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ABSTRACT. In Ref. [21] the evolution of ensembles of states for dynamical systems (OS) with
states in a probability space is studied. Enlarging sorne results in ReL [211to a very common
measure spaces the aboye study is generalized for DSs with states in those measure spaces. This
enlargement uncovers an indecomposability subregion (AA) of the space of states, Cor which each
orbit of states oC the system has a1l its states in AA from sorne time on. It is obtained that
each ensemble of states, in its natural evolution, evolves in ergodic scnse (convergence a la weak
Cesaro) to the microcanonical ensemble (scattered by aHAA). A particular but central kind ofthat
evolution is the irreversible one in coarse-grained sense (weak convergence) to the microcanonical
ensemble; it is obtained that such evolution holds if and only if the OS is mixing for measure
spaces. For this kind of OS predictability [241is impossible beyond a certain time, however the
only rorecasting in coarse-grained sense about the system's ruture which can be made is that oC a
statistical nat ure.

RESUMEN. En la Ref. [21]se analiza la evoluciónde colectivosde estados para sistemas dinámicos
(SO) con estados en un espacio de probabilidad. Extendiendo a espacios de medida algunos
resultados en la ReL [21],en el presente artículo generalizamos ese análisis a colectivos de estados
para SD con estados en espacios de medida muy comunes. Nuestra extensión revela una subregión
(AA) indescomponible, del espacio de estados, en la cual cada órbita a partir de cierto tiempo
tiene todos sus estados en AA. Se obtiene que en su evolución natural cada colectivo de estados
tiende hacia el colectivo microcanónico (distribuido en AA) en forma ergódica (convergencia d la
Cesaro débil). Un tipo particular pero importante de esta evolución es la evolución irreversible en
grano grueso hacia el colectivo microcanónico; se obtiene que esta evolución vale si y sólo si el
SO es mezclante para espacios de medida. Para esta clase de SO la predicción [24)es imposible
más allá de cierto tiempo, sin embargo los únicos pronósticos en grano grueso que se pueden hacer
sobre el futuro del sistema son de naturaleza estadística.

rACS: 05.45.+b; 05.20.-y; 02.50.+s

l. INTRODUCTION AND CENTRAL RESULTS

Let us consider a system with states in a space X and with motion law given by the
mapping S: X - X, such that for each initial state x in X the successive states of our
system at time n = 1,2,3, ... are SIX = SX,S2x = S(SX),S3X = S(S2x), ... ; hence,
in its natural motion the system deterministically travels the orbit of states 0s(x) =
{x, Sx, S2x, ... }. Similarly, for each ensemble of initial states Xl, X2, ... we obtain another
ensemble of states snx¡, snX2, ••• for each time n = 1,2, ... ; thus, the ensemble of initial
states is transforming itself into another ensembles as time goes on, n = O, 1,2, ... ; i. e., the
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initial ensemble of states evolves in a natural form as time proceeds. The aim of this paper
is to analyze this natural evolution for certain kind of initial ensembles of states in X.
The natural evolution of ensembles has been studied since several years ago, but these

studies have been mainly concentrated on statistical mechanics, quantum mechanics and
stochastic processes; however this analysis has been extended recently to a great variety
of natural and mathematical systems. Among these dissimilar physical and mathematical
systems (so far analyzed) we mention for future illustrations or references the following:
the Maxwell-Boltzmann statistical mechanics [16] as well as the Einstein-Gibbs statistical
mechanics [4,11); a system of d independent and autonomous oscillators with incommen-
surable frequencies [3,21); the thermodynamics out of equilibrium [22,291; the chaotic
"dvection [2]; in stochastic processes the weak convergence of probability measures [7,301
as well as the Markov chains [6,14,34]; several mappings on regions of lRn into itself with
chaotic orbits like the logistic, the shifts, the baker's, etc. Many other systems can be
found in Ref. [3,5,23,35].
In the framework of dynamical systems the aboye analysis has been made in the beau-

tiful book by Lasota and Mackey [21], although it is aimed on those ensembles distributed
by probability density functions with respect to probability mcasurcs. Using several ideas
and extending sorne results in Ref. [21], we extend in the present article such analysis to
ensembles distributed by probability density functions (PDF) with respect to mcasurcs.
With the aim of presenting a panoramic view of the content of this paper we will be

more explicito The fundamental elements of a dynamical system are: l. A space X of all the
states a system can take (X may be: the phase space in the Maxwell-Boltzman statistical
mechanics, a surface of constant energy in the Einstein-Gibbs statistical mechanics; the
phase space of a system of d oscillators; the space of positions in Aref's model of chaotic
advection or the space of trajectories in a Markov chain). 2. The basic element through
which the statistical regularities of the ensembles are originated is an extensive variable
JL; we will consider those ensembles which are sequences of states distributed on X by
probability density functions with respect to JL (JL-PDF); JL may be the length, area,
volume, ... of regions of X = lRm depending on m = 1,2,3, ... ; or Jl may be a probability
measure, as in Markov chains or in weak converge of probability measures, i.c. Jl measures
something of each element in a collection E of subsets of X. 3. As it was explained at
the beginning, a mapping S that maps points in X into points in X gives a motion law
for discret times. A mapping like this may be found in a Hamiltonian system where X is
a surface of constant energy and for each x in X, S is defined as Sx = x(l), where x(t)
is the unique trajectory of the system such that x(O) = x [18]; in the model of chao tic
advection, where X is the space of positions, the mapping S is constructed through the
Aref law of positions [2J in a similar way as before; in a shift S of Markov chain, where X
is the space of all trajectories of the chain. X, E, Jl and S are the fundamental elements
of a dynamical system (DS) which will be denoted by the symbol (X, E, Jl, S), and will
be the framework of all the following.
The fundamental relations among the elements of our DS are conditioned by the as-

