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ABSTRACT. The Onsager reciprocity relations formulated and derived from the premises of sta-
tistical mechanics sixty two years ago lie at the foundations of irreversible thermodynamics. In
this paper we mainly review the basic ideas behind their origin emphasizing on their microscopic
aspects. Next, we discuss the kinetic theoretical approach justifying their validity and give a brief
derivation placing them well beyond the local equilibrium states of dilute gases. We also discuss
how using modern techniques of statistical mechanics, efforts have been made to show that they
might even hold true in states not necessarily close to equilibrium. An attempt is made to relate this
type of work with another approach based on the so called adiabatic elimination of fast variables.
The main conclusion simply underlines the fact that up to now this is practically an open question.
Other aspects of the problem are also presented.

RESUMEN. Las relaciones de reciprocidad de Onsager fueron formuladas a partir de las bases de la
mecanica estadistica hace ya mas de sesenta afios y constituyen los cimientos de la termoJindmica
irreversible. En este trabajo haremos principalmente una revisién de las ideas basicas que las
originaron subrayando los aspectos microscépicos. En seguida discutimos el enfoque de la teoria
cinética mediante el cual se puede justificar su validez y daremos una derivacién breve que permite
extenderlas a estados que estin muy alejados del equilibrio local en gases diluidos. También
discutimos cémo usando las técnicas modernas de la mecénica estadistica se han llevado a cabo
intentos para probar su validez en estados que no necesariamente estin cercanos al estado de
equilibrio. Hacemos un intento en relacionar todo este trabajo con otro enfoque al problema basado
en la técnica conocida como la eliminacién adiabatica de variables rapidas. La conclusién principal
simplemente subraya el hecho de que, hasta hoy en dia, esta pregunta permanece esencialmente
abierta. Se presentan también algunos otros aspectos relevantes del problema.

PACS: 05.20.-y; 05.40.+j; 05.60.4+w; 05.70.Ln; 82.20.Mj

1. INTRODUCTION

The theory of phenomena occurring among non equilibrium states of many body systems
or the decay of a non equilibrium state to an equilibrium one is still an unfinished subject.
From a very general point of view, the dilute gas model described by the Boltzmann
equation valid for states as far from equilibrium as we wish has never been solved, for
realistic cases beyond the linear regime and response theory, which is valid for arbitrary
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hamiltonians has hardly overcome the linear threshhold; non-linear response is also a
rather incipient theory. In the linear regime, where the two best known approaches of non
equilibrium statistical physics overlap, the so called Onsager reciprocity relations (ORR)
play a very important role. In this paper we want to review the physical ideas behind
these relations and their possible extension to non-linear regimes in the light of rather
recent works.

To accomplish this goal we have structured this paper as follows: Sect. 2 is devoted to
review the main ideas behind the ORR within the context of linear irreversible thermo-
dynamics (LIT). Since this material is fully developed in the literature we shall restrain
ourselves in giving mathematical details. In Sect. 3 we will discuss some attempts that have
been made to generalize the ORR beyond the domain of LIT using the kinetic theoretical
model for a dilute gas. The surprising outcome of this analysis is that one actually proves
that the ORR are valid in a linear regime but far beyond local equilibrium states. Other
important consequences of these features are also pointed out. In Sect. 4 we discuss the
validity of ORR for arbitrary non equilibrium states using the ideas set forth by Hurley
and Garrod over ten years ago. More recent results are also related to work along these
lines carried out by other workers. Some concluding remarks are left for Sect. 5.

2. THE ORR AND LIT

It is a great coincidence that the writing of this paper happens precisely in the 90th
anniversary of Lars Onsager’s birth and slightly more than the 60" birthday of the famous
reciprocity relations first published in February of 1931. This work is therefore a modest
tribute to the thinking of a great man who may be considered without any doubt, the
father of modern irreversible thermodynamics.

