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ABSTRACT. In Ref. [21] the evolution of ensembles of states for dynamical systems (DS) with
states in a probability space is studied. Enlarging some results in Ref. [21] to a very common
measure spaces the above study is generalized for DSs with states in those measure spaces. This
enlargement uncovers an indecomposability subregion (AA) of the space of states, for which each
orbit of states of the system has all its states in AA from some time on. It is obtained that
each ensemble of states, in its natural evolution, evolves in ergodic sense (convergence d la weak
Cesaro) to the microcanonical ensemble (scattered by all AA). A particular but central kind of that
evolution is the irreversible one in coarse-grained sense (weak convergence) to the microcanonical
ensemble; it is obtained that such evolution holds if and only if the DS is mixing for measure
spaces. For this kind of DS predictability [24] is impossible beyond a certain time, however the
only forecasting in coarse-grained sense about the system’s future which can be made is that of a
statistical nature.

RESUMEN. En la Ref. [21] se analiza la evolucién de colectivos de estados para sistemas dindmicos
(SD) con estados en un espacio de probabilidad. Extendiendo a espacios de medida algunos
resultados en la Ref. [21], en el presente articulo generalizamos ese analisis a colectivos de estados
para SD con estados en espacios de medida muy comunes. Nuestra extensién revela una subregién
(AA) indescomponible, del espacio de estados, en la cual cada érbita a partir de cierto tiempo
tiene todos sus estados en AA. Se obtiene que en su evolucién natural cada colectivo de estados
tiende hacia el colectivo microcanénico (distribuido en AA) en forma ergédica (convergencia a la
Cesaro débil). Un tipo particular pero importante de esta evolucién es la evolucién irreversible en
grano grueso hacia el colectivo microcanénico; se obtiene que esta evolucién vale si y sélo si el
SD es mezclante para espacios de medida. Para esta clase de SD la prediccién [24] es imposible
mas alld de cierto tiempo, sin embargo los iinicos pronésticos en grano grueso que se pueden hacer
sobre el futuro del sistema son de naturaleza estadistica.

PACS: 05.45.4b; 05.20.-y; 02.50.+s

1. INTRODUCTION AND CENTRAL RESULTS

Let us consider a system with states in a space X and with motion law given by the
mapping S: X — X, such that for each initial state z in X the successive states of our
system at time n = 1,2,3,... are S'z = Sz,S*cr = S(Sz),S%r = S(S%x),...; hence,
in its natural motion the system deterministically travels the orbit of states Og(z) =
{z, Sz, S%z,...}. Similarly, for each ensemble of initial states z;, z2, ... we obtain another
ensemble of states S™x;, S™z,,... for each time n = 1,2,...; thus, the ensemble of initial
states is transforming itself into another ensembles as time goes on, n = 0,1, 2,...; i.e., the
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initial ensemble of states evolves in a natural form as time proceeds. The aim of this paper
is to analyze this natural evolution for certain kind of initial ensembles of states in X.

The natural evolution of ensembles has been studied since several years ago, but these
studies have been mainly concentrated on statistical mechanics, quantum mechanics and
stochastic processes; however this analysis has been extended recently to a great variety
of natural and mathematical systems. Among these dissimilar physical and mathematical
systems (so far analyzed) we mention for future illustrations or references the following:
the Maxwell-Boltzmann statistical mechanics [16] as well as the Einstein-Gibbs statistical
mechanics [4,11]; a system of d independent and autonomous oscillators with incommen-
surable frequencies [3,21]; the thermodynamics out of equilibrium (22,29]; the chaotic
advection [2]; in stochastic processes the weak convergence of probability measures [7,30]
as well as the Markov chains [6,14,34]; several mappings on regions of IR"™ into itself with
chaotic orbits like the logistic, the shifts, the baker’s, etc. Many other systems can be
found in Rel. [3,5,23,35].

In the framework of dynamical systems the above analysis has been made in the beau-
tiful book by Lasota and Mackey [21], although it is aimed on those ensembles distributed
by probability density functions with respect to probability measures. Using several ideas
and extending some results in Ref. [21], we extend in the present article such analysis to
ensembles distributed by probability density functions (PDF) with respect to measures.

With the aim of presenting a panoramic view of the content of this paper we will be
more explicit. The fundamental elements of a dynamical system are: 1. A space X of all the
states a system can take (X may be: the phase space in the Maxwell-Boltzman statistical
mechanics, a surface of constant energy in the Einstein-Gibbs statistical mechanics; the
phase space of a system of d oscillators; the space of positions in Aref’s model of chaotic
advection or the space of trajectories in a Markov chain). 2. The basic element through
which the statistical regularities of the ensembles are originated is an extensive variable
p; we will consider those ensembles which are sequences of states distributed on X by
probability density functions with respect to p (u-PDF); p may be the length, area,
volume,. . . of regions of X = R™ depending on m = 1,2,3,...; or p may be a probability
measure, as in Markov chains or in weak converge of probability measures, i.e. u measures
something of each element in a collection ¥ of subsets of X. 3. As it was explained at
the beginning, a mapping S that maps points in X into points in X gives a motion law
for discret times. A mapping like this may be found in a Hamiltonian system where X is
a surface of constant energy and for each z in X, S is defined as Sz = z(1), where z(t)
is the unique trajectory of the system such that z(0) = z [18]; in the model of chaotic
advection, where X is the space of positions, the mapping S is constructed through the
Aref law of positions [2] in a similar way as before; in a shift S of Markov chain, where X
is the space of all trajectories of the chain. X, ¥, p and S are the fundamental elements
of a dynamical system (DS) which will be denoted by the symbol (X, X, 4, S), and will
be the framework of all the following.