sumption that for each ensemble XI, X2,'" of states distributed on X by a Jl-DPF J, its
transformed ensemble SXI, SX2,' .. of states is distributed on X by a Jl-DPF, PJ. And this
fact is obtained from the hypotheses of Th. 2.1, which are very natural, as it can be seen
in Sect. 4. Our extension to measures allow us to uncover (as a consequence of Th. 2.1)
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a peculiar region of X with the property that for almost each state x there is a time
n = n(x), such that all the states snx, sn+lx, ... are in that region; such regio n is called
absorbing at!roctor, AA (but it is not strange attractor, Sect. 3). Therefore each ensemble
in its natural evolution f10ws into the AA. Moreover, the orbit 0s(snx) happens to be
quasi-ergodic in the AA. In the Aref's model of chaotic advection the AA is computed
numerically; when some parameters are large (Jl and t, see Ref. [2]) the tinal contiguration
of advected particles, i. e. the AA, is clearly observed in an extended regio n of the phase
space. In a Markov shift constructed from a Markov chain having a tinite number of
states [6,34] with a unique irreducible closed set e, the resulting AA of this dynamical
system is the set of all those trajectories (50,51, ... ) such that the Sn are in e for all but
a tinite number of values of n. In Sect. 3 is shown the AA of a relatively simple dynamical
system.

The AA is the regio n where the unique stationary ¡.t-OPF J.(i.e. PJ. = J.) takes
positive values, and it is denoted by (J. > O). From the point of view of ensembles
the equality PJ. = J. means that for each ensemble xi, xi, ... distributed on (J. > O)
by J. each of its transformed ensembles snxi,snxi, ... ,n = 1,2, ... , is distributed on
(J. > O) by J.; all those ensembles have the same statistical properties. Thus, each
ensemble distributed by J. is a microcanonical one.

An ensemble in its natural evolution f10ws into (J. > O); in Sect. 4 it this behaviour
is analyzed in terms of Jl-POFs. If an ensemble is distributed on X by the ¡.t-POF J,
then the sequence of transformed ensembles has the sequences of Jl-POF's P J, p2 J, ....
In Th. 4.1, extension of part b) of Th. 4.4.1 in Ref. [21]' that behaviour is characterized
by the convergence of the sequence pn J to J. d la weak Cesaro. That behaviour is very
clear in the system of osdllators [21,25] and in the Ehrenfest chain [141. (Apparently a
similar behaviour happens in quantum billiards [36]).

We face from our framework the natural question that arises in statistical mechanics
and in stochastic processes (Markov chains, weak convergence of probability measures,
etc.): When does an ensemble of states in its natural evolution approach irreversibly to
equilibrium? This is analyzed in Sect. 4 and it is obtained that the approach to equilib-
rium happens for every ¡.t-POF if and only if the OS (X, E, ¡.t,S) is generalized mixing,
Th. 4.1. Among the particular systems where the approach to equilibrium happens are
Einstein-Gibbs statistical mechanics [23,28], Markov chains with irreducible and aperiodic
probability transition matrices [6,14,34]. In the Aref's model it is observed experimentally.
For several of the popular mappings such as the logistic, the unidirectional shifts, the
baker's, etc. this approach to equilibrium also results [3,21,22].

A property of the generalized mixing OSs that is physically intuitive is dispersivity. This
property is derived in Th. 5.2 and its corollary (enlargement of that for metric spaces of
Erber et al. [13]): let a regio n A with ¡.t(A) > O; then, under iterated applications of S the
points in A tend to scatter on (J. > O). A disturbing consequence of this property is the
unpredictability in coarse-grained sense: from the knowledge that the system starts its
motion on some initial conditions in A, no matter how small ¡.t(A) > O is, it is impossible
to predict in what subregion of (J. > O) will the state of the system be at each time
n after certain time no = no(A). 1I0wever, we are not helpless to face that randomness
because a law of large numbers holds: if the system starts its motion from A N times and
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Nn(B) is the number of times that the system is in regio n B n time units latter, n ~ no,
then Nn(B) --->n-oo 18 f. di'; and therefore, if N is large, then Nn(B) "" N 18 f. d¡J..

2. ABSORBING ATTRACTORS

Our fundamental mathematical tools will be a measure space (X, L:,¡J.) and a motion law
given by a mapping s: X -> X; these together constitute a dynamical system, which
will be denoted by (X, L:,¡J.,S) or shortly by (¡J., S). \Vhen that measure space is <T-finite
and that mapping is L:-measurable and ¡J.-nonsingular (symbols and definitions are in the
Appendix or in Ref. [21]) oue dynamical system will be called fundamental, and shortly
written by FOS. P = P(I', S) will be the Frohenius-Perron operator of the FOS (¡J., S).
A in L: is S-invariant if S-I A ~ A. A dynamical system will he called G. ergodic (G.
= generalized) if A being S-invariant, then either A ~ <p or A ~ X. \Vith all these
elements we have the following slight enlargement of Th. 4.4.1 in Ref. [211 which will be
fundamental from now on.

Theorem 2.1. [271. Let (X, L:,1', S) be a FDS with at least one P-stationary density. Then,
(¡J.,S) is G. ergodic ~ P has a unique stationary density.

Sorne definitions are needed previously to the statement of another fundamental the-
orem: for a real function f defined on X the symbol (j > O) will mean the set {x E
X; f(x) > O}; with the un ¡que P-stationary density function f. we construct the proba-
bility measure ¡J.. defined on L: as I,.(B) = 18 f. di' for each B in L:; as ¡J.. is ahsolutely
continuous with respect to 1', we can write it shortly as di'. = f. d¡J.and it is the unique
¡J.-absolutely continuous prohability measure.

Theorem 2.2. Let (X, L:,¡J.,S) be a F DS with a unique P-stationary density fundion f •.
Let B in L: such that B e (j. > O) and ¡J..(B) > O. Then the following staternents are
troe:

i) X ~ nn~1Uk~n S-k B, or with the usual probability notation,

X ~ (s-n B, i.o.);

ii) or shortly

for every integer n ~ O.