For a review paper concerned with the enormous incidence that Onsager’s work has
had in theoretical chemistry nothing is better that to reproduce ad verbatim part of the
introduction of his master work in this field [1], to get a direct grasp of how he conceived
the physical meaning of reciprocity. One reads:

“When two or more irreversible transport processes (heat conduction, electrical con-
duction and diffusion) take place simultaneously in a thermodynamic system the processes
may interfere with each other. Thus an electric current in a circuit that consists of different
metallic conductors will in general cause evolution or absorption of heat at the junctions
(Peltier effect). Conversely, if the junctions are maintained at different temperatures an
electromotive force will usually appear in the circuit, the thermoelectric force: the flow of
heat has a tendency to carry the electricity along.

“In such cases one may naturally suspect reciprocal relations by analogy to the re-
ciprocal relations which connect forces and displacements in the equilibrium theory of
mechanics and in thermodynamics. Relations of this type have been proposed and dis-
cussed by many writers. The earliest of them all is due to W. Thomson,! it deals with
thermoelectric phenomena. We shall cite Thomson’s reciprocal relation in a simple form as

'W. Thomson (Lord Kelvin), Proc. Roy. Soc. Edinburgh 1854, p. 123, Collected Papers I, pp.
237-41.
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a symmetric condition for the relations which connect the forces with the velocities. The
electric current we shall call .J;, the heat flow Js. The current is driven by the electromotive
force, which we shall call X;. In corresponding units the “force” which drives the flow of
heat will be

1
Xy = —T grad T,

where T denotes the absolute temperature (Carnot). If the heat flow and the current were
completely independent we should have relations of the type

X1 =Ry,
X2 = Ry Js,

where R; is the electrical resistance and R; a “heat resistance”. However, since the two
processes interfere with each other we must use the more complicated phenomenological
relations

X1 = Riu1J1 + Ria s,
X2 = RynJ1 + Raa, Ja, (1)

Here Thomson’s contention is
Ri2 = Ra1. (2)

“Thomson arrived at this relation from thermodynamic reasoning, but he had to make
one additional assumption, namely: “The electromotive forces produced by inequalities
of temperature in circuit of different metals, and the thermal effects of electric current
circulating in it, are subject to the laws which would follow from the general principles
of the thermodynamic theory of heat if there were no conduction of heat from one part
of the circuit to another”. Thomson thought this assumption very plausible. Even so, he
cautiously considered his reciprocal relation (2) a conjecture, to be confirmed or refuted
by experiment, since it could not be derived entirely from fundamental principles known
at that time. At present Thomson's relation is generally accepted, because it has been
confirmed within the limits of error of the best measurements. As regards the theory,
the same relation has frequently been found as a by-product of investigations in the
electron theory of metals. However, Thomson’s relation has not been derived entirely from
recognized fundamental principles, nor is it known exactly which general laws of molecular
mechanics might be responsible for the success of Thomson’s peculiar hypothesis.”

Following this rationale, Onsager’s approach to the question of reciprocity was very
original. He first gave a full discission of mutual interaction of irreversible processes
namely, heat conduction in anisotropic bodies and its analogy with chemical reactions.
These examples have been widely discussed in the literature [3—6] so that we shall avoid
going into the details here. Nevertheless it is important to point out that after this work
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was understood an avalanche of similar applications was undertaken for a wide variety of
systems. The main outcome of these efforts was that Onsager’s reciprocity relations were
confirmed experimentally and their range of applicability was in many cases assessed. A
review of this works was performed several years ago by Miller [7]; more recently other
people [8] have contributed to broaden the class of systems that obey the reciprocity
relations.

But the most remarkable contribution of Onsager to this problem was the fact that he
actually derived the reciprocity relations from the basic laws of microphysics. And it is
this aspect of his work as well as its repercussions what we want to stress in this paper.
In his first contribution, [1] Onsager announced that he wanted to derive a whole class of
reciprocity relations using the microscopic reversibility assumption. This assumption is far
from being a trivial one as Casimir stressed many years later [4]. Indeed every student of
physics knows that the fundamental equations governing the motion of individual particles
in the absence of time and/or velocity dependent hamiltonians, are symmetric under
time reversal ({ — —t). This restriction was later removed by Onsager himself so to
include systems in which magnetic fields, Coriolis forces and similar effects are present [2].
Ignoring these cases for the time being, Onsager extended this fundamental property of
the equations of motion of microphysics to the set of macroscopic variables describing
the spontaneous fluctuations around the equilibrium state of a thermodynamic system.
This is not all. The equations of motion for the fluctuating variables, taken to be linear
in such variables are also taken to be the ones which describe the average behavior of
the fluctuations themselves. This leads to an apparent contradiction, noticed by Onsager
himself and also brought up by Casimir [4]. Yet, once the fundamental idea of Onsager is
taken as an assumption the rest of the proof follows at once [4,6]. To fully appreciate this
point we quote the master work once more:

“We shall comment on another question regarding the premises of the derivation, al-
though the substance of a satisfactory answer is known from a famous discussion between
Loschmidt and Boltzmann. We have assumed microscopic reversibility, and at the same
time we have assumed that the average decay of fluctuations will obey the ordinary laws of
heat conduction. Already an apparent contradiction occurs when we consider the simpler
case of heat conduction in one dimension. Let « be a displacement of heat & its average
value, then:

&= i—? =-Ka. (3)
Microscopic reversibility requires
a(r,a') = a(-r,a'). (4)
Clearly
a(r, ') = —a(-1,a')
and

&(0,a') = —a(-0,a') = 0.
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According to the ordinary laws for conduction of heat & decreases for positive 7 (if &/ > 0).
According to (4), then, & increases for negative 7 (average growth of fluctuations), and
@ = 0 for 7 = 0. It may appear somewhat startling that we apply (4), to fluctuations,
only for 7 > 0, and not for 7 < 0. Yet in this there is no logical contradiction —but such
a statement disappoints our expectation of continuity in nature. However, the objection
is removed when we recognize that (4) is only an approximate description of the process
of conduction, neglecting the time needed for acceleration of the heat flow. This time 7
is probably rather small, e.g. in gases it ought to be of the same order of magnitude as
the average time spent by a molecule between two collisions. For practical purposes the
time-lag can be neglected in all cases of heat conduction that are likely to be studied,
and this approximation is always involved in the formulation of laws like (4). Even the
differential form of these equations is justified, because we can usually choose a time At
such that

1 >>KAt>>KTO.

Then following t = 79, which is practically the same as t = 0, we have a time interval
At > 15 in which (by (4)) a and therefore da/dt are sensible constant. We may also
recall that the time needed for equalization of temperature in a body is proportional to
the square of its linear dimensions [, i.e.

In gases Ko should be of the order 12/A?, where A is the mean free path. The ordinary
laws for conduction on heat are therefore asymptotic laws for [ > A.”

The obvious consequence of Onsager’s analysis is that since he is restricting himself to
the study of fluctuations around the equilibrium state and the equations of motion that
describe the decay of the fluctuations are linear in the fluctuating variables, the theory is
expected to be valid only close to equilibrium. This is indeed the case and it is therefore
not surprising that the ORR are in fact the cornerstone of what is now known as linear
irreversible thermodynamics (LIT). This theory, as first conceived by Onsager, is quite
different in its basic ideas, although similar in the use of a common language, as the theory
afterwards proposed by L. Meixner in Germany and further developed by Prigogine and
de Donder in Belgium and de Groot, Mazur and Casimir in Holland.

Very few thermodynamicists have set back to think about the relationship between
these two approaches, which is neither obvious nor trivial [12,13] yet both use the ORR
which are the basic subject of this review. Moreover, in both theories although with
rather different mathematical statements, the so called local equilibrium assumption is
postulated. We shall not deal here with the subtleties of this concept, it has been done
in a recent paper [14], but it is important to stress that in LIT the validity of the ORR
is automatically linked to the postulate of local equilibrium. Since LIT has been justified
using the kinetic theoretical model of a dilute gas through the Chapman-Enskog solution
to the Boltzmann equation [15,16] and the time correlation function of linear response
theory, [17-19] where in each case the ORR relations are derived, a general feeling, if not
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a strong idea has prevailed, that the natural domain of validity of the ORR is determined
by the content of the local equilibrium assumption. Nevertheless in the past twenty years a
large amount of apparently unrelated work about non-equilibrium phenomena has thrown
results which clearly show that this is not the case. We shall turn our attention to these
facts in the following sections.