The fundamental relations among the elements of our DS are conditioned by the as-
sumption that for each ensemble x1,z3,... of states distributed on X by a u-DPF f, its
transformed ensemble Sz, Sz, ... of states is distributed on X by a u-DPF, Pf. And this
fact is obtained from the hypotheses of Th. 2.1, which are very natural, as it can be seen
in Sect. 4. Our extension to measures allow us to uncover (as a consequence of Th. 2.1)
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a peculiar region of X with the property that for almost each state z there is a time
n = n(z), such that all the states S™x, S™*'z,... are in that region; such region is called
absorbing attractor, AA (but it is not strange attractor, Sect. 3). Therefore each ensemble
in its natural evolution flows into the AA. Moreover, the orbit Ogs(S™z) happens to be
quasi-ergodic in the AA. In the Aref’s model of chaotic advection the AA is computed
numerically; when some parameters are large (1 and t, see Ref. [2]) the final configuration
of advected particles, i. e. the AA, is clearly observed in an extended region of the phase
space. In a Markov shift constructed from a Markov chain having a finite number of
states [6,34] with a unique irreducible closed set C, the resulting AA of this dynamical
system is the set of all those trajectories (s, 81,...) such that the s, are in C for all but
a finite number of values of n. In Sect. 3 is shown the AA of a relatively simple dynamical
system.

The AA is the region where the unique stationary u-DPF f,(i.e. Pf, = f.) takes
positive values, and it is denoted by (f, > 0). From the point of view of ensembles
the equality Pf, = f, means that for each ensemble z},z3,... distributed on (f, > 0)
by f. each of its transformed ensembles S™z], S"z3,...,n = 1,2,..., is distributed on
(f« > 0) by f.; all those ensembles have the same statistical properties. Thus, each
ensemble distributed by f, is a microcanonical one.

An ensemble in its natural evolution flows into (f. > 0); in Sect. 4 it this behaviour
is analyzed in terms of u-PDFs. If an ensemble is distributed on X by the u-PDF f,
then the sequence of transformed ensembles has the sequences of u-PDF’s Pf, P%f,....
In Th. 4.1, extension of part b) of Th. 4.4.1 in Ref. [21], that behaviour is characterized
by the convergence of the sequence P™f to f, d la weak Cesaro. That behaviour is very
clear in the system of oscillators [21,25] and in the Ehrenfest chain [14]. (Apparently a
similar behaviour happens in quantum billiards [36]).

We face from our framework the natural question that arises in statistical mechanics
and in stochastic processes (Markov chains, weak convergence of probability measures,
etc.): When does an ensemble of states in its natural evolution approach irreversibly to
equilibrium? This is analyzed in Sect. 4 and it is obtained that the approach to equilib-
rium happens for every u-PDF if and only if the DS (X, X, u, S) is generalized mixing,
Th. 4.1. Among the particular systems where the approach to equilibrium happens are
Einstein-Gibbs statistical mechanics [23,28], Markov chains with irreducible and aperiodic
probability transition matrices [6,14,34]. In the Aref’s model it is observed experimentally.
For several of the popular mappings such as the logistic, the unidirectional shifts, the
baker’s, etc. this approach to equilibrium also results [3,21,22].

A property of the generalized mixing DSs that is physically intuitive is dispersivity. This
property is derived in Th. 5.2 and its corollary (enlargement of that for metric spaces of
Erber et al. [13]): let a region A with u(A) > 0; then, under iterated applications of S the
points in A tend to scatter on (f, > 0). A disturbing consequence of this property is the
unpredictability in coarse-grained sense: from the knowledge that the system starts its
motion on some initial conditions in A, no matter how small x(A) > 0 is, it is impossible
to predict in what subregion of (f. > 0) will the state of the system be at each time
n after certain time ng = ng(A). However, we are not helpless to face that randomness
because a law of large numbers holds: if the system starts its motion from A N times and
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Np(B) is the number of times that the system is in region B n time units latter, n > ng,
then Np(B) —n—oo [ fadp; and therefore, if N is large, then Nn(B) &~ N [, f. dp.

2. ABSORBING ATTRACTORS

Our fundamental mathematical tools will be a measure space (X, X, 4) and a motion law
given by a mapping 5: X — X; these together constitute a dynamical system, which
will be denoted by (X, X, u, S) or shortly by (g, S). When that measure space is o-finite
and that mapping is E-measurable and p-nonsingular (symbols and definitions are in the
Appendix or in Ref. [21]) our dynamical system will be called fundamental, and shortly
written by FDS. P = P(u,S) will be the Frobenius-Perron operator of the FDS (u, S).
A in ¥ is S-invariant if S™'!4 = A. A dynamical system will be called G. ergodic (G.

= generalized) if A being S- mvarla.nt then either A = ¢ or A = X. With all these
elements we have the following slight enlargement of Th. 4.4.1 in Ref. [21] which will be
fundamental from now on.

Theorem 2.1. [27]. Let (X, X, pu, S) be a FDS with at least one P-stationary density. Then,
(1, S) is G. ergodic < P has a unique stationary density.

Some definitions are needed previously to the statement of another fundamental the-
orem: for a real function f defined on X the symbol (f > 0) will mean the set {z €
X; f(z) > 0}; with the unique P-stationary density function f, we construct the proba-
bility measure p, defined on ¥ as u.(B) = fB fvdp for each B in X; as u, is absolutely
continuous with respect to u, we can write it shortly as du. = f. dp and it is the unique
u-absolutely continuous probability measure.

Theorem 2.2. Let (X, X, u,S) be a FDS with a unique P-stationary density function f,.
Let B in ¥ such that B C (f. > 0) and p.(B) > 0. Then the following statements are
true:

i) X = ﬂn>1 Uk>n S~%B, or with the usual probability notation,
X = (STB, i.0.);

11) or shortly

X= US"‘B

k>n
for every integer n > 0.

