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ABSTRACT.We numerically show lhal lwo lighl-guided beams remain undislurbed when lhey
cross each other in spite of the nonlinear dynamics which governs the interaction of their corre-
sponding guiding lighl beams. Our resulls a!so indicale lhal such unexpecled phenomenon occurs
even when lhe guiding lighl beams are nol spalially idenlica!.

RESUMEN. A través de simulaciones numéricas se muestra que dos haces guiados por luz. per-
manecen inalterados al cruzarse, a pesar de la dinámica nolineal que rige la interacción de los
correspondientes haces guías. Los resultados también indican que tal fenómeno inesperado ocurrirá
aun cuando los haces guías tengan diferentes propiedades espaciales.

PACS: 42.65.Jx; 42.79.Gn

Optical waveguides have renewed its potential of practical application with the discovery
that a light beam can be optically guided by light [1]. This new phenomenon occurs
when an intense (pump) beam propagates into a non linear medium generating one or
more transversal stable structures called spatial solitons. Depending on the sign of the
non linear refraction index 02 of the medium, the formed spatial solitons can be either
bright (02 > O) or dark (02 < O) solitons. The former represent an isolated light intensity
profile while the dark solitons consist of an absence of radiation immersed on a continuous
light background [2]. Moreover, joined to the stability of such structures.is the fact that
the intensity of the beam can modify the medium characteristics, causing its index of
refraction to change according to the intensity profile of the spatial solitons. This is quite
a remarkable e/fect since a second and weak (probe) beam can be introduced into the
medium and it will see a transversal e/fective refractive index distribution that satisfies
lhe guiding condilions [Fig. (1)] and lherefore be actually guided.

Light beams guided by spatial solitons have a natural potential of applications in optical
interconnecting devices, therein the importance of analyzing their relevant fundamental
properties. For example, if spatial solitons are going to be used as channels for optical
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FIGURE 1. Typical spatia! solitons structures, 'lI(",), formed in a nonlinear medium, and the
respective refractive index profiles induce by them in the medium, L'>n= n-no = e51'l1(", )12• In (a),
we show a bright soliton obtained when n2 and e5 are positive, while in (b) a dark soliton is shown
which is formed when n2 and e5 are negative. Note that the waveguiding condition: n at the center
oC the guide greater than n at its extremes is satisfied in both cases. Thcrefore spatíal soIitons can
guide low intensity probe beams.

communications, often a realistic (both desired or undesired) situations should be a cross.
ing among them. Such a situation is not simple to describe beca use the dynamics of the
guiding beams are not linear. By definition solitons have the characteristic of remaining
unchanged under collisions. When two solitons collide, they interact in a very complicated
way due to its non linear dynamics, but they emerge unscattered after the collision [3J.
On the other hand, the guided beams are weak and they are expected to be highly
perturbed, with the corresponding modification of the information they are carrying on,
by the underlying nonlinear features of the spatial solitons crossing.
In this letter we investigate numerically what it happens with ihe guided beams when

the guiding spatial solitons collide, and report the fact that a guided probe beam continues
undisturbed on its original channel after the channel crossing, as if the nonlinear junction
were absent.
In a two-dimensional scheme, the propagation of laser beam through a medium pos-

sessing a diffraction index n is described hy the Maxwell equation [4J

(1)

where E is the electric field, and ko the wave number. We have ignored the variations on
the other transverse direction.
A laser beam propagating on the z axis can be expressed as E(x, z) = \jI(x, z) X

exp[:¡:inokoz], where no is the linear refractive index and the :¡: sign stands for the two
possible directions of propagation. If we assume beam propagation in the positive z direc-
tion, we can take the minus sign on the exponential factor. Substituting E(x, z) in Eq. (1)
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and invoking the slowly varying envelope approximation for Il'(X, z) we obtain

(2)

where the normalizations Z = nokoz and X = nokox have been performed. For a weak
beam, n = no and Eq. (2) predicts the transverse broadening of an initial beam due to
diffraction. However, if the beam is intense, n = no + n21t/>12, with n2 (<< no) as the Kerr
nonlinear index of refraction, then Eq. (2) becomes the so-called nonlinear Schrodinger
equation (NLSE) which admits both bright (n2 > O) and dark (n2 < O) solitons as
stationary solutions [2].
The NLSE has been extensively studied in the optical liber context where both kind of