3. THE ORR BEYOND LOCAL EQUILIBRIUM

The kinetic derivation of the ORR relies on two basic assumptions. The first one is re-
lated to the linearization of Boltzmann’s equation by assuming that the single particle
distribution function for the dilute gas may be expanded in a power series of an adequate
parameter, Knudsen’s parameter, which is in a general way of speaking, a measure of the
spatial inhomgeneities in the system. The first term in this series leads to the hydrody-
namic regime for an ideal gas, the Euler fluid, the second term to the Navier-Stokes regime
and higher order terms to higher order in the gradients hydrodynamics [20]. When the
expansion is kept up to first order in the parameter and applied to a multicomponent mix-
ture the cross effects among several transport processes appear. The second assumption,
the one which really allows the presence of the hydrodynamic regime, states that the single
particle distribution is a time independent functional of the locally conserved variables.
For a multicomponent mixture these are the local concentrations, the local mass density,
the local (hydrodynamic) momentum and the local energy density through which the
temperature is introduced. This statement is the kinetic version of the local equilibrium
assumption [12,16]. A systematic computation of the different fluxes in the system aided
with the symmetry properties of the linearized collision kernel of the Boltzman equation
is enough to show the validity of Onsager’s relations [10]. In this sense they are intimately
connected with the local equilibrium assumption.

On the other hand the above scheme is not the only one suitable for solving Boltzmann’s
equation. In 1949 H. Grad in his work about the properties and solution to Boltzmann’s
equation [21] posed the following question: suppose that the gas has observable states
which require for their description more than the ordinary locally conserved densities,
mass, momentum and energy. Is there any way in which such solutions may be extracted
from the Boltzmann equation and the additional variables properly identified? The answer
came through the now well known Grad’s moments method. One expands the distribution
function in terms of a complete set of functions, namely, tensorial Hermite polynomials in
the velocity ¥ of a particle around a local Maxwellian distribution function. Recall that
the Boltzmann equation for f(7,,t) the single particle distribution function, is given by

of . of
E+U'5‘_J(ff)’ (5)

where J(f f) is the collision term whose explicit form is not needed here. One then writes
that [21]

FET1) = FOF 5/n,8,T) 3 ol H®, ©)
=0 :
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that [21]

o0
— — - = — 1 n)r= n
73,8 = fOF5/n,8,T) Y a7 tyH, (6)

n=0

where H(n) is a tensor with n subscripts as well as a polynomial of the n** degree. The

coefficients a( ™) are also tensors of order n and a summation over i is implied. f(® is a
local Ma.xwelha.n namely,

T NG m 3 1 m(v — u(7,t))
f( )(r,'l}/n,u,T)—n(m) Xp{ 2w}, (7)

where n(7,t) is the local density, 4(7,t) the hydrodynamic velocity, T(7,t) the local tem-
perature, kg is Boltzmann’s constant and m the mass of the particles.
The first few Hermite polynomials are

HO =1, 'H,(-l) =V,
(2) (3) ®
M =ViVi—&j, M, =ViViVi — (Vibjs + Vibir + Vicbij),

and so on.
The coefficients a( )(r t) in Eq. (6), which now play the role of the additional variables
required to specify the system’s states are given by

M= [ fr ™) (7 7,
60 =5 [ 165,00 @) d o)

where p = mn(7,t). When one now insterts the expansion given in Eq. (6) into the

Boltzmann equation (5) and equates coefficients of ’HE"), he arrives to a set (infinite) of
coupled differential equations which we shall not bother to write down. The important
feature of these equations is that their structure has the general form

G
at

+ linear terms aE"),a(n+1) - + bilinear terms a;

(n) (n+1) A+

a;

grad p

linear terms aE ) gradd » = coefficient x Z { H(’)H(‘)} + bilinear collision terms,
grad T i

where {H(*)H(9)} is the well known collision bracket of the two functions inside the brack-

ets [21,22]. From the infinite sequence of equations, too complicated to be examined

in detail, one now introduces two assumptions. The first one consists in dropping all

the bilinear terms including the products of aE") times the gradients of the conserved
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variables. The resulting equations are now linear in the variables aS") and referred to as
the linearized Grad equations. Their explicit form is not needed here so that the reader
interested in these details may refer to the literature [21,23]. The second assumption is
that one requires a truncation procedure to obtain a closed set of equations by setting all
coefficients from a given n on equal to zero. Here this procedure will not be required.