A first consequence of Th. 2.2 is the following: since (f > 0) C S™(Pf > 0) for each
f nonnegative p-a.s. in Ly(p), [21], we have (f. > 0) € S~!(f. > 0); furthermore

(o8 Lhslic..c8thsil)c
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Now, since p.(f, > 0) = f(foo) fedp = 1, applying Th. 2.2 we obtain that X =
k>0 S7¥(f« > 0). This expression means that for p-a.e. z in X, z € Ul 55 2e0),
and it also means that there exists an n such that z € S™(f, > 0) or S™z € (f, > 0). This
last belonging means that the orbit Og(z) has entered the set (f. > 0); and S™z, S™*!z, . ..
belong to (fx > 0) because of the previous chain of contentions. And if state y is in (f, > 0)
then, Og(y) never goes out of (f, > 0); that is, Os(y) C (f. > 0). All these properties
are the reasons for calling the set (f. > 0) absorbing attractor.

Another relevant consequence of Th. 2.2 is that each orbit that enters the absorbing
attractor visits each subset B of (f, > 0) an infinite number of times if 1 > p.(B) > 0;

this is a consequence ofkapp]ying Th. 2.2 to the se’;r,s B and B¢, since 1 > p,(B€) > 0 too;

1 — i = —EBE -a.e. i 3 n
since B = ngokgnBS B and B = ngokLZJnBS B¢, for py-a.e. ¢ in B,S™x € B for a
infinite number of values of n, and S™z € B for an infinite number of values of m, then
the orbit Os(x) enters and leaves an infinite number of times the set B. Then the set B
is an attractor but not an absorbing one.

Let us note that this last consequence, considered from another point of view is just
Poincare’s recurrence theorem in the subspace (f. > 0) with measure y, and mapping S:
the set of all those points belonging to B (with p.(B) > 0) that always return to B after
a finite number of applications of S, (| |J BS~FkB, is equal to B, modulo g,.

n>0k>n

The proof of Th. 2.2 is quite simple: nngo Uk:_,n S~kB is an S-invariant set; since

p(B) > 0 (if p(B) is zero, then pu,(B) would be zero since y, < ), then

w1 UJs™*B)>0
n20k2>n
but the pair (i, S) is G. ergodic by Th. 2.1, so that
X = ﬂ U S *B.
n>0k>n

Moreover, since

Us*BoJs™*B

k>m n20k>n

for each m, then

Xz Js*s.

3. STATISTICAL REGULARITIES OF THE ORBITS’ ELEMENTS

In order to establish the statistical regularities of the elements of almost each orbit, in
Th. 2.2’s framework, we must show that the mapping S preserves probability measure
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ity and it is ergodic, i.e., that the dynamical system (X, X, u,S) is ergodic. (See the
Appendix for a proof). Since u.(X — ((f« > 0)) = 0, the dynamical system ((f. >
0), X(fu > 0), its, S) (that in fact is the same as the one before) is ergodic, too.

We have seen that for each subset B of (f, > 0) with 0 < u.(B) < 1, for p-a.e. z in
X ,the orbit Og(z ) enters and leaves the set B an infinite number of times. Moreover, for
each set B in I, Ek i xB(S*z) — p+(B) follows for p-a.e. z in X, as a consequence
of an enlargement of a part of BirkhofP’s ergodic theorem that will be seen in the proof of
the following theorem. But the natural question is: if a system begins its motion on initial
conditions z, will it visit each set B an infinite number of times and its asymptotic fraction
of time of visits to B will be p.(B)" It must be noted that Birkhoff’s ergodic theorem
says that given a set B, then 1 Zk Zo XB(S*2) — pu(B) for p.-ae. z in (fo > 0); ie.
that the set of points  such that thls limit is true depends on the set B; that is to say:
if weput B={z e (fu>0);157, > xB(Skx) — ft+(B)}, then B = (f+ > 0). To these
questions there is an answer when Xisa certam "kind of manifold in R (8], but we only
have a partial answer in Th. 2.2’s framework:

Theorem 3.1. Let (X,X, u,S) be a FDS with a unique P-stationary density function f.
(then (1, S) is G. ergodic). If the o-field X(f, > 0) is separable (that is, if there exists a
family of subsets B = {By, Ba,...} of £ such that o(B8) = X(f« > 0)), then for p- a.e. z
in X

n-=1

g
1Y (st By = [ foaw
k=0 B

for each B; in 3.

(See the Appendix for a proof).

It would certainly be very useful to enlarge this result to every set in X, but even the
above version allows us to conclude: for a system with a motion law S in a space X (with
the above characteristics) and p-almost every initial conditions z in X,

i) the system’s orbit Og(x) will visit each set B; an infinite number of times;

ii) the system’s orbit Os(z) will visit each B; the asymptotic proportion of time p.(B;),
and
iii) the statistical distribution of the elements of almost each orbit is given by the prob-

ability measure p, on the family 8 = {B, By, ...}; that is, the orbit’s elements are
distributed on the absorbing attractor (f, > 0) with a probability law u, on S.

As an illustrative application, let the measure space be ([0, 2], B[0,2], ) where B|0, 2]
is the o-field of Borel sets in the interval [0, 2] and ¢ is the Lebesgue measure defined on
that o-field; consider the mapping S:[0,2] — [0, 2] such that

dz(l1—-z) if0<z<1
Sz =
-2z+4 ifl<zx<2
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the measure space and S satisfy the Th. 2.2’s hypotheses and the P(¢,S)-stationary
density function results to be

1
— f0<z<1
fu(z) = W\/m(lma:)
0 f0<z<2;

the absorbing attractor results to be (f, > 0) = [0,1], where the mapping S is mixing
with respect to measure

dx
T/ z(1 —x),

by Th. 3.1’s conclusion the statistical distribution of the elements of Og(z), for f-a.e. =
in [0,2] is given by

ps(dz) =

1 k dx
=Y xmi(S*z) o

L} = " Iy T/z(1 - 2)

where the B;s are the intervals with rational extremes contained in the interval [0,1]. We
have used the space X = [0,2] to remark the role of [0,1] as the absorbing attractor. If
[0,1] would be taken as the space X, that role would not be apparent.

