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ABSTRACT. The aim of this work, first of a series of papees with a pedagogical character, is to
discuS8 the background in the formalism developed on the basis of the Wertheim-Baxter method.
This method was applied for the uncoupling of the correlation functions that appear in the
Ornstein-Zernike (OZ) equation. We present the well known results for hard spheres (HS) and
sticky hard spheres (SHS) systems with detail and discuss the sticky potential interpretation.

RESUMEN. El objeto de este trabajo, primero de una serie de carácter pedagógico, es discutir
los fundamentos del formalismo desarrollado sobre la base del método de Baxter- Wertheim. Este
método fue aplicado en el desacoplamiento de las funciones de correlación que aparecen en la
ecuación de Ornstein-Zernike (OZ). Presentamos los bien conocidos resultados para los sistemas
de esferas duras y esferas duras adherentes con detalle y discutimos la interpretación del potencial
adherente.

PACS: 61.20.Gy

l. INTRODUCTION

The aim of the theory of Jiquids is to understand why particular phases of fluids are stable
in a particular range of temperatlU'es and densities and to relate this behavior with the
characteristic magnitudes of their components (molecules, atoms or ions).

A great deal of research on the theory of Jiquids and dense systems has been based
on the original works of Baxter and Wertheim 11,21, in which they have developed a
method based on the factorization of the Ornstein-Zernike (OZ) equation ¡31 using the
Wiener-Hopf [41 technique, which gives, in a natural way, auxiliary functions called factor
correlation functions (FCF).

The OZ equation is a convolution integral equation that involves the direct (c( r)) and
total (h(r)) correlation functions as

h(r) - c{r) = P J ds h(s)c(lr - 51). (1)

.Permanent address: Facultad de Ciencias Físico Matemáticas (BVAP), A.P. 1152, Puebla, Pue.
72001, México.
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The use of approximate relationships between the direct c(r) and total h(r) correlation
functions give us a possibility ofthe elosed solution ofthe OZ equation. These relationships
have been proposed in different ways, namely, Percus- Yevick (PY), mean spherical (MSA),
hypernetted-chain (HNC), and other approximations [5J.
In this work (first of a series of papers) a review is made of the Baxter's factor correlation

functions (FCF) applied to different fluid systems: hard spheres (HS) and sticky hard
spheres (SUS) in the PY approximation. The discussion involves the explicit derivation
of these functions and the thermodynamic properties of both systerns associated with the
FCF's.
The factor correlation functions for other systems (such as electrolytes, dipoles and

dipole mixtures) will be discussed in future works.
The study of liquid systerns requires to take into account that the interactions between

the partieles are basically electromagnetic and that the qualitative and quantitative pre-
dictions of the properties of f1uids would be found with the solution of the many-body
SchrOdinger equation that involves all the nuelei and electrons of the system 15].
There exist sorne important simplifications that allow us to avoid this exceedingly

difficult task. The first one consists in the derivation of the potentia! energy depending
only on the nuelei coordinates due to the fact that the nuelei masses are much greater
than the electron mass and to the assumption of symmetrical molecules, ¡.e., the potential
energy does not depend on their orientation [5]. As a consequence of the high mass ratio
the system can be described by elassical mechanics or e1assical statistical mechanics.
At first approximation, the inter molecular potential energies can be taken as pairwise
additive:

UN =L u(r,j) =L u(lr, - rjl),
i<j i<j

(2)

where r; and rj are the position vectors of par tieles i and j.
The triplet and higher order terms in the expansion of the potential energy can be

accounted for by using perturbative techniques.
With the aboye simplifications, the probability of finding L partieles with coordinates

in (dr¡, ... ,dr Ll and momenta in (dpt. ... ,dpLl, is given by

with

N

P TI dr,dp"
;=1

1P eiJ(N~-E)
- h3Ne '

(3)

(4)

where p. is the chemical potential, f3 = l/kT, where k is Boltzmann's constant and T the
absolute temperature, h is Planck's constant and N the total number of partieles in the
system.
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The dilferential Cactors in Eq. (3) represent three-dimensional elements oC volume and
momenta Cor each partic1e-i, i.e., dr¡ dPi is a six-dimensional volume element oC phase
space Cor the partic1e i, and E, given the initial simplifications can be written as

