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ABSTRACT. Possible stationary solutions in stochastic electrodynamics with nonrandom charac-
teristic Fourier frequencies are studied; it is shown that the equations that describe them are just
the Heisenberg equations of quantum theory. For these solutions, the response of the particle to
the random field turns out to be linear. The zero point field with spectral energy density o w? is
required to guarantee detailed energy balance and stability of the atomic system.

RESUMEN. Se estudian las posibles soluciones estacionarias dentro de la electrodinidmica esto-
castica que tienen la propiedad de que sus frecuencias caracteristicas de Fourier son no estocasticas.
Se muestra que las ecuaciones que las describen son justamente las ecuaciones de Heisenberg de la
mecanica cuantica. Para estas soluciones, la respuesta de la particula al campo de radiacién resulta
lineal. Se muestra asimismo que es necesario el campo de punto cero con densidad espectral de
energia ox w® para garantizar la existencia de balance detallado de energfa y la estabilidad atémica.

PACS: 03.65Bz, 05.40.4+j

Stochastic electrodynamics (SED) has been developed with the purpose of studying the
possible effects of a real zeropoint radiation field (zpf) on matter, most particularly its
possible relationship with quantum phenomena. A series of results have been obtained
in SED along the years, which show good quantitative agreement with the quantum
description [1,2],although the theory has also met with serious difficulties, notably when
dealing with nonlinear forces [3]. More recently, a nonperturbative treatment of the action
of the random field on the particle has been under development [4], which allows to
treat systems subject to arbitrary nonlinear binding forces without the aforementioned
difficulties. An appropriate formalism to deal with the SED system has been introduced,
which leads to results that strongly suggest a close relationship with quantum mechanics.

In the present letter we report a further step along this nonperturbative approach to the
stochastic problem. By studying the possible stationary solutions of the SED system that
possess nonrandom characteristic frequencies, we are led to a set of algebraic equations
which, in the radiationless approximation, coincide fully with Heisenberg’s equations of
motion expressed in matrix form; for such solutions the system is seen to respond linearly
to the zpf and with well defined response amplitudes, whose scale is fixed by the size of
the field fluctuations. Also, by considering the full equations instead of the radiationless
approximation, the non-relativistic radiative corrections are obtained; in particular the
Lamb shift, the lifetimes and the question of atomic stability can thus be analysed. In
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this letter we briefly discuss the latter possibility; the interested reader is invited to see a
more detailed and complete treatment elsewhere [5,6].

Let us recall that the zeropoint field is a purely random electromagnetic field with en-
ergy %hw per normal mode; in the long-wavelength approximation the electric component
can be represented in the form

1rhw .
=i Z " €noal, exp(—iwnt) + c.c., (1)

where V is the normalization volume and n,o are the wavenumber and polarization
indices. The a2, are random variables that average to zero and have a covariance
{al,alt ) = buntbggt. (For simplicity, we shall use a single greek letter instead of the
double subindex: a3, — a3.) To study the interaction of a particle with this field, one
may start from the random Abraham-Lorentz equation (written in one dimension, for

simplicity, and with 7= 2e?/3mc®):
mi = m7Z + F(z) + eE(t), (2)

and look for stationary solutions of this equation. To show that these solutions, when
they exist, do not depend on the initial conditions, one can write x = x, + z; and use the
mean-value theorem, F(z, + x;) = F(x,) + F'(z, 4+ 0x;), with 0 < 8 < 1. If z, is taken
as a stationary solution of mi, = mrz, + F(z,) + eE(t), z; must satisfy the equation
mi; = mry + F'(zs + 0z¢)z;. Since this equation describes a particle that radiates in
absence of an external source to compensate for the dissipation, x; goes to zero with time,
whatever its initial value, and thus represents the transient part of . Therefore, for long
times x coincides with z,, and is hence substantially independent of the initial conditions,
since it is driven by the field. (A more detailed discussion can be seen in Ref. [5]).