On the other hand, the dynamical system (p.,S) can be mixing, exact, Kolmogorov
or Bernoulli but the chaotic characteristics arise when (p.,.S) is mixing (since when this
happens the orbits have a certain kind of sensitive dependence on the initial conditions
produced by a kind of dispersivity [13] as it will be seen in Sect. 4); when (., S) is
at least mixing, absorbing attractors and strange attractors [5,8,10,31,33] may have the
same properties from a randomness point of view, but not from a topological one. In the
case of an absorbing attractor the topological properties are irrelevant being important
only the measurable properties; but in strange attractors the topological properties are
essential. On the other hand, if the space X is a manifold in R", the absorbing attractor
(f« > 0) never has a dlmensmn less than that of X (if (f, > 0) is contained in a manifold
of dimension less than that of X, then we have that u(f, > 0) = 0, and this would be
contrary to the fact that f, is a y—density function); however, the dimension of a strange
attractor is less than that of the manifold where it is immersed.

4. EVOLUTION OF ENSEMBLES

In the framework of a FDS(X, X, 1, S), whose Frobenius-Perron operator P has a unique
stationary density function f,, we are going to analyze how the ensembles obtained
by iterated applications of S to an initial ensemble with u-probability density function
evolve. Let us consider an ensemble of state z1,s,... in X distributed by a p-probability
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density function f (by this we mean that the asymptotic fraction of members of the
ensemble in every region B of space X is fodp = pyg(B), for B in X, [22,28]; that is,

N
N 2izg XB(%i) it [ fdp = pg(B)).
Consider now the transformed ensemble of states Sz;,Szs,..., in X; as xp(Sz) =
xs-1g(z) for every set B, we will have that

N N

1 1

N Z ¥u(S%:) = N Z Xs-18(Ti);
i=1

=1

since the states z;, s, ... are distributed by the u-probability density function f, we will
have

N N
1 1
N ;XB(S-’W) = F Z;Xs-ta(-’fi) N::o S—lﬂfd#;

and by the Frobenius-Perron operator P definition, f g-1gf dyy = f s P f dp results; thus,

N
1
~ ) xB(Szi) — [ Pfdp
.|NZ N—-oo B

i=1

is obtained. That is, the ensemble of states Sz1, Sz, .. has a u-probability density function
and this is Pf. (It must be noted that the probability measure pyS~1 has Pf as its
u-probability density function; that is, uyS~'(B) = fB Pfdu). In the same way it is
evident that the ensemble S™z;, S™zy,... has P"f as its p-probability density function,
forn =0,1,2,... (and the probability measure u;S™" has P" f as its u-probability density
function; that is, usS™™(B) = fB P"fdp) [21).

A first feeling is that the ensemble S"z;, S"z,,... evolves toward (f. > 0) when n is
increasing, because the action of the absorbing attractor (f,. > 0) on almost every orbit, is
a fact that is fully confirmed using Th. 2.2: we have that S7"(f. > 0) /» Uity o %
0) = X, and since py is a probability measure we have usS~™(f, > 0) /n ps(X) = 1; but
as f(,f.)ﬂ) P*fdu = psS™"(f. > 0) /a1, the density function P" f is going to concentrate
on the absorbing attractor (f, > 0) when n increases; but generally (P"f > 0) will not
resemble to (f, > 0) as n increases, as the example below shows.

And, toward what and how P"f evolves when n increases?, does it converge to some-
thing? and if so, what kind of convergence is it? Let us make an ensemble evolution
analysis: for the ensemble z;,z,... with the u-probability density function f, for each
i=1,2,..., we have —lr; Z:;; xB(S*z;) — p+(B) for each set B in the family 8 of Th. 3.1
(the points 1, T2, ... can not be concentrated in a u-measure zero set since u(f > 0) > 0);
therefore we take those points in a set X' = X, the set of points for which the limit of
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Th. 3.1 is true). For a set B in § and 23,...,zxN,

S

1
i xB(S*z1) ~ p.(B)
0

>
Il

1 M-1
37 O XB(5*zn) = 4.(B)
k=0

as much as we like whenever M is large enough; adding these expressions term by term,

M-1 M-1
1 1 1
=l — xB(S*z1) +- + — x8(S*zNn) | = p.(B)
NN M k=0

is obtained; and this expression can be arranged as

M=i
1 xB(8*z1) +--- + x8(S*zN) _ ,
7 E_u N ~ pe(B);

and if NV is large, then

k k
xB(S8%z1) + ...+ xp(S*zN) zf P*f dy;
N B

therefore, replacing this last approximation in the above approximation leads to

lM-l
i P"dz.Bz/.d.
M;fg fdp = p.(B) Bfn

So, we have arrived in a very natural way to the conclusion that for any u-probability
density function f the sequence f, Pf, P2f, ... evolves to the density function f, d la weak
Cesaro; the apparently unnatural convergence d la weak Cesiro results in a very natural
kind of convergence in a FDS with a unique absorbing attractor.

This conclusion answers the above questions; moreover, any such sequence P" Ty =
0,1,2,... neither converges in a fine-grained (pointwise), nor in a coarse-grained (weakly),
nor in a strong sense to anything. All this is confirmed by particular ergodic dynamical
systems as the Ehrenfest Chain [15,36] and the quasi periodical motion. Let us consider
the dynamical system ([0,1] x [0,1], B([0,1] x [0,1]), £2), 5) where B([0,1] x [0,1]) is the
o-field of Borel sets of space X = [0,1] x [0,1]), £ is the Lebesgue measure and the
mapping S is the quasi periodic motion S(z,y) = (V2,+z,V3 + y) (Mod 1); this is
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essentially the motion of two independent and autonomous harmonic oscillators with
angular velocities v/2 and /3. In this case f, = 1 and (f, > 0) = [0,1] x [0,1]; i.e., (2
is the unique S-invariant probability measure that is ¢()_absolutely continuous. For the
density function F%?ﬂ’ where A = [0,a] x [0,a] with 0 < a < 1, the sequence of densities

P"(-ﬁ%), n =0,1,2,... has the sequence of sets (P“(?(%&—)) - O), n=0,1,2,..., that

seems to be bouncing on the walls of the square [0, 1] x [0,1], [21].
In our framework of a FDS, the following theorem (enlargement of a) part of Th. 4.4.1
in Ref. [22]) gives some causes and consequences of the weak Cesaro convergence.