A first consequence of Th. 2.2 is the following: since (j > O) e S-I (P f > O) for each
f nonnegative ¡J.-a.s. in L1(¡J.), [211, we have (j. > O) e S-I(j. > O); furthermore

(j. > O) e S-I (j. > O) e ... e s-n(j. > O) e ...
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Now, since p..(J. > O) = J(I.>O)f.dp.= 1, applying Th. 2.2 we obtain that X '¡¡'
Uk>O S-k(J. > O). This expression means that for p.-a.e. x in X, x E Uk>O S-k (J. > O),
and-it also means that there exists an n such that x E s-n(J. > O)or snx E (J. > O).This
last belonging means that the orbit 0s(x) has entered the set (J. > O);and snx, sn+lx, ...
belong to (J. > O)beca use of the previous chain of contentions. And if state y is in (J. > O)
then, 0s(y) never goes out of (J. > O); that is, 0s(y) e (J. > O). AH these properties
are the reasons for calling the set (J. > O) absorbing attractor.
Another relevant consequence of Th. 2.2 is that each orbit that enters the absorbing

attractor visits each subset B of (J. > O) an intinite number of times if 1 > p..(B) > O;
this is a consequence of applying Th. 2.2 to the sets B and BC, since 1 > p..(BC) > Otoo;
since B '¡¡' n U BS-k B and B '¡¡' n U BS-k BC, for p.-a.e. x in B, snx E B for an

n>O k>n n>O k>n
intinite number ~f values of n, and smx E-Bc for an intinite number of values of m, then
the orbit 0s(x) enters and leaves an intinite number of times the set B. Then the set B
is an attractor but not an absorbing one.
Let us note that this last consequence, considered from another point of view is just

Poincare's recurrence theorem in the subspace (J. > O)with measure p.. and mapping S:
the set of aH those points belonging to B (with p..(B) > O) that always return to B after
a tinite number of applications of S, n U BS-k B, is equal to B, modulo p.•.

n~Ok~n

The proof of Th. 2.2 is quite simple: nn>O Uk>n S-k B is an S-invariant set; since
p.(B) > O (if p.(B) is zero, then p..(B) would be zera since p.. «p.), then

p.(n US-kB) > O;
"2:0k2:"

but the pair (p., S) is G. ergodic by Th. 2.1, so that

X,¡¡, n US-kB.
n2:0k2:"

Moreover, since

U S-kB::J n US-kB
k2:m n2:0 k2:n

for each m, then

3. STATISTICAL REGULARITIES OF THE ORBITS' ELEMENTS

In order to establish the statistical regularities of the elements of almost each orbit, in
Th. 2.2's framework, we must show that the mapping S preserves probability measure
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1'. and it is ergodic, i.e., that the dynamical system (X, E, 1'" S) is ergodic. (See the
Appendix for a proof). Since I'.(X - ((J. > O)) = O, the dynamical system ((J. >
O), E(J. > 0),1'., S) (that in fact is the same as the one before) is ergodic, too.
\Ve have seen that for each subset B of (J. > O) with O < I'.(B) < 1, for I'-a.e. x in

X,the orbit 0s(x) enters and leaves the set B an infinite number of times. Moreover, for
each set B in E, ~ L;:-~xn(Skx) -n' I'.(B) follows for I'-a.e. x in X, as a consequence
of an enlargement of a part of Birkhoff's ergodic theorem that will be seen in the proof of
the following theorem. But the natural question is: if a system begins its motion on initia!
conditions x, will it visit eaeh set B an infinite number of times and its asymptotie fraction
of time of visits to B will be I'.(B)? It must be noted that Birkhoff's ergodic theorem
says that given a set B, then ~ L;:-~xn(Skx) -n' I,.(B) for I,.-a.e. x in (J. > O); i.e.
that the set of points x sueh that this limit is true depends on the set B; that is to sayo
if we put jj = {x E (J. > O); ~L;:~xn(Skx) -n' I'.(B)}, then jj ji; (J. > O). To these
questions there is an answer when X is a certain kind of manifold in Rn, [8], but we only
have a partial answer in Th. 2.2's framework:

Theorem 3.1. Let (X, E, 1', S) be a F DS with a unique P-stationary density function f.
(then (1', S) is G. ergodie). If the 17-field E(J. > O) is separable (that is, if there exists a
family of subsets (3= {Bl, B2, ••• } of E sueh that 17((3)= E(J. > O)), then for 1'- a.e. x
in X

for each Bi in (3.

(See the Appendix for a proof).
It would certainly be very useful to enlarge this result to every set in E, but even the

aboye version allows us to conclude: for a system with a motion law S in a space X (with
the aboye characteristics) and I'-almost every initial conditions x in X,

i) the system's orbit 0s(x) will visit each set Bi an infinite number of times;

ii) the system's orbit 0s(x) will visit each B; the asymptotic proportion of time I'.(B;),
and

iii) the statistica! distribution of the elements of almost each orbit is given by the prob-
ability measure 1'. on the family (3 = {B¡, B2, ••• }; that is, the orbit's elements are
distributed on the absorbing attractor (J. > O) with a probability law 1'. on (3.

As an illustrative application, let the measure space be ([0,2],8[0,2], l) where 8[0,2]
is the 17-field of Borel sets in the interval [0,2] and l is the Lebcsgue measure defined on
that 17-field; consider the mapping S: [0,2] -> [0,21 such that

{

4x(1 - x)
S(x) =

-2x+ 4

if O < x :<:; 1

if 1 < x :<:; 2;
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the measure space and S satisfy the Th. 2.2's hypotheses and the P( l, S)-stationary
density function results to be

if 0:$ x :$ 1

if O < x :$ 2;

the absorbing attractor results to be (J. > O) = [0,1], where the mapping S is mixing
with respect to measure

dx
/l.(dx) = --;===;

7l'Vx(1 - x)

by Th. 3.1'5 conclusion the statistical distribution of the elements of 0s(x), for l-a.e. x
in [0,2] is given by

"-1

~ ¿XB(Skx) ~ r _-;=d=x==,
n k=O' " JB¡n[O.IJ 7l'Jx(1 - x)

where the BiS are the intervals with rational extremes contained in the interval [0,1]. We
have used the space X = [0,2] to remark the role of [O, 1] as the absorbing attractor. Ir
[O, 1] would be taken as the space X, that role would not be apparent.
On the other hand, the dynamical system (/l., S) can be mixing. exact, Kolmogorov

or Bernoulli but the chaotic characteristics arise when (/l., S) is mixing (since when this
happens the orbits have a certain kind of sensitive dependence on the initial conditions
produced by a kind of dispersivity [13] as it wilt be seen in Sect. 4); when (/l., S) is
at least mixing, absorbing attractors and strange attractors [5,8,10,31,33) may have the
same properties from a randomness point of view, but not from a topological one. In the
case of an absorbing attractor the topological properties are irrelevant being important
only the measurable properties; but in strange attractors the topological properties are
essential. On the other hand, if the space X is a manifold in R", the absorbing attractor
(J. > O) never has a dimension less than that of X (if (J. > O) is contained in a manifold
of dimension less than that of X, then we have that /l(J. > O) = O, and this would be
contrary to the fact that f. is a /l-density function); however, the dimension of a strange
attractor is less than that of the manifold where it is immersed.