In order to relate this problem with irreversible thermodynamics one now restores to
the usual procedure. If one takes the Boltzmann equation (5) multiplies both sides by
In f and integrates over velocity space, after a slight rearrangement of the terms winds
up with an entropy balance type equation [10],

9(ps)

7+div.f,=a, (10)
where
pt =~ / (Inf—-1)fdg (11a)
Jy = —kg /(mf —1)f&dé, (11b)
o=—ks /(m FI(ff)dE> 0, (11c)

and ¢= ¥ — d(r,t) is the chaotic velocity.

We must emphasize here that these steps are merely formal. The last inequality,
Eq. (11c) is a consequence of the H theorem. As long as f is not expressed in terms
of the thermodynamic variables describing the states of the system Egs. (1la—c) are
absolutely meaningless. Indeed in LIT their physical meaning becomes evident only after
f is expressed in terms of the locally conserved densities through the local equilibrium
assumption. Thus the question arises about what form of f should we use. In earlier
work [24,25] we examined in detail how these results are related to irreversible thermody-
namics when 13 and 26 moments are taken as the additional states variables. In fact for
26 moments we showed [24] the structure of the entropy density, which is a quadratic form
of the moments and further it is a positive definite function. Using a linearized form of
this expression and following Onsager’s procedure one may define forces and fluxes, find
a relationship between them and then show that the proportionality coefficients satisfy
the reciprocity condition. Here we shall do it in general [26], that is we shall keep the
infinite set of moments asn)(f’, t) as additional state variables. Therefore restating the
above we are thinking of a dilute monoatomic gas whose states are characterized by

a set G defined as G = {p(7,t), 4(7,t), T(T, t),a,-(f",t),...,asm)(i’,t)}. Clearly we are far
beyond local equilibrium although in a linear regime: the aS") ’s satisfy the linearized Grad
equations and further in the evaluation of all quantities appearing in Eq. (11a—c) In f will
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be developed in a power series expansion as follows. Since,

e i {1 +Z$a£"’(f',tm£”w)}, (12)

r=1

we take the full second term within brackets as a perturbation around f(), call it ¢ and
SO

Inf=Inf®+In(1+¢)=nf®+¢>+... (13)

keeping terms up to second order in ¢. Therefore inserting Eq. (13) into Egs. (11a—) we
get that

nkg x<— 1 (r = K-
ps = psy — TB ﬁaf- )(r,t)a( )('r,t), (14)

r=]1

where psg is the local entropy density for the gas. Also,

ko [ kaT\? &
== (57 ) Ll 45000}, (15
r=1

g; being the j** component of the heat flux and 6; Grad’s short notation for tensorial
homogeneity [27]. Finally

_ o L it st
o =n’kg Z_:l % % {'H( ), H( )} >0 (16)

the entropy production being always positive definite since for r = s the collision brack-
ets are non negative and for r # s one can show that the resulting combinations form
a semipositive quadratic form [26]. These results call for one’s attention. In Eqgs. (14)
and (15) one gets as the first terms those appearing in LIT as a consequence of the local
equilibrium assumption. The second terms are (negative!) corrections due to the presence

of the non-conserved variables aS")(F, t). Indeed one can prove that these variables obey
relaxation type equations with positive relaxation times whose values depend only on
collision brackets so they may be evaluated for different intermolecular potentials. All
these details are fully discussed in Ref. [26]. We now show that in this linearized version
of extended non-equilibrium thermodynamics Onsager’s relations still hold true. Using
Onsager’s definition, the generalized forces are given by

r) _ a(ps) nkg (r)/=
X( ) = [_] = —;!—al- (T,t), (17)
a(‘)#a("‘)
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whence
[= o]
=y Jext), (20)
s=1