Theorem 4.1. Let (X,X, p,S) be a FDS. The following statements are equivalent:

a) f. is the unique P-stationary density function (therefore the dynamical system (y, S)
is G. ergodic);
b) pe: X — [0,1], where dus = f.dp, is the unique p-absolutely continuous probability

measure;

c) there ezists a pi-absolutely continuous probability measure p,: X — [0, 1] with p-density
function f., such that

n—1
23" w(AS™*B) < u(A)ua(B)

k=0

=~}

for all sets A and B in ¥ with u(A) < 4o00;
d) there erists a p-density function f, such that for every p-density function f

n—1
1 / X
- F fduT/f*d#=n.(B).

for every set B in ¥;i.e. the sequence of densities P"f,n =0,1,2,... converges to Te
a la weak Cesaro.

Moreover, any of these statements implies the dynamical system (., S) is ergodic.

(See the Appendix for a proof.)

The preceding results and the example give us a statistical-geometric idea about the
natural evolution of ensembles of systems when there is only one absorbing attractor;
first of all we know that as time proceeds, n increases, P"f tends to concentrate on the
absorbing attractor (f. > 0), a fact that makes corresponding ensembles S™z;, Sz, ...
go into the attractor (f, > 0), like a school of fish goes into a bay; once the ensemble
Smzy, S™z,, ..., or part of it, is in the absorbing attractor it will travel from one place to
another but always within (f, > 0), sometimes concentrating, sometimes extending and
diluting in some zones, always varying in concentration as time goes by: fB P"fdp fluc-
tuates when n increases, for each B zone of (f, > 0). And while this erratic tour proceeds,
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the ensembles S™x7, S™x3, ..., where 2}, 23, ... is an ensemble of the P-stationary density
function f,, are in statistical equilibrium: although for each fixed i, S™z} is moving over
all (f. > 0) because the ergodicity of S, and S™z}, S"z3, ... is very different of U
all these ensembles have the same statistical properties, i.e. the asymptotic proportion of
ensemble elements S™x}, S"x3,... that are in B is the same for each time n = 0,1,2,.. ;
that is,

xBS"z} + - + xBS"zY i _ . xBTit+--+ XxBTy

for each B in I. The statistical properties of Sz}, S™z3,... do not change as time pro-
ceeds.

5. IRREVERSIBLE EVOLUTION TOWARD STATISTICAL EQUILIBRIUM

As it can be seen, the preceding conditions assure that a system starting from almost
each nonequilibrium state evolves towards its equilibrium in (f, > 0) as time proceeds,
which is sufficient for the current value of a macroscopic observable to approach and stay
very close to an equilibrium value. But, as noted above, those conditions do not assure
that every ensemble with a p-density function evolves to the stationary ensemble as time
elapses, a situation that makes the dynamical functions of ensembles (as entropy [25]) will
not approach their equilibrium values as time proceeds; hence, conditions are looked for
to assure this kind of approach to stationarity [22,28], i.e. it is required that the ensembles
S™xy, S™xq,... evolve irreversibly to the stationary ensemble x],x3,... as n increases, in
the sense that the statistical properties of S™x, S™x,,... will be like those of ey g wecn i
when n is sufficiently large, that is XBS"I““":,'\}“L"BS%" S IB fedp = po(B) when n is
large; since XBS"“”""K,"'XBS%N ~ fB P"fdu, then fB Prfdy =~ fB fedp must hold. In
precise terms, f g P fdp — f g J+dp is required for each p-probability density function
f and each B in X.

For the time being the only answer we can give is similar to that wanted; therefore, only
some consequences of that kind of evolution will be analyzed, and for this the following
theorem is central:

Theorem 5.1. Let (X, X, ut, S) be a FDS and f, a p-density function. The following state-
ments are equivalent:
a) p(AS7"B) —= u(A) p.(B) for all sets A and B in ¥ with u(A) < +oo, where
dﬂ't = fodp;
b) for every p-density function f, P"f = [+ weakly; that is, fB Phfdp — fB A
dp = p.(B) for each B in L.
Moreover, each statement implies that f, is the unique P-stationary density function (or,

equivalently, that p, is the unique p-absolutely continuous probability measure; therefore
(4, 8) is G. ergodic) and the dynamical system (., S) is mizing.

(See the Appendix for a proof.)
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A FDS (X, X, u,S) with a p-density function f, is called generalized mizing (GM) if
p(AS™"B) —2 u(A)u.(B) holds for every pair of sets A, B in &, with p(A) < +oo. This
kind of FDS generalizes the usual mixing dynamical systems: let A be a region of X, in
¥, with 0 < u(A) < +00. If aj,as,..., is an ensemble of states uniformly distributed over

A, i.e. it has the p-density function %, then the chain of limits

N
: n o n XA /

N2 i < I TR R
Ni=1XB(Sa)N_’°°/BP (ﬂ(A)) Hni=d Bf dy = px(B)

holds for every B in I. Let us suppose the vessel (f, > 0) is filled with certain solvent and
ai,az,...,ay are the molecules of the solute 4, with NV very large; then, for any region
B of the vessel (f, > 0), Zfil xB(S™a;) is the number of molecules of the solute A in B
at time n. Then, using the above chain of limits, for time n sufficiently large, the number
of molecules of A in the region B is approximately proportional to its “volume” u.(B),
that is 31, xB(S™a;) = Np.(B).