4. EVOLUTION OF ENSEMBLES

In the framework of a FDS(X, E, /l, S), whose Frobenius-Perron operator P has a unique
stationary density function f., we are going to analyze how the ensembles obtained
by iterated applications of S to an initial ensemble with /l-probability density function
evolve. Let us consider an ensemble of state Xl, X2, ••• in X distributed by a /l-probability
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density funetion f (by this we mean that the asymptotie fradion of members of the
ensemble in every region B of spaee X is fB f dp. = p./(B), for B in E, [22,281; that is,

-Iv ¿:{:I XB(Xi) N-:::x,fB f dp. = p./(B)).
Consider now the transformed ensemble of states SXI, SX2, ... , in X; as XB(SX) =

XS-IB(x) for every set B, we will have that

1 N 1 N
N LXB(SXi) = N LXS-'B(Xi);

i=1 i=l

sinee the states Xi, X2, ... are distributed by the p.-probability density funetion f, we will
have

1 N 1 N 1
N L XB(SXi) = N L XS-1B(Xi) - f dp.;

N-oc S-lB
i=1 i=1

and by the Frobenius-Perron operator P definition, fS-l B f dp. = fB P f dp. results; thus,

1 N j
N L XB(SXi) - P f dp.

. N-oc H
1=1

is obtained. That is, the ensemble of states SXIo SX2," has a p.-probability density funetion
and this is P f. (It must be noted that the probability measure p./S-I has P f as its
p.-probability density funetion; that is, p./S-I(B) = fB P f dp.). In the same way it is
evident that the ensemble snXl, SnX2, ... has pn fas its p.-probability density fundion,
for n = O,1,2, ... (and the probability measure P./s-n has pn f as its I,-probability density
funetion; that is, 1,/s-n(B) = fB pn f dp.) [211.
A first feeling is that the ensemble snXIo snX2, ... evolves toward (J. > O) when n is

inereasing, beeause the adion of the absorbing attraetor (J. > O) on almost every orbit, is
a faet that is fully eonfirmed using Th. 2.2: we have that s-n(J. > O) / n U~oS-k (J. >
O) '¡;' X, antl sinee 1'/ is a probability measure we have 1,/s-n(J. > O) / n P./(X) = 1; but
as f(l.>o) pn f dp. = P./s-n(J. > O) / n 1, the density funetion pn f is going to eoneentrate
on the absorbing attraetor (J. > O) when n inereases; but gene rally (pn f > O) will not
resemble to (J. > O) as n inereases, as the example below shows.
And, toward what and how pn f evolves when n inereases?, does it eonverge to some-

thing? and if so, what kind of eonvergenee is it? Let us make an ensemble evolution
analysis: for the ensemble XI, X2, ... with the p.-probability density funetion f, for eaeh
i = 1,2, ... , we have ~ ¿:~:~XB(Skxi) n-' p..(B) for eaeh set B in the family .B of Th. 3.1
(the points XIoX2,' .. ean not be eoneentrated in a p.-measure zero set sinee p.(J > O) > O);
therefore we take those points in a set X' '¡;' X, the set of points for which the ¡¡mit of
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Th. 3.1 is true). For a set B in fJ and Xl, ••. ,XN,

M-l
1", k
M Lo- xa(S x¡) "" I'.(B)

k=O

M-l

~¿ xa(SkxN) "" I'.(B)
k=O

as much as we like whenever M is large enough; adding these expressions term by term,

( M-l M-l)1 1 k 1 k
N M ~ Xa(S x¡) + ... + M ~ xa(S XN) "" I'.(B)

is obtained; and this express ion can be arranged as

M-l k k2- '" xn(S x¡) + ... + Xa(S XN) "" (B)'
M Lo- N 1'. ,

k=O

and if N is large, then

therefore, replacing this last approximation in the aboye approximation leads to

M-l;1¿ r pk I dI' "" I'.(B) = r l.dI'.
k=O la la

So, we have arrived in a very natural way to the conclusion that for any I'-probability
density function I the sequence 1,PI, P2/, ... evolves to the density function l. ti la weak
Cesaro; the apparently unnatural convergence ti la weak Cesaro results in a very natural
kind of convergence in a FD5 with a unique absorbing attractor.
This conclusion answers the aboye questions; moreover, any such sequence pn 1,n =

0,1,2, ... neither converges in a fine-grained (pointwise), nor in a coarse-grained (weakly),
nor in a strong sense to anything. AH this is confirmed by particular ergodic dynamical
systems as the Ehrenfest Chain [15,36) and the quasi periodical motion. Let us consider
the dynamical system ([0,11 x [O,lJ, B([O,1) x [0,1]), ((2), S) where B([O,IJ x [0,1]) is the
a-field of Borel sets of space X = [0,11 x [0,1]), ((2) is the Lebesgue measure and the
mapping S is the quasi periodic motion S(x,y) = (v"2,+x,v3 + y) (Múd 1); this is
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essentially the motion of two independent and autonomous harmonic oscillators with
angular velocities ,¡;¡ and J3. In this case f. = 1 and (J. > O) = [0,1] X [0,1]; i.e., (2)
is the unique S-invariant probability measure that is (2l.absolutely continuous. For the
density function l(~tA)' where A = [O,a] X [O,a] with O< a < 1, the sequence ofdensities

pnC(~tA))' n = O, 1,2, ... has thesequenceofsets (pn(l(~tA) > O), n = 0,1,2, ... , that
seems to be bouncing on the walls of the square [0,1] X 10,1], [21].