N 2 N

E =L:,;..+LU¡j(r).
,=1 s i<j

The normalization Cactor 8 = 8(¡t, V, T) is the grand partition Cunction

If we define the configuration integral as

Equation (6) can be written as

(5)

(6)

(7)

where the result oC integration over momenta has been introduced in the Cugacity z. Since
¡t = kTln(z), then the dilference in chemical potentia1s between two states is given by
f).¡t = kTln(a2/a¡), where al and a2 are the activities (see Re£. (61).
Given an explicit interaction potential it is possible, at least Cormally, to obtain the

thermodynamics oC a system, by means oC the previous equations written Cor the grand
canonical ensemble. In the case of.liquid systems, however, it is more convenient to use
the language oC distribution Cundions. These will be introduced, with the discussion oC a
hard-sphere system, in the Collowing section [6,7).

2. HARD-SPHERE SYSTEM. THE CORRELATION FUNCTIONS

Consider a system Cormed by mixed species oC hard spheres (dilferent diameters). A con-
venient treatment oC mixtures oC neutral hard spheres is provided by the Percus- Yevick
(PY) theory [8]. The simplest possible model oC a fluid is a system oC hard spheres, Cor
which the pair potential Uij(r) is given by

{

O,
Uij = Uij(r) =

00,

iCr = Iri - rjl > R<j,

iCr < R<j,
(8)
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where R;j == (R; +Rj)/2 assumes additive diameters. This simple model is ideally suited
for the study of phenomena in which the hard core of the potential is the dominant
factor [9].
The probability of finding a particle i at r can be computed using the Dirac delta

function

and is given by

ó(r' - r) = _1_ J dk eik.(r;-r)
1 811"3 ' (9)

/ Ni)= \ V = Pi, (10)

where Ni is the particle number of i-species.
The combined probability of finding two particles, at rl and r2, respectively, is given by

N

Pij(rl, r2) = L (ó(rl - ri)ó(r2 - rj)) = PiPj9ij(rI2)
ij;;l

(11)

where the function 9ij(r), called the radial distribution function, has been introduced. For
the simpler case of a p"re fluid, it is given by

(12)

Using Eq. (2) we can rewrite the exponential as

e-IJUN = e-IJ¿U;¡ = I1e-lJul¡ = I1(1 + f¡j)
i>i i>i

(13)

where

(14)

is the Mayer function.
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FIGURE I. Liquid otrueture: schematie representation oC the radial diotrihution Cunetion.Note
that it represento the first layers around oC a choicemolecuJeand ohowoa ohort-range order.

Now, Cora hard spheres interaction potential [see Eq. (8)] we have

e.. _ e-flU11(r) _ {1, r > R;j
IJ - -

0, r:5 R;j,

{
O, r > rij

/;j = fij(r) = eij - 1=
-1, r:5rij.

(15)

(16)

Without going into details, we notice the following properties of the expansion of the
pair eorrelation function [Eqs. (11)-(12)1, as given by (13):

(17)

Note that in expression (17) the integration in the numerator is made in rJ,"', rN
only. A schematic view of this function, drawn in two dimensions, can be seen in Fig. I.
The diagrammatic formulation can be reviewed in Stell, Hiroike and Chandler-Ander-

scn-Weeks [101.The end result is .

g(rlZ) = 1+ 0--0

1 2 1 2 1 2 1 2 1 2

= 1+ f ( ) + {sum of all topologically dilferent, connected dia-}
r12 grams on two white l-circles, with no artieulation. ' (18)
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where the graphs represent products of integrals of /-functions and white circles are root
points, black circles are p J dr operators and lines are /(r) factors so that

0--0 -+ /(rI2) = -l/(R - rl2),
1 2

where R is the diameter of hard spheres and l/(x) is the Heaviside function:

(19)

and we have

{
O,

l/(x) =
1,

if x < 0,

if x> 0,
(20)

and

(21)

(22)