Moreover, using Eq. (17) the fluxes can be also rewritten as

0 =~ L (340 3 x)
J kg;{%, S X, (21)
or finally,
J® = E L) x () (22)
r=1

where the “generalized transport coefficients” are given by kg 1 {’HE'), H) } Since collision
brackets are symmetric under the exchange of indices [24] {H("), H(*)} = {H() H("} it
follows that the coefficients L(")(*) obey the reciprocity property. This is a rather rewarding
result since we find that there is a linearized version of non-equilibrium thermodynamics
valid as far as we please from the local equilibrium state for which the ORR relations
are still valid. This last phrase requires clarification since by taking an infinite set of
moments we have extended the thermodynamic state space to include an infinite number
of non-conserved local variables (N, #,T; a® (7, t),...,al™)(7,t)). Indeed if we keep the
whole set {a(!)(7,t)} we may loosely say that we are as far from local equilibrium as the
model allows and any truncation in this set of variables will clearly restrict the deviations
from local equilibrium. In any case, the time evolution equations of these variables has
been taken as linear. This is a strong restriction, but within it the above results are valid.
The full consequences of this result from a phenomenological point of view remain to be
explored in the future [26].

It is important to remark that Eqs. (15)-(22) are a consequence of two approximations,
the linearization of the macroscopic equations for the moments as explained in the last
paragraph of p. 676 and the expansion of Inf in power series of ¢ as indicated in Eq. (13).
In this sense they can be easily understood as a straightforward generalization of the
kinetic basis of extended irreversible thermodynamics that has been previously discussed
in other reviews about the subject [14]. However, the procedure itself throws no light
whatsoever on the old problem raised about ten years ago concerning the compatibility
between higher order hydrodynamics and the local equilibrium assumption [20]. This
question remains unsolved and clearly pertains to a non-equilibrium theory. To finish
with this section it is pertinent to remark that neither the forces as given in Eq. (17) nor
the fluxes given in Eq. (19) have the conventional form. In some cases they do reduce to
combinations of the heat flux and the stress tensor [26]. Such cases are related to the well
known Navier-Stokes and Burnett regimes of hydrodynamics [21].
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paragraph of p. 676 and the expansion of Inf in power series of ¢ as indicated in Eq. (13).
In this sense they can be easily understood as a straightforward generalization of the
kinetic basis of extended irreversible thermodynamics that has been previously discussed
in other reviews about the subject [14]. However, the procedure itself throws no light
whatsoever on the old problem raised about ten years ago concerning the compatibility
between higher order hydrodynamics and the local equilibrium assumption [20]. This
question remains unsolved and clearly pertains to a non-equilibrium theory. To finish
with this section it is pertinent to remark that neither the forces as given in Eq. (17) nor
the fluxes given in Eq. (19) have the conventional form. In some cases they do reduce to
combinations of the heat flux and the stress tensor [26]. Such cases are related to the well
known Navier-Stokes and Burnett regimes of hydrodynamics [21].

4. ORR FROM THE BASIC LAWS OF MICROPHYSICS

In this section we wish to review a number of efforts that have been made to better
understand the linear regression of fluctuations, which as mentioned in Sect. 2, is the
basic assumption from which Onsager derived his results. Moreover, in this quest the
natural question arises as to whether or not the reciprocal relations are strictly valid in
linear theories of non-equilibrium processes. At this stage it is also important to point out
that from the point of view of stochastic processes this extension has also been consid-
ered after Onsager and Machlup [28] in the middle fifties took the initial step of linking
the spontaneous decay of fluctuations with the theory of stationary gaussian Markoff
processes. We shall come back to this point in Sect. 5.