Now, a property of the GMFDS will be obtained because its central role in the following;
this property is present in a great variety of physical and mathematical dynamical systems
and it was firstly reported for some physical systems [12]. Consider a pair of subregions
A,B of X, in I, with o0 > p(A) > 0,B C (fs > 0) and 0 < p.(B) < 1. Physically
the set AS™"B = {a € A;S™a € B} can be interpreted as those initial conditions in A
for which the states of the system are in region B at time n. The dispersivity property,
that we want to present, can be roughly settled as: a time no must exist, such that
all the states S™a, with a in A, are not concentrated on B for each n > ng; in other
words, there exists an n, such that AS™B = A can not hold for each n > n,. From
the ensemble evolution point of view, the dispersivity property is very clear because each
ensemble with pu-density function evolves, as time goes on, toward the stationary ensemble
scattered by all the absorbing attractor; however, that is not a conclusive argument and a
formal proof of that property is needed. Then, let us suppose AS™"B = A for an infinite
number of n. We know that u(AS™"B) — u(A)u.(B); thus, by the foregoing supposing,
w(A)pi(B) = u(A); consequently, u.(B) = 1, contrary to the assumption 0 < p.(B) < 1.
The above property holds if we put B¢ instead B, and it is proved in a similar way. We
can summarize all this in the

Theorem 5.2. (GNFDS’s dispersivity property). Let (X,X, u, S) be a GMFDS. If A, B are
in X, with 0 < u(A) < +00,B C (fu > 0) and 0 < p.(B) < 1 then there ezists an n, such
that 0 < p(AS™"B) < u(A) and 0 < u(AS™"B€) < u(A) for every n > ny.

This dispersivity property is a generalized version of that found out by Erber et al. for
dynamical systems with S invertible and mixing with respect to a nonsingular and perva-
sive probability measure on a metric space [13]. However, such original version holds for a
broader class of mixing dynamical systems as has been proved above (the unidirectional
Bernoulli shifts, the logistic mapping over the unit interval and many more important
dynamical systems cannot be considered by those original restrictions merely because
their mappings are not invertible).
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For our last result we will need the following corollary, whose intuitive meaning can be
that each S™ granulates the set A over the absorbing attractor when n takes large values;
in precise terms

Corollary to Th. 5.2. If {B1,...,Bum} is a partition of (f, > 0) with B; in £ and
0 < pe(B;) <1 for eachi =1,..., M, then there ezists an n, such that 0 < u(AS~"B;) <
u(A) for each i =1,..., M, whenever n > ng (In particular AS™"B; # ¢ when n > ng).

Finally, let us extract some consequences from the corollary. Consider a system with
state space X and motion law S as in the corollary; we center our interest in a region
A of X with a little measure u(A) > 0, from where the system starts its motion (A
could represent the error arising from measurement impreciseness or numerical round
offs). Moreover, to simplify let us suppose that there is an L such that A ¢ S~L(f, > 0),
because Th. 2.1 (the forthcoming conclusions holds without that restriction); i.e., if a € A,
then S¥a € (f. > 0). If we take n > max{ng, L}, then A = AS~"(f, > 0) = AS™B; +
-+ AST" By with 0 < p(AS™B;) < u(A), hence AS™B; # ¢, foreachi=1,...,. M
because of the corollary. All that can be interpreted as: with the sole knowledge that the
system starts its motion in some unknown state in A, the mere knowledge we can have
is that the state of the system will be in some region B; at time n. In other words: it is
impossible to predict in what region B;, for ¢ = 1,..., M, will the state of the system
appear at time n, given that it started from initial conditions in A.

It will be advantageous to put the above conclusion in a probabilistic framework. Let
us consider the experiment &£, = the system starts its motion from a state in A and it is
observed n time units later, and the set of outcomes of £, interesting to us is the sample
space 2 = {1,..., M} (the set of indexes of the regions By, ..., By ). Our above issue is
like having the pair (£, Q): if in a trial of £, the state of the system appears in region
B;, at time n, then the outcome ¢, in 2, is obtained. In this framework, our above central
conclusion becomes the essential property of the pair (£, Q): the conditions under which
the experiment is accomplished do not determine which of the possible outcomes, in 2,
will be obtained in each trial of £,; that is, the outcomes are random.

But it must be noticed that this random behaviour of GMFDS is in a regionwise,
coarse-grained or macroscopic sense, and it is complementary to the deterministic be-
haviour, in pointwise, fine-grained or microscopic sense, a central assumption of DS (that
is, given initial state x the system follows the determined orbit of state Og(z)). Al-
though the orbits could be chaotic, or sensitive on initial conditions, right now, I am
able to assure very little about that with the mathematical tools at our disposal in
our framework; however, the randomness in regionwise, coarse-grained or macroscopic
sense is inherent to chaotic orbits [9,31,32]. These two levels of apparently incompztible
behaviour, or description [22], have been analyzed in several particular dynamical systems
given by differential equations [1,3,5,15,17,19,20,23,24,26,29]; but, as we have seen above,
these two levels of behaviour, or description, definitively hold for the wide class of the
GMFDSs. (Moreover, the exact [21], Kolmogorov and Bernoulli dynamical systems are
mixing dynamical systems [3,6,21,22]).

But the above randomness is not an irregular one. Let us consider an ensemble of initial
conditions aj,as,... in A; if we assume that the ensemble is uniformly distributed over
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A, using the chain of limits just below Th. 5.1 we obtain that for each j = 1,..., M,
+ Zf\;l xB;(S"a;) = pi(B;) as much as we like whenever n > max{ng, L} and suffi-
ciently large N. Therefore we can do statistical predictions: going back to our probability
framework, if we make N trials of the experiment £,, then approximately Npu.(B;) times
the state of the system is in B; at time n. (The same result is obtained if we consider an
ensemble with any other u-density function concentrated on A).

And that is all we can predict about the future states of our system: after a certain time,
we cannot do deterministic predictions; however, we can do predictions of a statistical
nature.