(temporal) solitons have been reported [5-9], in special the bright ones for their impor-
tance for long-distance optical communications [lO]. In our case, spatial solitons obeying
Eq. (2) have also been observed [11,12], including the more complicated 3-dimensional
case [13]. Spatial solitons have the advantage of being easily produced in a laboratory,
and among them dark-spatial solitons are prefcrable for practical applications in intercon-
necting devices, because at power levels aboye the fundamental solitons, they split into a
number of individual fundamental dark-solitons which spread apart as they propagate into
the nonlinear medium. In similar conditions, higher-order bright-solitons remain attached
by exchanging their energies due to the presence of an effective attractive potential [lO].
A controlled production of dark-spatial solitons can be obtained by placing an am-

plitude or a phase mask in front of the ¡ncident pump laser beam in order to produce
the required boundary conditions [14]. A simple wire locatcd at the entrance face of
the nonlinear medium originates an even number of dark-spatial solitons, while a 7l"-phase
mask positioned across the middle of the beam produces an odd number of them [1,9]. An
example of the former case is presented in Fig. 2a, where we show the numerical solution of
Eq. (2) for an initially normalized transversal beam prolile ofthe form y'ñ2nokoW(X,O) =
1- exp[_x2]. It can be clearly seen the formation of two identical lirst-order dark-solitons,
which spread apart as they advance into the nonlinear medium.
Spatial solitons have an obvious potential of practical applications, and a binary

communication prototype device based on dark-spatial solitons has been recently pro-
posed [15]. However, as was empathized in Ref. [1], the effective structure of the medium
is changed by the presence of the spatial-solitons, and its refractive index can follow the
spatial intensity prolile of those. In such a case, we can consider a weak (¡¡robe) beam
propagating behind the spatial-solitons former beam, and its transversal profile will follow
the equation

2i 84> = 8
2
4> + Ó11l'12.J.8Z' 82X' '1',

(3)

where D. represents the maximum refractive index change induced in the medium and
Z' = n~k~z and X' = n~k~x are the distances norlnalized to the probe beam wavelength.
Note that Eq. (3) is coupled to Eq. (2) through the pump beam prolile 11l'12, and that
Eq. (2) stands unperturbed by the presence of the probe beam because it has been assumed
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FIGURE 2. Numerical solution oC the coupled Eq•. (2) and (3) .howing the ability oC dark-.patial
solitons to guide probe beam•. In (a) we .how the .patial evolution oC the pump (intense) heam,
while in (b) the behavior oC a probe (weak) beam traveling behind the pump beam i•• hown.
The pump beam originates two dark-spatial soliton. while the probe beam is guided by them. At
Z = 10 the two Cormedidentical solitons are perCectlydistinguishable in (a), and each one guides
the same CractionoC the input probe beam (b).

to be considerably less intense that the pump beam. When the intensity of the two beams
are of the same order Eqs. (2) and (3) have to be changed by those describing the cross
phase modulation effect [101.
Physical1y, the solutions of Eq. (3) just give the transversal modes al10wed by aplanar

waveguide with a refractive index distribution equal to ~I\jI12. However, as \ji is a solution
of the NLSE, Eq. (2), the spatial evolution of </J is not easily described as in the case
of linear waveguides. As an example of how the dynamics of the probe beam can be
governed by the nonlinear behavior of the pump beam, we show in Fig. (2b) the result
of numerically solving Eq. (3) under the refractive index distribution left behind by the
formation of the two dark solitons of Fig. (2a). As it is shown, the probe beam is initially
guided by the intense pump beam, but when it forms the two dark-spatial solitons, the
probe beam equally splits its energy into the two formed channels. In Fig. (2b) we have
plotted the normalized pro be transversal envelope ,¡¡s n~k~</J(X',Z'), and it has been
assumed Z = Z' and X = X' for simplicity. The initial probe transversal profile was
exp[-X12 /2]' which is close to the singlc-mode solution for a waveguide with a refractive
index distribution similar to the formed spatial solitons [161. The USeof a probe beam
with a transversal width differing considerably from the spatial solitons width leads to
multimode or unguiding conditions, just as in the case of linear waveguides.
The fact that spatial solitons can guide probe beam broadens their potential appli-