To describe the system once it has reached such a state of stationary stochastic mo-
tion, we make a Fourier transformation of Eq. (2), with z = ffooo Z(w)e ™tdw and E =

[ E(w)a®(w)e ! dw, to get

_ o ac(w)E'(w)e’i”‘
rmne [ SO @)

—Q0
where

Aw) = mw? + -i% — imruw®. (4)

Now we introduce a fundamental assumption, namely that the dominant contributions
to z(t) in Eq. (3) come from the poles of the integrand, i.e., from those frequencies
for which A(w) = 0. In the usual long-wavelength approximation the frequencies w of
interest are such that |Tw| < 1, and the last term in Eq. (4) can thus be neglected.
For bound systems, the equation A(w) = 0 is satisfied only for certain frequencies (in
general stochastic). A subindex, say a, is thus required to identify the stationary state
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being studied, and a second one, say 3, to tag the Fourier component; thus we write more
explictly zo = Zﬂ Zop(w) exp(iwggt) + c.c., and the condition A(w) = 0 takes the form

1 ﬁ‘a w
—— Ea,:((w)) — wiﬂ. (5)

(In order that our results adjust to usual conventions of quantum mechanics we have
written w in the form —w,g, making use of the fact that w,g = —wg,, as is seen further on.)

Since F,g and Zas depend on the a®’s in the general case, the 1.h.s. of Eq. (5) is in
principle also a function of them. Here we introduce a second crucial requisite, namely,
that the stationary motions of interest are those for which the characteristic frequencies
Wap have nonrandom values. For such motions the quotient Fagféag, and hence also A,
must be independent of the a®’s. Then from Eq. (3) it follows that Z,gs is linear in ag s,

and from (5) so is F,g, so that
s = 0 P we F a0
Zaff = Taflqg, aff = faﬁaa,@s
with £, and fag nonrandom coefficients which must satisfy Eq. (5), i.e.,

fag - —mwgﬁi:a,g. (6)

Now the problem is to investigate the conditions for such solutions to exist. Most remark-
ably, a general answer can be constructed; it is our purpose to sketch it here in a very
concise form, inviting the interested reader to see a detailed discussion of it elsewhere [5].
Developing the external force in a Taylor series F(z) = )" ¢,2™ and using Eq. (5), one
can see that the Fourier coefficient F,4 of a typical term (i.e., z) of the force contains
products of n field amplitudes that must comply with the condition
SN YRR W R (7)
for the quotient of Eq. (5) to be independent of the a’s. A detailed analysis of the conse-
quences of this requirement leads. to the result that each amplitude must be of the form
al, = exp(i@an), With @ax = @o — @, mod 2, and ¢, uniformly distributed over (0, 27).
In these expressions, the indices A; can have any possible value. The amplitudes have then
several properties (as a; = ag‘; or a}, =1,) which together with Eq. (7) show that they
are no longer the original amplitudes that describe the vacuum field in the absence of
matter. Similarly, the allowed frequencies must comply with

Wapf = Wal, +w,\1,\2 +...+w;n3, (8)

and in particular, wae = 0 for any a, and w,g = —wp,. From this it follows that w,g
must be written as a difference of two terms:

Wag = la — g, (9)

with 2, real numbers.
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The above results combine to give (2™)ag = Y Zar Eairg - - .E:Anﬁagﬁ, and (2™)ap/Zap
becomes indeed independent of the field amplitudes (the sum is performed over all allowed
values of the intermediate indices):

(Ef)aﬁ - 2 iahii\ﬂz Wo . :Elnﬂ ) (10)
Zaﬁ :Ea'@

This gives for the &4(t) that correspond to stationary solutions to Eq. (5):

Ball)e= Za”:mgagﬂ exp iwqgt + c.C., (11)
B

where the powers of # must be corstructed according to the multiplication rule for matrices
[see Eq. (10)]. The time factor in the components of z(t) can be associated either to Zap
or to al g, by writing Zagags expiwapt either as Zap(t)ass (With Zag(t) = Zap expiwagt)
or as Tagap(t) (With ans(t) = agﬂ expiwagst). In terms of the Z4p(t), which satisfy the
equation d2,p(t)/dt? = —wiﬂf:ag(t), Eq. (6) becomes

25 ~
L2es®) _ Foot) (12)

where fos(t) = fap exp(iwagt). Note that the stochastic amplitudes al g are entirely absent
from the equations of motion (6) or (12); these equations have acquired an algebraic
structure that can be expressed also in matrix form:

&z .
m—y = (&), (13)

where the matrices # and f have elements &,5 and fag(Z), respectively [see Eq. (6].
To complete the description we use p = m(dz/dt); then ag = imwapZap, or in matrix
notation and using Eq. (13):

p=m=, T =) (14)