When an articulation circle (white or black) is removed from a diagram, the diagram
falls apart into at least one disconnected part with no white circles.
A function of considerable interest is the mean force potential [10,11] related to the

radial distribution function by

g(r) = e-¡lw(r). (23)

The formulation of approximate expressions for w(r) requires another correlation func-
tion, the direct correlation function introduced originally by Ornstein-Zernike (OZ) [31:

h,j(r) = C;j(r) +L Pk J dr' h'k(r')ckj(lr - r'l),
k

(24)

where the sum on k refers to the species in the mixture and the total correlation function
is given by (an elementary discussion of the total correlation function, for a monodisperse
system, can be seen in Ref. [7])

(25)

The OZ equation means that the total correlation between particles 1 and 2 is given
by the direct correlation between them [first term of r.h.s. of (24)] and the sum of the
direct or total correlations of 1 with 3 (variable) and 3 with 2 [integrals sum in the r.h.s.
of (24)].
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The importance of the direct correlation function is that it has a simple structure, and
that simple approximations for it work very well in many cases [101:

= {sum of .all d~agrams of g12(r) Eq. (18) that have}
no cuttmg cueles

(26)

When a cutting cirele is removed from a diagram, the diagram falls apart into two (or
more) disconnected pieces which may or may not contain a white cirele.

On the other hand, from Eq. (23) we have

+ ... (27)

Comparing the diagrams of h12(r),c12(r) and w12(r) we can see that

{

higher }
order

+ bridge
diagrams

Of, rewriting,

(28)

Here we caH {bridge diagrams} the sum of the higher order diagrams in the expansiono
The different approximations marle for c(r) allow us to solve the Ornstein-Zernike

equation for various systems. The hypernetted chain approximation (HNC) cuts aH the
terms corresponding to bridge diagrams from Eq. (28):

c(r) = -{3u(r) + h(r) -Ing(r)

or, expanding the logarithm and considering that lim h(r) = O,
r-oo

c(r) = -{3u(r).

(29)

(30)
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Al! the terms are of short range except the tirst in the right hand side of Eq. (27). This
fact permits us to consider only this tirst term as an approximation for c( r) for long range
potentials. This is the mean spherical approximation (MSA).
For our system of hard spheres the MSA is equivalent to Percus- Yevick approximation

(PYA) and is written as [12-14]

{

C;j(r) = 0,

hij(r) = -1,

for r > R.;j,

for r < R.;j.

(31)

The OZ Eq. (24) for a system of hard spheres was tirst solved by Wertheim and
Thiele [2,15] and although there exist several ways to solve it, subject to the PY dosure
conditions [Eq. (31)], we choose the simplest, in our opinion, developed by Baxter [1,131.

3. FACTORIZATION OF TIIE ORNSTEIN-ZERNIKE EQUATION

Consider tirst the Fourier transforms of the OZ Eq. (24) for a pure fluid of hard spheres:

c(k) = J dreikorc(r),

h(k) = J dr eik.rh(r).

By integrating the angular part we have

c(k) = 4". J dr r2jo(kr)c(r),

where

. (k ) _ sin kr
Jo r - ---¡;;:-.

Integrating by parts

c(k) = 2 ¡R drS(r)cos(kr),

with

S(r) = 2".lR ds sc(s).

(32)

(33)

(34)

(35)



CORRELATION FUNCTIONS 1:... 801

Similarly

h(k) = 411' LX> dr r2jo(kr)J(r),
with

J(r) = 211' 100 ds sh(s).
The Fourier lransform of lhe oz equalion is lherefore

or, equivalently,

given lhat

Eq. (39) can be wrillen as

h(k) - c(k) = ph(k)c(k)

or

[1+ ph(k)] [1 - pc(k)] = 1.