In our framework of a FDS, the following theorem (enlargement of a) part of Th. 4.4.1
in Ref. [22]) gives sorne causes and consequences of the weak Cesaro convergence.

Theorem 4.1. Let (X, E,¡I, S) be a FDS. The fo/lowing statements are equivalent:

a) f. is the unique P -stationary density fundion (therefore the dynamical system (p., S)
is G. ergodic);

b) p..: E - [0,1], where dp.. = f. dp., is the unique p.-absolutely continuous probability
measure;

c) there exists a p.-absolutely continuous probability measure p..: E-lO, 11with p.-density
fundion f., such that

for a/l sets A and B in E with ¡I(A) < +00;

d) there exists a ¡I-density fundion f. such that for every p.-density fundion f

for every set B in E; i.e. the sequence of densities pn f, n = O,1,2, ... converges to f.
a la weak Cesaro.

Moreover, any of these statements implies the dynamical system (p.., S) is ergodic.

(See the Appendix for a proof.)
The preceding results and the example give us a statistical-geometric idea about the

natural evolution of ensembles of systems when there is only one absorbing attractor;
first of all we know that as time proceeds, n increases, pn f tends to concentrate on the
absorbing attractor (J. > O), a fact that makes corresponding ensembles snx¡, snX2, •••

go into the attractor (J. > O), like a school of fish goes into a bay; once the ensemble
snX¡, snX2, ••• , or part of it, is in the absorbing attractor it will travel from one place to
another but always within (J. > O), sometimes concentrating, sometimes extending and
diluting in sorne zones, always varying in concentration as time goes by: fB pn f dp. fluc-
tuates when n increases, for each B zone of (J. > O). And while this erratic tour proceeds,
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the ensembles snxi, snx;, ... , where xi, x;, ... is an ensemble of the P-stationary density
function J., are in statistical equilibrium: although for each fixed i, snx¡ is moving over
aH (J. > O) because the ergodicity of S, and snxi, snx;, ... is very different of xi, x;, ... ,
aH these ensembles have the same statistical properties, i.e. the asymptotic proportion of
ensemble elements snxi, snx;, ... that are in B is the same for each time n = O,1,2, ... ;
that is,

XBSnxi + ... +XBSnXÑ 1pnJ d -1J d XBxi + ... + XBXÑ
-+ • J.l- • Jl+--- ,

N N B B N N
for each B in E. The statistical properties of snxi, snx;, ... do not change as time pro-
ceeds.

5. IRREVERSIBLE EVOLUTION TOWARD STATISTICAL EQUILIBRIUM

As it can be seen, the preceding conditions assure that a system starting from almost
each nonequilibrium state evolves towards its equilibrium in (J. > O) as time proceeds,
which is sufficient for the current value of a macroscopic observable to approach and stay
very close to an equilibrium value. But, as noted aboye, those conditions do not assure
that every ensemble with a I'-density function evolves to the stationary ensemble as time
elapses, a situation that makes the dynamical functions of ensembles (as entropy [25])will
not approach their equilibrium values as time proceeds; hence, conditions are looked for
to assure this kind of approach to stationarity [22,281,i.e. it is required that the ensembles
snx¡, snX2, ... evolve irreversibly to the stationary ensemble xi, x2l", as n increases, in
the sense that the statistical properties of snx¡, snX2, ... will be Iike those of xi, x;, ... ,
when n is sufficiently large, that is XBsnxI,+:V+XBS*XN '" fB J. dI' = I'.(B) when n is
large; since XBS*Xl+i/XBS*XN '" fB pnJ dI', then fB pn J dI' '" fB J. dI' must hold. In
precise terms, fB pn J dI' 7 fB J. dI' is required for each I'-probability density function
J and each B in E.
For the time being the only answer we can give is similar to that wanted; therefore, only

sorne consequences of that kind of.evolution will be analyzed, and for this the foHowing
theorem is central:

Theorem 5.1. Let (X, E, 1', S) be a FDS and J. a I'-density Junction. The Jo/lowing state-
ments are equivalent:
a) I'(AS-nB) 7 I'(A) I'.(B) Jor a/l sets A and B in E with I'(A) < +00, where

dI'. = J. dI';
b) Jor every I'-density Junction J, pn J 7 J. weakly; that is, fB pnJ dI' 7 fB J.

dI' = I'.(B) Jor each B in E.
Moreover, each statement implies t~at J. is the unique P -stationary density Junction (or,
equivalentIy, that 1'. is the unique I'-absolutely continuous probability measure; thereJore
(1',S) is G. ergodic) and the dynamical system (1'., S) is mixing.

(See the Appendix for a proof.)
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A FOS (X, E, 1', S) with a JL-density function l. is called genemlized mixing (GM) if
JL(As-n B) n~ JL(A)JL.(B) holds for every pair of sets A, B in E, with JL(A) < +00. This
kind of F DS generalizes the usual mixing dynamical systems: let A be a region of X, in
E, with O < JL(A) < +00. If al, a2,'" , is an ensemble of states uniformly distributed over
A, i.e. it has the JL-density function pUl' then the chain of limits