These are evidently the Heisenberg equations of motion, and Z,4(t) the elementary oscil-
lators of matrix mechanics. To recapitulate, we list the assumptions that must hold for
these solutions to exist: a) the stationary part of the solution can be approximated by
a resonant-type response to certain field modes, that is dominated by the poles at the
characteristic frequencies; b) such characteristic frequencies are nonrandom and real (i.e.,
the motions are radiationless), and c) the rest of the random field has no appreciable
effect on the motion. From this it follows that the field that sustains the oscillations
is no more the free vacuum field, but a modified field whose active modes (i.e., those
with which the particle resonates) are correlated [see Eq. (7)]. Under these assumptions
we conclude that the matrix algebra of quantum mechanics follows as the algebra that
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guarantees nonrandom values for the characteristic frequencies of the stationary SED
system; we say then that the system has reached the quantum regime. Note that the
stationary solutions are independent of the initial data of any given particle, up to an
“initial” reference time (i.e., up to the phase with which the trajectory is percorsed);
thus, each trajectory describes the set of all those particles that enter into the given state
of motion, irrespectively of their initial conditions, a situation most naturally amenable
to a statistical description. The possible identification of these stationary solutions with
limit cycles is considered elsewhere [6].

An astonishing feature of this solution is its dependence on the field amplitudes: it shows
that the mechanical system, whatever the nonlinearities of the ezternal forces, responds
linearly to the field, without mingling the frequencies of the different field modes. Such
response is effective once the system has reached the quantum regime; before this, the
dynamics is surely much more complicated and the present description does not apply.
Within the quantum regime, the mechanical system behaves as a set of independent har-
monic oscillators, something which was already well known since Heisenberg’s times; the
difference is that we are now disclosing the nature of these oscillators: they are mechanical
modes resonantly driven by the modes of the field. As to the properties of the amplitudes
of the active field modes, the unexpected relations given by Eq. (7) seem to indicate that
in the process leading to the quantum regime, also the field has been modified, so that
correlations appear among the amplitudes whereas initially randomness was dominant.

The solution is still incomplete, since the equations of motion (14) do not fully define
the problem: the scale of the &,z is not yet fixed. This is due to the fact that up to now
only the poles of Eq. (3) were investigated; the rest of the information contained in it
—and in particular, the strength of the random field, Eq. (1)— has been left aside. There
are several possible ways to fix the scale of the response. The simplest one is of course to
demand that the average energy of a harmonic oscillator be given by hw/2, which is the
value obtained from solving directly Eq. (2) for this specific case, as is well known [1-4].
A much more general result can be obtained by resorting to the poissonian formalism
derived earlier [4]. As a result of this formalism, in the quantum regime the poissonian of
x and p, given by

Oz dp Oz
(Z;p)a = 2,9: [87’9 ip,é - B; Ak (15)
has a universal value for any stationary state a:
(z;p) = ih. (16)
Inserting here the linear solution Eq. (11) and p, = m(dz,/dt), this equation leads to
(2p — pT)aa = ik, (17)

and hence to the Thomas-Reiche-Kuhn sum rule

B h
— E wagpl|Eas|® = B (18)
B
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This expression, which is equivalent to the quantization rule [Z, p] = iR, fixes the scale of
the solutions as a consequence of the energy fiw/2 per normal mode of the vacuum field.
Also, from the poissonian counterpart of the dynamical Eqs. (14): ihd = (z; H), thp =
(p; H) with H = p?/2m +V, and using Egs. (9) and (11), it follows that hwas = £a — €5,
where H,, = £,6,, = hQ,6,,. The characteristic frequencies of the present theory are
thus related to the energy eigenvalues of the quantum stationary states through Bohr’s
formula.

Another more interesting matrix form of the equations of motion can be constructed
by following a different path: Consider a set of square matrices a*? with elements

(@) ., = aap(t)aubpy- (19)
Each of these matrices has only a single element different from zero, given by
(a7) 5 = ap(t) = expli(¢a — ¥p) + iwapt]- (20)

For a # 3 this element is random, whereas for a = § it is equal to 1. It follows from their
definition that a product of such matrices gives another one:

(@#a) , = aas8aubprbsr = 85y (a°°)

Let us use these matrices to represent the dynamical variables once the system has reached
the quantum regime [4], i.e., the quantum observables. This is achieved by writing for
example (this is the a-representation),

B=) Baph™=) Ea (21)
a8 P

where

Ba = Ziag&“‘s. (22)