(36)

(37)

(38)

(39)

(40)

(41)

(42)

For our syslem, lhe firsl faclor, 1 + ph(k), is a bounded funclion wilh no poles in lhe
real k-axis. Therefore, 1 - pc(k) has no zeros on lhe real k-axis. Because of lhe spherical
symmelry of c(r), c(k) = c( -k), lhal is, c(k) is an even funclion of k. Thus, using the
Wiener-Hopf factorizalion lheorem [41, 1 - pc(k) can be faclored as

1- pc(k) = [1 - pQ(k)J[I- pQ(-k)], (43)

where Q(k) has no zeros in lhe upper complex half plane and Q( -k) has no zeros in lhe
lower complex half plane. Since c(k) is an enlire funcUon, Q(k) musl be enlire also. Nolice
lhal lhe properly (43) is nolhing really special. Il is simply lhe square rool properly: any
even fundion of k can be wrillen 'as

00

f(k2) = TI e.4>(at - k)(a¡ - k)e-'''.
i=l
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For example,

00

cosk = eTI [i(2n+ 1)2 +k2]
n=l

The factorization then is really taking a square root and, as sueh, is not uniquely
defined. Now, substituting (43) into (42) in the form

[1+ ph(k)][1 - pQ(k)] = :
1- pQ(-k)

(44)

and taking the inverse Fourier transformo \Ve have for the right hand side of Eq. (44)

1 f dk e-ikr
211"; 1 _ pQ(k) = O, (45)

where we have closed the cireuit through the lower half k-plane, where 1 - pQ(k) has no
zeros. This means that the funetion has no poles and, for that reason, the integral must
be zero. The other member of Eq. (44),

_1 J dk eikr [1 + ph(k) - pQ(k) - p2h(k)Q(k)] = 6(r),
211"

must be computed term by term:

(46)

2111"J dre-ikr J dr¡ eikr1J(r¡) = J dr¡ J(r¡)6(r - r¡) = J(r). (47)

\Ve finally get, using (36),

J(r) = Q(r) + p lR
dr¡ J(lr - rd)Q(r¡), r > O. (48a)

Fourier inversion of the defining equation for Q(r) (43) yields, using (32),

S(r) = Q(r) - p J dr¡ Q(r¡)Q(r¡ - r). (48b)
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We need to salve the Eqs. (48) to find the unknown factor function Q(r). The first
property of Q(r) is that it must be of the same range as c(r). Remembering (43) and the
faet that the factor funetions are defined only for O< r :5 R:

211"¡R ds se(s) = Q(r) - p ¡R drl Q(r¡)Q(rl - r)

= O, for r > R,

whieh neeessarily requires tltat

Q(r) =0, forr~R.

(49)

(50)

(5Ia)

We need to eonsider (48a) only for r < R. In that case, because of the definition of
J(r) IEq. (37)1, and tite boundary eondition Eq. (30), we Itave for r < R

J(r) = 211" loo ds sh(s) = -211"¡R ds s + 271" Loods sh(s)
(5Ib)

then, by taking sueeessive derivatives (Q'(r) = dQ/dr), we can show tltat Q(r) must be
a polynomial of the seeond degree, sinee

QIII(r) = O,

and that, to eonform to (50), it must be of tite form

Q(r) = (r - R) [~ro +,8].

(52)

(53)

To find tite actual values of tite eoefficients a and ,8 we take sueeessive derivatives
of (48a):

Now,

211"r= Q'(r) + 211"p¡R dr¡ (r - r¡)Q(r¡),

271" = Q"(r) + 271"p¡R dr¡ Q(r¡).

rR• R2,8 R3aJo ¡¡r¡ Q(r¡) = --2- -12'

¡R R3,8 ftla
dr¡ r¡Q(r¡) = -- - -.

o 6 24

(54)

(E5)

(56)

(57)
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So that, if we take r = R/2 in (54), we get

'lrR= Q'(R/2) + 27rp [- ~~] ,

but Q'(R/2) = (3, so that

(58)

pR3'1r
with d = 1 - --,

6
(59)

where d is the fraction of volume not occupied by the hard spheres. Eq. (55) yields

_ 2'1r[1 pR2 (3] _ 2'1r[ 'IrPR3]
0'-- +-- _- 1+--

d 2 d 2d'

(60)

(61)

which completes our solution. To compute the pair correlation functions, we simply sub-
stitute Q(r) into Eqs. (48).
To compute the pair correlation function (or radial distriLution function) g(r) we take