N

~ ~ X8(Snai) N~ L pn C~~))dI' n~ L l. dI' = JL.(B)

holds for every B in E. Let us suppose the vessel (J. > O) is filled with certain solvent and
al, a2, ... ,aN are the molecules of the solute A, with N very large; then, for any region
B of the vessel (J. > O), ¿:;:'I X8(sna;) is the number of molecules of the solute A in B
at time n. Then, using the aboye chain of limits, for time n sufficiently large, the number
of molecules of A in the region B is approximately proportional to its "volume" /1.(B),
that is ¿:;:'I X8(snai) "" N JL.(B).
Now, a property of the GMFOS will be obtained because its central role in the following;

this property is present in a great variety of physical and mathematical dynamical systems
and it was firstly reported for sorne physical systems [121.Consider a pair of subregions
A, B of X, in E, with 00 > /1(A) > O, B e (J. > O) and O < /1.(B) < 1. Physically
the set AS-n B = {a E A; sna E B} can be interpreted as those initial conditions in A
for which the states of the system are in region B at time n. The dispersivity property,
that we want to present, can be roughly settled as: a time no must exist, such that
all the states sna, with a in A, are not concentrated on B for each n ~ no; in other
words, there exists an no such that AS-n B =;f A can not hold for each n ~ no. From
the ensemble evolution point of view, the dispersivity property is very clear because each
ensemble with JL-densityfunction evolves, as time goes on, toward the stationary ensemble
scattered by all the absorbing attractor; however, that is not a conclusive argument and a
formal proof of that property is needed. Then, let us suppose AS-n B =;f A for an infinite
number of n. We know that JL(AS-n B) ...,., JL(A)JL.(B); thus, by the foregoing supposing,
JL(A)JLi(B) = JL(A); consequently, JL.(B) = 1, contrary to the assumption O < /1.(B) < 1.
The aboye property holds if we put Be instead B, and it is proved in a similar way. We
can summarize all this in the

Theorem 5.2. (GNFOS's dispersivity property). Let (X, E, 1',S) be a GMFDS . ./I A, B are
in E, with 0< JL(A) < +00, B e (J. > O) and 0< JL.(B) < 1 then there exists an no such
that O< JL(AS-n B) < JL(A) and O< JL(AS-n Be) < JL(A) lor every n ~ no.

This dispersivity property is a generalized version of that found out by Erber et al. for
dynamical systems with S invertible and mixing with respect to a nonsingular and perva-
sive probability measure on a metric space [131.However, such original version holds for a
broader class of mixing dynamical systems as has been proved aboye (the unidirectional
Bernoulli shifts, the logistic mapping over the unit interval and many more important
dynamical systems cannot be considered by those original restrictions merely because
their mappings are not invertible).
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For our last result we will need the folJowingcorolJary, whose intuitive meaning can be
that each sn granulates the set A over the absorbing attractor when n takes large values;
in precise terms

CorolJary to Th. 5.2. If {B1, ••• , BM} is a partition of (J. > O) with B; in E and
0< Jl.(B;) < 1 for each i = 1, ... ,M, then there exists an no such that 0< Jl(AS-n B;) <
Jl(A) for each i = 1, ... ,M, whenever n ;:>: no (In particular AS-n B; # <p when n ;:>: no).

FinalJy, let us extract sorne consequences from the corolJary. Consider a system with
state space X and motion law S as in the corolJary; we center our interest in a region
A of X with a little measure Jl(A) > O, from where the system starts its motion (A
could represent the error arising from measurement impreciseness or numerical round
offs). Moreover, to simplify let us suppose that there is an L such that A e S-L(J. > O),
because Th. 2.1 (the forthcoming conclusions holds without that restriction); i.e., if a E A,
then SLa E (J. > O). If we take n ;:>: max{no, L}, then A = As-n(J. > O) = AS-n B1 +
... + AS-n BM with O < Jl(AS-n B;) < Jl(A), hence As-n B; # <P, for each i = 1, ... ,M
because of the corolJary. AIJ that can be interpreted as: with the sole knowledge that the
system starts its motion in sorne unknown state in A, the mere knowledge we can have
is that the state of the system will be in sorne region B; at time n. In other words: it is
impossible to predict in what region B;, for i = 1, ... ,M, will the state of the system
appear at time n, given that it started from initial conditions in A.
It will be advantageous to put the aboye conclusion in a probabilistic framework. Let

us consider the experiment en = the system starts its motion from a state in A and it is
observed n time units later, and the set of outcomes of en interesting to us is the sample
space n = {1, ... ,M} (the set of indexes of the regions Bl, ... , BM)' Our aboye issue is
like having the pair (en n): if in a trial of en the state of the system appears in region
B;, at time n, then the outcome i, in n, is obtained. In this framework, our aboye central
conclusion becomes the essential property of the pair (en n): the conditions under which
the experiment is accomplished do not determine which of the póssible outcomes, in n,
will be obtained in each trial of en; that is, the outcomes are random.
But it must be noticed that this random behaviour of GMFDS is in a regionwise,

coarse-grained or macroscopic sen'se, and it is complementary to the deterministic be-
haviour, in pointwise, fine-grained or microscopic sense, a central assumption of DS (that
is, given initial state x the system follows the determined orbit of state 0s(x)). AI-
though the orbits could be chaotic, or sensitive on initial conditions, right now, 1 am
able to assure very little about that with the mathematical tools at our disposal in
our framework; however, the randomness in regionwise, coarse-grained or macroscopic
sense is inherent to chaotic orbits [9,31,321. These two levels of apparently incomp¡:,tible
behaviour, or description [22]' have been analyzed in several particular dynamical systems
given by differential equations [1,3,5,15,17,19,20,23,24,26,29); but, as we have seen aboye,
these two levels of behaviour, or description, definitively hold for the wide class of the
GMFDSs. (Moreover, the exact [2Í], Kolmogorov and BernoulJi dynamical systems are
mixing dynamical systems [3,6,21,22]).
But the aboye randomness is not an irregular one. Let us consider an ensemble of initial

conditions al, a2, ... in A; if we assume that the ensemble is uniformly distributed over
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A, using the chain of limits just below Th. 5.1 we obtain that for each j = 1, ... ,M,
~¿:~IXBj(Snai) '" ¡Li(Bj) as much as we like whenever n ~ max{no,L} and suffi-
ciently large N. Therefore we can do statistical predictions: going back to our probability
framework, if we make N trials of the experiment En, then approximately N¡,.(Bj) times
the state of the system is in Bj at time n. (The same result is obtained if we consider an
ensemble with any other ¡L-density function concentrated on A).
And that is aH we can predict about the future states of our system: after a certain time,

we cannot do deterministic predictions; however, we can do predidions of a statistical
nature.

ApPENDlX

A. Definitions (more in/ormation in ReJ. (21J)

1) The indicator or characteristic fundion XA of set A is the function that takes value 1
in points in A and O value in points in AC• If a mapping S: X - X is composed with
indicator XA, where A is a subset of X, then XA'S = XS-1A, i.e. XA(SX) = XS-1A(x)
for each x in X.

