2/2m, gives (for fixed w)

. 1 Lhm S(q) = -2 f(k)(2k. q + q2).
q_O mw

k

(30)

The first term is odd in k and thus vanishes, whereas the second term involves ¿k f(k) =
no, the electronic number density for the chosen dimensionality, that in virtue of Eqs. (30)
and (28) gives

(31)

Requiring f(q,W) = Owould give the same answer as the one obtained in Eq. (11) through
the hydrodynamic mode!. This gives a more rigorous (microscopic) proof for the plasmo n
frequency, although the physics is not as transparent as before. In passing we remark
that (31) is the usuallong-wavelength limit of the dielectric function, now valid in 3D,
20 or 10.

5. CONCLUSION

In this article we have derived the plasmo n frequency for 3D, 20 and 10 systems in
a unified way. We have done so by using a clear and simple hydrodynamic model which
determines the dynamical behavior of the electrons. By the use of a more rigorous quantum
approach we have checked that the hydrodynamic model gives the correct results in the
long-wavelength limito Also, we have given a heuristic picture which gives a simple physical
picture for the dilferent behavior (dispersion) of the plasmons.

ApPENDIX A

In this appendix we would like to give a more precise definition of what we mean by a
one dimensional system. We consider a very long system with a cross section being much
smaller than the length. For instance, consider a parallepiped of length l, width a and
height b. Then l » a, b and a and b could be of the same order of magnitude. Furthermore
l is also such that the energy quantization due to its large spatial confinement is contin-
uous. However a and b are such that the energy quantization due to their confinement is
experimentally discernible, or in other words the energy spacing is large. The electrons
will occupy these energy states up to sorne maximum level, and we set b < a in such a
way that the electrons will always be in the ground energy level associated with b. This
is possible ir the excited states associated with the spatial confinement imposed by b are
so far apart that they are inaccessible for the energies being used. In this way we are left
with a system that looks like a flat strip of width a with energy levels well separated and
experimentally accessible, and length l with continuous energy. as we will see in the next
appendix, a will have a minimum value that stems from physical grounds. It is in the
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aforementioned fashion that we conceive our one dimensional system. We finally mention
that this kind of systems are actually achieve by the new nano-fabrication techniques (see
Refs. [1], [41 and [7]).

ApPENDlX B

Here, we derive the Fourier transform of the Coulomb potentialll(q) for 3D, 2D and ID.
lIowever, we start with the scalar potential in order to justify (7) first, and then we get
lI(q). 4>(r) is given by

4>(r) = ¡drl p(r')
Ir -.-'1

= ¿p(q)¡dr' ,:::,'
q

(B1)

(since we are only interested int he spatial variation, we use the time independent potential
4>(r) and density p(r). Taking r - r' = R, gives

4>(r) =¿p(q)eiqr ¡ dR e-~R,
q

from where we justify the spatial dependence of (7) and we identify

¡

e-iq.R
lI(q) = dR-¡¡-,

as the Fourier transform of the Coulomb potential, which of course imply

1 = '" 1I( q)eiq.(r-r').Ir -.-'1 L..
q

(B2)

(B3)

(B4)

To proceed with the evaluation of B3, we take cartesian coordinates since as we men-
tioned in Appendix A, the one dimensional system we have in mind is a "f1at strip". We
mention, though, that one must proceed with care in order to avoid inconsistencies that
could arise in other coordinate systems. We take R = (x,y,z) and q = (q"qu,qz), then
in 3D

1"" 1"" 1"" -iq.%1I( q) = dz e-iq•z dye-iq,U dx e .
-00 -00 -00 Jx2 + y2 + z2

(P5)
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From Ref. [23] (3.754.2)

('0 dx ---,=e-=.q="=x=== 2[(0 (lqxl.jy2 + z2).
J-oo .jx2 + y2 + z2

(B6)

Integrating over y (see Ref. [231 (6.677.5))

2 roo dye-.q'Y[(0(lqxl.jy2+Z2) = ~71" 2exp[-lzl.jq;+q~]. (B7)Loo .jqx +qy

Finally, integrating over z (see Ref. [231 (2.663.3))

or

471"
v(q) = v(q) = 2' with q = .jq; + q~ + q;,

q

(B8)

(B9)

the usual result for 3D. For 20 we focus in (B7)'s integral realizing that z = O, and also
that no further integration over z is required, then (see Ref. [23] (6.671.14))

and then

271"
v(q) = - with q = .jq; + q~,

q
(B10)

the result for 20. Finally for 10 we proceed as follows. We cannot allow strictly one
dimension (i.e. y = z = O) because the Coulomb integral (B6) will diverge, to circum-
vent this, we appeal to physical grounds. The electron gas must coexist with a positive
background, thus, there should be a minimum distance, ao, between the electrons and the
positive charge. This minimum distance would be a limit to the "size" of the cross section
of our 10 system. In a sense, this ao would be like a "Bohr radius" similar to that of
the hydrogen atom. Therefore we need a system which extends a macroscopic distance,
e.g., along x, and has a microscopic (finite) cross section, which should be at least the ao.
Then, from (B6) we could identify a == .jy2 + Z2 as the cross section or width of the 10
system and write (in here the integration over y and z is no longer required)

v(q) = 2[(0(qa) == V(q), with q = Iqxl. (Bll)

Notice that this choice of integration limits, correspond to a parallepiped, and thus (Bll)
is best suited for a f1at strip of width a, in accordance with Appendix A. In general
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other geometry would have a slightly different functional dependence with q, but would
be calculated along the same lines that lead to (B6).

From (B9)-(BII) it's clear that q in 3D is the magnitude of the three dimensional
wavevector, in 2D is the magnitude of the two dimensional wavevector and in ID is the
magnitude of the one dimensional wavevector.

ApPENDlX C

In this appendix we derive the q - O limit of V(aq) given by (Bll). We start from (B6),
but written in a different way, to get

. jL e-iqx
V(aq) = hm dx---;o====.

L-oo -L '¡X2+y2+z2
(el)

Following the same argument that led to (BlI), we take y2 + z2 = a2, and let q - O, to
get

V(aq _ O) = lim jL dx --==1==
L-oo -L vx2 + a2

Now, we Úke L - I/q, which implies

V(aq - O) = -210g[qaJ,

(e2)

(e3)

result that gives the q - O limit of the Fourier transform of the Coulomb potential in
QID.
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