APPENDIX

A. Definitions (more information in Ref. [21])

1) The indicator or characteristic function x4 of set A is the function that takes value 1
in points in A and 0 value in points in A°. If a mapping $: X — X is composed with
indicator x 4, where A is a subset of X, then 405 = xg-14, i.e. xa(57) = Xs-14(z)
for each z in X.

2) A measure space (X,Z,u) is o-finite if there exists a denumerable partition
{X1, X2,...} of space X, whose X; are in ¥ and p(X;) < +oo.

3) “p-a.e. z in X” means almost every z in X with respect to measure u, and “p-a.s.”
means almost sure with respect to measure . A = B means that p(AAB) = 0, where
AAB = (A = B) 4 (B — A) is the symmetric difference. With f and g measurable

functions, f = g means that u(f # g) = 0, where (f # 9) = {z € X; f(z) # g9(x)};
that is, f(z) = g(x) p-a.e. z in X; f > means that u(f < 0) = 0, where (f <0) =

{z € X; f(z) < 0}, or that (f >0) = X, or that (f <0) = ¢.

4) For a Y-measurable mapping S: X — X the measures pS~™: ¥ — [0,+00] can be
constructed for each n =0,1,2,..., defined as pS~"(A) = u(S™™A) where S°A = A
for each set A in £. A measure v is absolutely continuous with respect to p, or v is
ji-absolutely continuous, when v(A) = 0 if p(A) =0 for A in ¥, and it is denoted by
v & p. S is said p-nonsingular if puS~! << p. By a p-(probability) density function
f we mean a real and measurable function f: X — IR such that f > and fx Fdji= 1,
For each p-density function f the probability measures psS™™:X — [0,1] can be
constructed for each n = 0,1,2,... defined as psS™"(A) = fS—"A fdu for each set A
in X.

5) The Frobenius-Perron operator P = P(y, S) of the dynamical system (u, S) is the op-
erator P: L1(X, %, u) — Li1(X,E, ) that associates to each f in Ly(p) a function Pf
in L;(p) such that fB Pfdy= fs_led,u for each set B in X; such Pf exists and is
p-unique as a consequences of the Radon-Nikodym theorem applied to p-nonsingular
measure 4;S~1 in the above measure space. If f is a u-(probability) density function,
then the probability measures psS™",n = 0,1,2,..., are p-absolutely continuous
and their corresponding density functions are P"f,n =0,1,2,..; that is pS™(A) =
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L 4 P"f du for each set A in . A p-density function is said P-stationary if Pf = f;
then, a p-density function f is P-stationary if and only if py is S-invariant (or S
preserves jiy), that is p;S™1 = Ly,

B. Proofs
1. In the framework of Th. 2.2. the pair (x., S) is ergodic.

In the first place the pair (i, S) is invariant, that is x,$~14 = u, A for each set A in x,
since

u.s-l(A)=fS_1Ad,u.= f*du=[4Pf.dp=[4f.d =ty (A).

5-14

Now, if (14, S) is not ergodic, then there exists a set A in ¥ such that S—1 4 = A with
0 < py(A) < 1. Let us see that the pu-density % [+ is a P-invariant density function: as

XA = Xs-14 then

XA fe _ Xs-14 fu
jald) ** ka(A)

By the Frobenius-Perron operator,

XS-14 3 - Xs5-14 arm
[9—13 u*(A)f o ,/BP(.U'*(A)f) g

On the other hand,

Xs-14 X405 XA _1
fedp = '/ ——— fody = f — TP (e
_/5—13 fa(A) s-1p H«(A) # B H+(A) :

Since p.S~! = p,, then

XS—14 ¢ 4 :_/_X—A_d*zf__&*
[3—13 ﬂ*(A)f & Bﬂ*(A) b B#*(A)f i

but

XA XS5-14
———f.d, = —f.d
./;u*(A)f Z /Bu.(A>f .

therefore

XS5-14 X5-14
e [ 3547
/5-19 B = | A
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With all this we get that

XS-1A _ Xs-1A .

since this equality holds for every B in I, then

X5-14 — XS-14
£ (#*(A) *) #-(A) o

which means that density

Xs-14, _ XA
) R A

is another P-stationary density function, contrary to initial assumption that f, was the
unique P-stationary density function.

9 Th. 3.1. Let us first stablish a slight enlargement of Birkhoff’s ergodic theorem:

Lemma. With the hypothesis of Th. 2.1 and with f, being the unique P-stationary densily
function, for each B in X, ;1;2:;3 xe(S*z) — hs(B) follows for p-a.e. x in X.

Proof: since the pair (p.,S) is ergodic, for each B in z %E:;; xB(S*z) — w.(B)

follows for p.-a.e. = in X because of Birkhoff’s ergodic theorem. Denoting by B the
set of points in X for which the foregoing limit holds, we will have that pu.(B) = 1;

but $™!B = B, then u(B) = 0 or u(B®) = 0 since (g, S) is G. ergodic. If u(B) =0
is true, then p.(B) = 0 because g, < p; then it must be that u(B€) = 0, that is
X = B = {; 1 Y15 xs(S*z) = m(B)}-

Now the proof of Th. 3.1: since for every B; in 3 we have B; = X, it follows that
N2, Bi = X, which means that for p-a.e. point = in X we will have

1 n-1

~ > x8,(5*3) = mu(B)

k=0
for every B; in S.

3. Th. 4.1.
i) a) ¢ b) follows immediately.

ii) Let us suppose that a) or b) holds. Since P has a unique stationary density, using the
preceding Lemma it follows that for each set Bin XL, % :;; xB(S*x) — pu(B) for p-a.e
z in X. Now, for each set A in ¥ it follows that Fy(x) = %Z’;;; xa(z) - xp(8*z) —
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XA(z) - py(B) for p-a.e. x in X. Since: a) Fp(z) < xa(z) for each z in X; b) x4 is
p-integrable if p(A) < +oo, and ¢) Fy(z) — pa(B)xa(z) for p-a.e. x in X; applying
Lebesgue’s Dominated Convergence Theorem it follows that

[ Prtemtan — [ w(B)xa@ntas).
X " JX

But
1 n—1 "
n(x)p(dz) = - x) - S d
[ Prtantae) jxngm) xa(S*2)u(ds)
1 -1 ln—l
1§ f xa~ (x5e8)dt = - 3™ u(AS+B);

k=0"X k=0

also

[X o(B)xa(®)(dz) = o (B)(A).