Now it is straightforward to verify that the observables so constructed satisfy the rules of
quantum mechanics. As the simplest example, consider the square of &:

(jrz),uv — Z i“AjAVG#AaAV = (5:2)‘“’0-“9’
A
=2

whete (32w = 3 Spaadav:
Y
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Further, note that the matrix @*# can be written as the product of two vectors |a) and
(B|, where

0
0
oy =] (23)
Qo
and (0| = |,B)". Each vector has a single element different from zero, (|a))x = @adan,
where
ao = expi(pa + Qat), (24)

which means that
Aoy = Qgg.
Therefore, from Egs. (19) and (23) we have indeed
a®’ = |a)(fl. (25)

As seen from Eq. (24), the vectors |a) (which form a complete basis in the Hilbert space
of the stationary states, as is easily verified [5]) involve the eigenvalues £, = h{}, rather
than the wag; hence, in the transition from the a—representation to the Hilbert space
formulation the accent is shifted from the characteristic frequencies to the energy eigen-
values.

Now any observable § can be written as a linear combination of the a*# [see Eq. (21)]:

§=) Ga=) Gapd® =) Gapla)(Bl, (26)
o aff of

whence §os = (@|f|8). In this new representation the basic Eqs. (14) and (17) take the
form

Bopl=hl,
AR & . i w E,
o a[ﬂa‘,HL = =f= E[P,H}-

Observe that all quantities involved in this system of equations depend linearly on the
random (c- or g-numbers) aqg, in contrast to the usual quantum equations where these
quantities do not appear; they can therefore be considered hidden variables from the point
of view of quantum mechanics.
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Now since the stationary solutions of quantum mechanics have been obtained after
neglecting the radiative terms in the equations of motion (see Egs. (5) and the following),
it is important to reintroduce these terms and analyze their possible effect on the stability
of the quantum solutions. For this purpose, consider a bound particle (e.g. an atomic
electron) subject to the combined action of the random field and its own radiation (in
addition to the Coulomb force). The net statistical effect of these forces on the energy
balance is obtained by multiplying Eq. (2) by X and averaging over the realizations of the
field. Since in equilibrium (H) = 0, one gets to second order in e:

mr(:’cm) . §(°)> + e(:'((l) -E) =0, (27)

where the superinidices indicate the order in e of the various terms. For the calculation
of x(1) one can go back to Eq. (2) and solve it by perturbation around the unperturbed
solutions of the stationary states; one thus obtains (the index i is a cartesian index) [6]

2 ) t
;a,-g;.):__e |5T:c¢,|2 / E;(t — t') sinwqpt'. (28)
h 4 A
This gives for Eq. (27):
4mle? i |2
> (mw‘éﬂ - ﬁ—waﬂp(waa)) |hel* = 0, (29)

B

where p(w) is the spectral energy density of the field E . For the vacuum field of SED, p =
hw?/27%c? and the expression within parentheses vanishes identically for every wsg > 0,
independently of the dynamics of the system, i.e., of the values of the Z,5. Hence, at each
frequency interval there is a balance between the average power absorbed by the particle
from the zeropoint field and the average power lost by radiation reaction; in other words,
the system in its ground state is in detailed equilibrium with the radiation field. Assuming
that the average taken over the realizations of the field is equal to the time average for
an individual system, we conclude that every individual system (an atom, for example)
is stable against the combined effect of radiation reaction and of the vacuum field force.
It is, therefore, the average effect of the zeropoint field what prevents the atomic electron
from falling towards the nucleus. This is a characteristic behaviour of quantum systems
that clearly distinguishes them from classical systems, which attain equilibrium only with
the Rayleigh-Jeans distribution, as is well known.

This tight relationship that is seen to exist between the average energy rate delivered
by the zeropoint field and the average rate of energy radiated by the particle, can be
expressed in more general terms as a relationship between a diffusion coefficient and
a friction coefficient, i.e., as a fluctuation-dissipation relation [7] specific of SED (see
Ref. [6]).

Finally, we would like to mention that by considering the radiative terms as pertur-
bations to the system described previously in the radiationless approximation, it is also
possible to obtain the radiative corrections to the observables of the stationary states,



QUANTIZATION AS A RESULT OF... 661

e.g. to the energy. The calculations involved are rather lengthy, and are therefore reported
elsewhere [6]. This work was supported in part by CONACyT through project 068-E9109.
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