Here the main question to be considered is the condition under which the ORR may
be derived either from the classical or quantum Liouville equations. Since these equations
are invariant under time reversal for conservative systems it is therefore clear that further
assumptions have to be introduced to first obtain irreversible equations governing the
time evolution of the system and use them as a starting point of the whole analysis. It is
precisely this transition from reversibility to irreversibility the feature that has hampered
substantial progress in the field of irreversible statistical mechanics. Further, since as
yet no unique answer exists to cope with this question we have to examine many of
its different approaches. Consider a system whose states are described by the numerical
values of a set of phase space functions {A(z) = @}, where z denotes the position of the
system in phase space. The statistical description of the system is then contained in a
certain probability distribution function g(@, t) dd. Using the basic principles of statistical
mechanics and with the aid of the projection operator technique [29,30], Zwanzig derived
in 1961 [31] and exact kinetic equation for g(&,t). The nature, structure and implications
of this result have been exhaustively discussed by many people in the two decades that
followed the year of its derivation [32-36]. Here we only want to stress the fact that
such an equation is non local in @ space and non local in time. Indeed if the vector
d is thought of as one whose components are stochastic variables, as Green pioneered
in 1952 [37], the equation describes a non linear non markoffian process. In the linear
markoffian approximation [31,36] the first moments of g(d,t), which we shall call & play
the role of the hydrodynamic variables in the sense that they obey transport equations
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typical of LIT, namely,

da(t)

dt 2 / s Kjk(s)Fi(a(t)), (23)
& 0

where F}, is the k! thermodynamical force, K. jk(s) a memory function, here instantaneous
which depends only on those a’s which are constants of the motion such that K;; = Kj;
meaning that they satisfy the ORR. These results were later extended by Nettleton [38]
to the case of anti-reciprocity by incorporating the velocities Aj(a:) of the phase space
functions into the set of observables. Indeed the observables of the system are now provided
by the set @ = (A) and ¢ = (A) where ( ) denotes an appropriate ensemble average. The
reader is referred to the original source for further details [39,40].

After the work of Zwanzig and Nettleton which gives an improvement over the original
derivation of the ORR, a great deal of effort was made in understanding the physical
aspects of the general kinetic equation for g(d,t) rather than searching for extensions of
the ORR themselves beyond the linear markoffian regime. The next important step came
in 1982 when Hurley and Garrod [41,4?] showed how the ORR could be extended to
those non-equilibrium states in which the relationship between forces and fluxes ceases to
be linear. Previous attempts along these lines had been analyzed earlier, mainly by van
Kampen, [43] from a phenomenological point of view, but none from a microscopic basis.
The analysis set forth by Hurley and Garrod was mainly a mathematical one, a matrix P
which may in general be a function of time and of the variables describing the state of the
system is shown to satisfy a mathematical identity which leads to an equation that may
be considered a generalization of the ORR. In a later paper [4] the physical interpretation
of the matrix P was given by proving that it is uniquely determined by the correlation
function of the dynamical variables { A(z)}. This was rather easily verified for the case of
linear markoffian and non-markoffian processes. A characteristic feature of all this work is
that the correlation matrix C(t) involved in the analysis is taken to be an average of the
pertinent phase space functions A;(z) with an equilibrium distribution function so that

0(0) = [ dzo pufan) Ao Aa), (24)

where xg is the phase space point at t = 0 and z; at time ¢t and p.,(z¢) the equilibrium
probability density at the initial time. This restriction in a way implies that all the results
obtained are not valid too far away from equilibrium, a fact that seems to be reinforced
by the results of Ref. [44] and other work. Nevertheless it was later proved that the
Hurley-Garrod ansatz remains valid even for non-linear markoffian processes and moreover
that they equally hold whenever the initial reference state of the system under study is an
arbitrary non-equilibrium state, whether steady or not [45]. The general features of such
an arbitrariness are qualitatively understood but much more work is required to clarify
the full domain of validity of such results as well as their relationship to others valid in the
nonlinear regimen [39,40]. The point we want to stress here is that the validity of ORR is
no longer restricted to LIT, some of its basic assumptions such as the local equilibrium
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assumption or the linear relationship between forces and fluxes may be removed and the
ORR will still hold true albeit with a much more sophisticated form. How are these results
embedded in a corresponding more general macroscopic theory than LIT, is still an open
question [26,39).