Then, replacing these in the previous limit, we obtain

-1

=3 H(AS™B) — u(A)pa(B)
k=0

So, a) or b) = ¢).
iii) Let us show that ¢) = d). Furthermore, we prove that for each f > in Ly(p)

ln—l
- P"d,,—».B/d,
> [P i) [ gan

k=0

and when f is a p-density function the limit in d) follows.
1°. f = xa in Ly(u): since fB P¥(xa)du = u(AS*B), then

15 [ Pardn=3 S WAS™B) — (B = D o
n k=0 B " " ’

k=0

From now on, we will use the symbol P,(g) to denote

n—1
1
Pu(9)=~> fB P*gdy;

k=0
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2° let a simple function f = Y"1~ aixa, in L1(pn); then
m m m m
P, (Z aiXA.-) =) aPa(xa) & > aipa(B)u(A:) = #.(B)/ > aixadu,
i=1 i=1 i=1 X =1

as a consequence of 1° above.

3°. Let f > in Li(p). If {S} is a sequence of simple functions, with each S, in Li(p),
such that 0 < S,, /'m f and fx Smdp — fx f du, we will have the following:

< Pa(f) — Pa(Sm)l +

Po(Sm) — pa(B) /X fd#‘

Poa(f) - pa(B) jx i

< |Pa(f) — Pa(Sm)l + P,.(Sm)—p.,(B)]Xsmdp‘

* Smdp — pe dul|;
+#(B)L .uu(B)/xfu}
but
n-—1
IPn(f) = Pa(Sm)| < %E fP*(f—Sm) d,ul
k=0 |V B

n—1
=%Ef (f—sm)dusf(f—sm)du-
k—o VS 'B X

Now, given £, > 0 there exists a mo(€;) such that fx(f — S,u)dp < €, for every m 2
mo(£1), and therefore |Pp(f) — P.(Sm)| < &1 for every m > mo(€1).

By 2° above, given €3 > 0 there exists a no(€2, m) such that |P5(Sm) — p«(B) fx S dpl
< & for every n > ng(e2,m), and

e (B) ]X Sumdp — (B jx fdu}zp.w) ( fx fdu- /X Smdu) < ma(B)ex

for every m > mg(€1).
Now, taking m > m,(e1) and n > no(e2, m) we get

< €1+ €2 + pa(B)en,

Pu(f) - 1a(B) ]X Fiis
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which means that

n-1
%Z/P“fdejf.d,u/‘ fdu=m(B)/fd#-
— Jn B x 2

And if f is a u-density function, then

n—1
1Z/P*fdu7ff.dp=u.(3).
i § B

With all this ¢) = d) has been proved.
ividj=eiff= E)ffﬂ with 0 < p(A) < 400, then f is a p-density function, and

n—1 n—-1
1 K(AS~*B) AS "B o I xA x
then
n—1
=3 W(AS™B) = u(A)ua(B)
k=0

for all sets A and B in ¥ with p(A) < +oo0.
Thus, with iii) and iv), we have that c) < d).

v) Let us see that c) = a) or b). If 1 S"3~0 4(AS~*B) — u(A)p.(B) for all sets A and
B in ¥ with p(A) < 400, then
I 4.S™! = p,, i.e., the pair (u.,S) is invariant. Since

n-1
1
=D #(ASTHST'B)) o w(A)na(S7'B)
k=0
and
n—1 n
e 41 1 = AB
= u(AS~*-1B) = s Z#(AS *B) - % = #(A)p.(B),
k=0 k=0

then p,(S~'B) = p.(B) for each B in I, that is u, S~ = p,.
II. Now, since du, = f.dp is a S-invariant < Pf, = f,, it follows that our f, is
P-stationary density function.
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II1. If there would be another P-stationary density function g, such that

n-=1

=S W(AS™B) < w(A)a(B),

k=0

where dv, = g.du, we could have v,(B) = p.(B) for each set B in I. But this last
equality is fB gedp = fB [+ dp for each set B in X, which in turn implies that g, = f..
Then, there is a unique P-stationary density function f, or there is only one pu- absolutely
continuous probability measure u,. With all this we have ¢) = a) and b).

To complete the proof of Th. 4.1 remember that if there is a unique P-stationary density
function f,, then the pair (y.,S) is ergodic.

4.Th. 5.1

i) a) :> b). The proof is similar to that given for Th. 1.3, but taking off the symbol
%Z: 0, and getting fBPﬂfd# — [pfedn [y fdp = pa( )fxfdp. for each f > in
Ly(p)-

(w
ii)b) = a). If f = % with 0 < p(A) < +oc then f is a p-density function and therefore

WAS™B) [ o xa ), XA 4 (B):
o (u(A))d“ o) [ = ()

then, u(AS™"B) — p(A)p.(B) for any sets A and B in T with pu(A4) < +oo.

iii) The fact that f, is the unique P-stationary density function or that u, is the unique
p-absolutely contmuous probablhty measure follows in a similar way as in Th. 3.1 but
taking off the symbol - LS 0 or considering that weak convergence is a particular case
of weak Cesaro convergence

That (., S) is mixing follows from

———”.(AS_RB) — f. =/ n( XA ) —4/ =
he(4) /As-nau.(A)d” T i) e | SR

because the function u_z‘(dﬂf" is a p-density function when 0 < pu(A) < +oo; then
#e(AS™"B) — piu(A)pa(B) for all sets A and B in X. Then, we have proved Th. 5.1.
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