cations for logical or connecting elements in al1-optical communication systems, and the
case showed in Fig. (2) represents a typical Y-junction [IJ. However, if each dark-spatial
soliton is thought as a channel and each probe beam plays the role of an information
carrier, in a realistic application it may occur a crossing among them. The collision of two
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FIGURE 3. Numerical solutiou of the coupled Eqs. (2) and (3) showing that the guided (probe)
beams maíntaín their original channel after a channel crossing. In (a) we show the dark-spatial
soliton collision and in (b) we show the behavior of the corresponding guided beams launched
into the channels. The initial pump profile was taking from the theoretical solutions for a paír of
identical dark solitons giving in Eq. (10) of Re£. [17J,with >'1= ->., = 0.3. The initial probe beams
have the same gaussian profile as in Fig. 2, but the energy of the right-hand one is one quarter of
the other.

solitons is now well known [21, but to the best of our knowledge nothing is known about
the behavior followed by the corresponding probe beams that use them as waveguides.
In order to investigate such a behavior, we solve the coupled Eqs. (2) and (3) with

the analytical expression [171 fol' a pair of identical colliding dark-solitons as the input
for the guiding beam. On each one of the produced channels, a beam of gaussian prolile
but different amplitude is launched. The width of such a beam has been chosen close
to the soliton width in order to fall whitin the single-mode transversal distribution for
the probe within beam. Fig. (3a) shows the spatial evolution of the two dark-spatial
solitons and Fig. (3b) the behavior of the corresponding guided beams. The two solitons
behave as expected and emerges unscattered after the collision. On the other hand, the
guided beams traveling through the channel junction given by the soliton interaction zone,
continue along their original channels and their amplitude are unaffected. This is quite
a surprising behavior, beca use the guided beams are weak and they are expected to be
affected by the nonlinear dynamics of the soliton collision. More in particular one expects
that after the two original probe beams join, they would split their total energy into the
two guiding channels.
Trying to identify the origin of such an anomalous behavior we repeat the numerical

experiment but with two different dark solitons as the initial condition for 1I'(X, O), in
order to break the symmetry of the junction. Fil" (4) shows the results, where one can
see that we basically obtaill the same resulto after the challnel jUllction, each probe beam
travels within its original channel. The influence of the relative width of the guided beam
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FIGURE4. The same as in Fig. (3) except that the initial pump profile now consists of two different
dark-solitons. Such a profile was taken from Re£. [17) with Al = -0.3 and A2 = 0.6. Although lhe
asymmetry of the channels, the behavior of the probe beams showed in (b) are essentially the same
as in Fig. (3).

to that of the channel can also be observed in Fig. (4b) where some radiation spreads
away due to pure diffraction. This is explained because the input probe beam launched
at the broader soliton channel needs to increase its width in order to fill the single-mode
distribution requirements. Such a reshaping process is more severe as the width of the
channel is increased, of course. However, the conservation of the probe beam energy during
the soliton channel collision is still valid, but it applies to the modified mode distribution
instead to the input probe beam. For wide enough soliton channels multi-mode conditions
are reached and the reshaping process of the initial probe beam profile to the proper mode
distribution increases in complexity. Results of using dark spatial solitons as multimode
weaveguides will be reported elsewhere.
Some additional numerical experiments have been carried out, including the introduc-

tion of constant phase factors on the guided beams, and the results shown drastic changes
of the phases and, once again, unaltered amplitudes after the soliton channels crossing.
This fact implies that the physical explanation to the phenomenon entirely resides in
some inherent propriety of the nonlinear interaction of solitons, and it may be probably
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used to monitor the soliton-coHision dynamics. Moreover, as the energy distribution per
channel is maintained while the respective phases are altered by the process, for practical
applications the guided beam should be restricted to carry information in an amplitude
modulation fashion.

In conclusion we have shown that weak beams launched into dark-spatial soliton waveg-
uides emerge into the same channel, and with no apparent energy loss after a channel
crossing, in spite of the non linear dynamics of the involved solito n coHision. Though a
clear explanation of this phenomenon is not yet available, it has already relevant practical
consequences as it opens the possibility of constructing multidirectional optical intercon-
nectors bases on dark-spatial solitons.
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