2) A measure space (X, ~,¡L) is O'-finite if there exists a denumerable partition
{X1,X2, ... } ofspace X, whose Xi are in ~ and ¡L(Xi) < +00.

3) "jt-a.e. x in X" means almost every x in .}( with respect to measure 11, and "jl-a.s."
means almost sure with respect to measure ¡L.A 'ff B means that ¡L(A!:l.B) = O, where
A!:l.B = (A - B) + (B - A) is the symmetric difference. With / and 9 measurable
functions, / 'ff 9 means that ¡IU -1 g) = O, where U -1 g) = {x E X;/(x) -1 g(x)};
that is, /(x) = g(x) ¡L-a.e. x in X; / > means that I'U < O) = O, where U < O) =.•.
{x E X; /(x) < O}, or that U ~ O) 'ff X, or that U < O) 'ff 4>.

4) For a ~-measurable mapping S: X - X the measures ¡Ls-n: ~ - [O,+001 can be
constructed for each n = O, 1,2, ... , defined as ¡Ls-n(A) = ¡L(s-n A) where SoA = A
for each set A in ~. A measure v is absolutely continuous with respect to ¡L, or v is
Il-absolutely continuous, when v(A) = O if ¡L(A) = O for A in ~, and it is denoted by
v « 11. S is said ¡L-nonsingular if ¡LS-I « ¡L.By a ¡L-(probability) density fundion
/ we mean a real and measurable fundion /: X - IR such that / i; and Ix / d¡L= 1.
For each ¡L-density function / the probability measures ¡L/s-n: ~ - ¡O, 1] can be
constructed for each n = 0,1,2, ... defined as ¡L/s-n(A) = Is-nA / d¡L for each set A
in ~.

5) The Frobenius-Perron operator P = P(¡L, S) of the dynamical system (¡L,S) is the op-
erator P: £1 (X, ~, 1') - L1 (X, ~, 1') that associates to each / in L1 (1') a function P/
in £1 (1') such that J B P / d¡L = JS-l B / dI' for each set B in ~; such P / exists and is
¡L-unique as a consequences of the Radon-Nikodym theorem applied to ¡L-nonsingular
measure Il/S-I in the aboye measure space. If / is a ¡L-(probability) density function,
then the probability measures ¡L/s-n, n = 0,1,2, ... , are ¡L-absolutely continuous
and their corresponding density functions are pn /, n = 0,1,2, .. ; that is ¡L/s-n(A) =
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fA P" J d/l for each set A in E. A /l-density function is said P.stationary if PJ = J;
then, a /l-density function J is P.stationary if and only if /l¡ is S-invariant (or S
preserves /l¡), that is /l¡S-1 = /l¡.

B. ProoJs

1. In the framework of Th. 2.2. the pair (/l., S) is ergodic.

In the first place the pair (/l., S) is invariant, that is /l.S-1 A = /l.A for each set A in E,
since

/l.S-I(A) = r d/l. = r J. d/l = r PJ. d/l = r J.d" = /l. (A).
lS-lA lS-IA lA lA

Now, if (/l., S) is not ergodic, then there exists a set A in E such that S-I A = A with
"0< /l.(A) < 1. Let us see that the /l-density l6)J. is a P-invariant density function: as

XA ji; XS-l A then

XA . J. XS-lA . J.
=

/l. (A) ". /l. (A) .

By the Frobenius-Perron operator,

On the other hand,

Since /l.S-1 = /l., then

1 XS-JA 1 XA 1 XA--J. d/l = -- d/l. = --J. d/l,
S-lB /l.(A) B /l. (A) B /l. (A)

but

r XA r XS-lAJB /l.(A/.dl' = JB /l.(A/' d/l

therefore

1 XS-lA 1XS-lA-(A) J. d/l = -(A) J. d/l.5-1 B J.L. B J-L.
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With all this we get that

r XS-IA r XS-IA
}8 P( I'.(A) J.) dI' = } 8 I'.(A) J. dI';

since this eqllality holds for every B in E, then

P (XS-IA J.) = XS-1A J..
I'.(A) I'.(A)

which means that density

is another P-stationary density fllnction, contrary to initial assllmption that J. was the
Ilnique P-stationary density function.

2. Th. 3.1. Let us first stablish a slight enlargement of Birkhoff's ergodic theorem:

Lemma. With the hypothesis oJ Th. 2.1 and with J. being the unique P-stationary density
Junetion, Jor each B in E, ~2:~:~X8(Skx) -n' I'.(B) Jol/ows Jor I'-a.e. x in X.

ProoJ: since the pair (1'•• S) is ergodic, for each B in E ~2:~:~X8(Skx) -n' I'.(B)
follows for I,.-a.e. x in X because of Birkhoff's ergodic theorem. Denoting by B the
set of points i!.l X for wl!ich the foreg~ing ¡¡mit holds, we will have that I'.(B) = 1;
but S-I B = B, then I'(B) = O or I'(SC) = O since (1', S) is G. ergodic. If I,(B) = O
is true, then 1" (B) = O because 1'. « 1'; then it must be that I'( Be) = O, that is

X =¡¡ S = {x; ~ 2:~:~X8(Skx) -n' I'.(B)}.

Now the proof of Th. 3.1: since for every Bi in (3 we have Bi =¡¡ X, it follows that
n:¡Si =¡¡ X, which means that for I'-a.e. point x in X we will have

for every Bi in (3.

3. Th. 4.1.

i) a) ~ b) follows immediately.
ii) Let us suppose that a) or b) holds. Since P has a unique stationary density, using the
preceding Lemma it follows that for each set B in E, ~2:~:~X8(Skx) -n' I,.(B) for I'-a.e
x in X. Now, for each set A in E it follows that Fn(x) = ~2:~:~XA(X)' X8(Skx) -n'
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XA(X) . ¡I.(B) for ¡t-a.e. x in X. Sinee: a) Fn(x) :$ XA(X) for each x in X; b) XA is
¡t-integrable if ¡t(A) < +00, and e) Fn(x) .••• ¡t.(B)xA(X) for ¡t-a.e. x in X; applying
Lebesgue's Dominated Convergenee Theorem it follows that

( Fn(x)¡t(dx) ---> ( ¡t.(B)XA(X)¡I(dx).Jx n Jx
But

n-l n-l

= ~ L 1XA . (XBOS) d¡t = ~ L ¡I(AS-k B);
k=O X k=O

also

L ¡t.(B)XA(X)¡t(dx) = ¡t.(B)¡,(A).