Before concluding this section a different approach to the validity of the ORR merits
full attention. As we mentioned in Sect. 2 one of the first mesoscopic demonstrations of
the validity of the whole scheme of LIT, including the symmetric property of the transport
coefficients matrix came from the Chapman-Enskog solution of the Boltzmann equation
for a multicomponent mixture of dilute gases [10]. This validity, as it is well known, is
restricted to the first order in the gradients approximation, the so called Navier Stokes
Fourier regime. This consistency can be also obtained by a purely phenomenological and
very elegant argument which was published about twelve years ago [46]. However, if one
goes to the second or higher order in the gradients approximation, Burnett, super Burnett
and so on, the whole scheme breaks down, the entropy becomes gradient dependent and as
first noticed by MacLennan in 1974 [47,48] the transport coefficient matrix for the Burnett
approximation fails to hold its symmetric character. His analysis also explained the reason
for this failure and also provided a method to generalize the ORR. The highlights of his
ideas as well as other relevant thoughts about this problem may be found in his recent
book on the subject [49]. His work has been recently extended to the case in which a fluid
is in non-equilibrium steady state [48] and as pointed out before these results seem to be
particular cases of those obtained in Ref. [45]. A comment is now relevant. We said in
Sect. 3 that the ORR relations are valid well beyond the local equilibrium state for the case
of the dilute gas. Since Grad’s thirteen moment solution leads to the Burnett equations
and we’ve found that even for higher orders the ORR are valid under the very specific
definitions of forces and fluxes introduced by Onsager, it remains to show if MacLennan’s
generalized version of the reciprocity relations are equivalent to those arrived at in Sect. 3.

On the other hand a very thorough study of the systematic elimination of fast variables
in linear many body systems was undertaken by Titulaer and collaborators during the
last decade [50]. The gist of the method lies in the fact that in the transition from a
mesoscopic to a macroscopic regime any N body system contains quantities evolving
on different time scales. After a certain characteristic time say 7. those variables whose
change occurs for times less that 7, cease to be independent variables, and become time
independent functional of the slow variables [51]. A typical example is provided by the
single particle distribution function in a dilute gas; after many collisions have occurred it
ceases to be an independent variable for ¢ > 7, the mean free collision time and becomes
a time independent functional of the locally conserved densities, mass, momentum and
energy. This property, as we said before, lies at the core of the Chapman-Enskog method
used in solving kinetic equations [10,22,52]. When boundaries are present in the system
and near the walls the gradients may be steep, the Chapman-Enskog method does not
hold and consequently the ORR may be violated. Indeed, it may then happen that there is
a significant difference in the asymptotic values of the slow variables with respect to their
initial value, which is usually referred to as the initial slip. this initial slip is responsible for
the violation of the ORR in the Burnett equations [48,53] and in other phenomena [49,54].
Since the redefinition of the thermodynamic forces is essential in all this work to restore
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the validity of the ORR one ought to expect that they are somewhat related to the more
sophisticated microscopic methods using projection operator techniques.

5. CONCLUDING REMARKS

Some of the essential points touched in this review call for special attention. The first and
most important one is that the reader must appreciate that the domain of applicability of
the ORR superseeds in many ways the scope of LIT. At the same time one favors a word
of caution. We have seen that there exist many independent ways of extracting the ORR,
namely, microscopic methods which so far have relied upon sophisticated mathematical
techniques such as projection operator methods, correlation function analysis and others.
More mesoscopic methods mainly based either on the moments solution or the Chapman-
Enskog algorithm treatment of the Boltzmann equation in the former case and of other
systems besides the dilute gas in the latter one, have also shown that the reciprocity
property is obeyed beyond the local equilibrium state although in linear phenomena.
Among these methods it is pertinent to mention a novel approach to the problem of
irreversible processes formulated by J. Keizer which is very well summarized in a recent
monograph [55]. There the reader may find all the relevant details of his work as well
as the role played by Onsager’s reciprocity relations in various aspects of irreversible
phenomena. Last, but not least is the extension of Onsager-Machlup’s method [28] dealing
with fluctuation phenomena as stochastic processes which was later generalized to non
linear processes by Green et al. [56,57). Yet up to date all these efforts appear to be
unrelated to each other and moreover contrary to what occurred in the linear regime we
seem to lack of experiments which teach us how appropriate all these results are. Thus
we may conclude this review by saying that beyond the linear regime the validity of the
ORR is a promising idea but much more work is required to give a unified theoretical and
experimental framework of their final form.
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