Then, replacing these in the previous ¡¡mit, we obtain

n-I

.!. L¡t(AS-kB) --->¡t(A)¡t.(B).
n n

k=o

So, a) or b) => e).

iii) Lct us show that e) => d). Furthcrmore, we prove that for eaeh f > in'L1(¡,).•.
n-I

~ L ( pk f dI' .••• ¡t.(B) ( f d¡t,
k=OlB lx

and when f is a ¡t-density function the ¡¡mit in d) follows.

l°. f = XA in L1(¡,): sinee fB pk(XA)d¡t = ¡t(AS-kB), then

From now on, wc will use the symbol Pn(g) to denote
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2° let a simple function f = L:::, aiXA, in L, (/l); then

as a consequence of 1° above.

3°. Let f > in L,(I')' 1f {Sm} is a sequence of simple functions, with each Sm in L¡(/l),.".
such that O ~ Sm / m f and Ix Sm d/l ---;n' Ix f d/l, we will have the following:

!Pn(J) -/l.(B) L f d/ll ~ IPn(J) - Pn(Sm)1 + Ipn(Sm) -/l.(B) L f d/ll

~ IPn(J) - Pn(Sm)1 + jPn(Sm) -/l.(B) L Sm d/ll

+ j/l.(B) L Smd/l-/l.(B) L f dl'l;

but

Now, given £¡ > O there exists a mo(£¡) such that Ix(J - Sm) d/l < £¡ for every m 2:
mo(£¡), and therefore IPn(J) - P n(Sm)\ < £, for every m 2: mo(£¡).
By 2° aboye, given £2 > Othere exists a nO(£2. m) such that IPn(Sm) -/l.(B) Ix Sm d/l\

< £2 for ev~ry n 2: nO(£2, m), and

for cvcry m 2:: mo("')'
Now, taking m 2: mo(£¡) and n 2: nO(£2, m) we get
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whieh means that

n-l

~ L r pkf d" ••.• r f. d" r f d" = ".(B) r f dJlo
kdlB lB lx ~

And if f is a Jl-density funetion, then

n-I

~ L r pkf d" ••.• r f. d" = ".(B).
k=OlB lB

With aH this e) ~ d) has been proved.

iv) d) ~ e): if f = ~11)with O< ,,(A) < +00, then f is a Jl-density funetion, and

1 ~ ,,(AS-k B) 1 ~ 1 k ( XA ) 1 XA
;:;¿ Jl(A) = ;:;¿ p ,,(A) d" ••.• ".(B) (A) dJl= ".(B),
k=O k=O B x"

then

n-l

.!. " ,,(AS-k B) --+ ,,(A)Jl.(B)n¿ n
k=O

for aH sets A and B in E with ,,(A) < +00.
Thus, with iii) and iv), we have that e) {o} d).

v) Let us see that e) ~ a) or b). If ~ ¿;;;;~,,(AS-k B) ••.• Jl(A)Jl.(B) for aH sets A and
B in E with Jl(A) < +00, then

1. Il.S-1 = Ji., i.e., the pair (JI., S) is invariant. Since

n-l

~ L,,(AS-k(S-IB)) ••.• "(A),,.(S-IB)
k=O

and

n-l n

.!. " Jl(AS-k-1 B) = n + 1_1_" ,,(AS-k B) _ ,,(AB) --+ ,,(A)Jl.(B),
n¿ n n+l¿ n n
kd bO

then ".(5-1 B) = /".(B) for eaeh B in E, that is /".5-1 = Jl •.
11. Now, sinee dJ" = f. d" is a S-invariant {o} P f. = f., it foHows that our f. is

P-stationary density funetion.
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lIJ. Ir there would be another P-stationary density function g. such that

n-l

.!. " ¡L(AS-k B) - ¡L(A)II.(B),nLJ n
k=O

where dll. = g. dll, we could have II.(B) = ¡L.(B) for each set B in E. But this last
equality is fu g. dll = fu J. d¡L for each set B in E, which in tum implies that g. '¡C J•.
Then, there is a unique P-stationary density function J. or there is only one ¡L-absolutely
continuous probability measure 11•. With all this we have c) => a) and b).
To complete the proof ofTh. 4.1 remember that if there is a unique P-stationary density

function J., then the pair (11., S) is ergodic.

4.Th. 5.1

i) a) => b). The proof is similar to that given for Th. 1.3, but taking off the symbol
~¿~~~,and getting fu pnJ dll n-' fu J. d¡Lfx J d¡L= ¡L.(B) fx J dll for each J ~ in
LI(II).

ii) b) => a). If J = ~11)with 0< ¡L(A) < +00 then J is a ¡L-density function and therefore

1,(As-nB) r n ( XA ) r XA
II(A) = Ju P ¡L(A) d¡Ln-' ¡L.(B) Jx ¡L(A) d¡L= ¡L.(B);

then, II(As-n B) n-' II(A)II.(B) for any sets A and B in E with ¡L(A) < +00.
iii) The fact that J. is the unique P-stationary density function or that ¡L. is the unique
II-absolutely continuous probability measure follows in a similar way as in Th. 3.1 but
taking off the symbol ~¿~:~or considering that weak convergence is a particular case
of weak Cesaro convergence.
That (1'., S) is mixing follows from

11•(AS-
n

B) j J. r n ( XA J) d r J d ()
I,.(A) = AS-nU ¡L.(A) d¡L= Ju P ¡L.(A). ¡Ln-' Ju • ¡L= ¡L. B ,

because the function ~~tA¡f.is a ¡L-density function when O < I,(A) < +00; then
¡L.(AS-n B) n-' II.(A)¡L.(B) for all sets A and B in E. Then, we have proved Th. 5.1.
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