2'1rrh(r) = 2'1rplR dr¡ h(r - r¡)g(r - r¡)Q(r¡), r> R, (62)

to which we add the analytic continuation of (54) for r > R. Remembering that g(r) =
h(r) + 1, Eq. (25), we obtain

2'1rrg(r) = Q'(r) +lr-R dr¡ h(r - r¡)g(r - r¡)Q(r¡),

which can be solved numerically (see Fig. 2, Appendix and Ref. [14]).
It will be interesting to notice that when r = R

()' RO'2'1rRg R = Q (R) = (3+2'

(63)

(64)

The result shows layering of the spheres around the central one. The short range struc-
ture in a dense fluid is similar to that of a close packed solid, but it is quickly washed out.
The PY theory is quite good in representing the pair correlation function of a hard core
fluid, as can be seen by comparing with computer simulations [5,9,12,161.
An equivalent treatment is made to solve the more general case of a mixture of hard

spheres [17,181.
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FIGURE 2. The radial distribution function for a HS systero for two different reduced densities:
a) r¡= 0.1 and b) r¡= 0.4469. In both we take z = TIR, where T is the distance between two hard
spheres and R is their diameter.

Sorne thermodynamic quantities of fluid systems whose interaction potential is known
can be written in terms of the radial distribution function and also, as we will see, in
terms of the FCF's of Baxter 19,131,

4. THERMODYNAMIC PROPERTIES OF IIARD SPIIERES (HS) AND STICKY IIARD SPHERES
(SHS) SYSTEMS

In this section we deduce sorne thermodynamic quantities for a single hard spheres system
following the formalism of Baxter's original work.
First, we deduce the mean energy U in the grand canonical ensemble

3 1" ZN J J ¡3U= 'i(N)kT+ -28 L..--(N---2-)! oo. dr¡oo.drNt/>12(r)e- N,

therefore

UN == (~) = ~kT+ ~p J dr t/>(r)g(r), (65)

/



812 L. BLUM ET AL.

where lhe firsl lerm is lhe mean energy of a ideal gas and lhe second lerm is called lhe
excess energy [9,7,17].
If we derive lhe grand parlilion fundion (6) wilh resped lo lhe volume V, we can find

lhe known virial pressure [6]

or, considering (10) and (11) and lhe limiling case V -+ 00,

27rp2 jP/3 = p - -3- drr3,p'(r)g(r),

where ,p' is lhe derivalive wilh resped lo r.
From lhe lhermal compressibilily coefficienl

I<T = ~ 8p I '
p 8P VT

(66)

lhe slale equalion for lhe grand canonical ensemble PV /3= log 8, and Eq. (10), we can
oblain directly [9,17]

k T 8p I _ 8(N) I = (N
2
) - (N

2
)

• 8P V,T - 8(log8) V,T (N)

We can easily show lhal [9]

and we can rewrile (67) as

kT;;1 =l+Pjdrh(r),
V,T

and by lhe fact lhal lhe inlegral in (68) is h(O) [9,17], we get

(67)

(68)

(69)

This latter equation can be integraled over p or '1 :; 7rpR" /6 lo obtain th. compress-
ibilily slale equalion for a hard-sphere fluid syslem [9,16,17]:

P 1+'1+'12=----
pk.T (1 - '1)3 '

(70)
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Now we are going to discuss a second model, for which the PYA gives an analytic
solution, caBed sticky hard-spheres (SHS) system. For the monodisperse SHS system
Baxter has proposed an analytical form for the sticky potential [111:

/34>(r) =

+00,

1 [
12r(R - R!)]

og R '

o,

0< r < R!,

R!<r<R,

r> R,

(71 )

where r is an adimensional measurement of temperature, being zero for zero temperature
and taking higher values when the temperature increases. This potential model contains
two of the most important ingredients of a real molecular interaction, namely, a harsh
repulsion and an attraction, and yet is the only potential, with these properties, for which
the PY approximation has been solved analytically. We consider in this work the Iimit
R'- R.
For this system, the Mayer function, [Eq. (14)1, takes the form

{

-1+ R!é(r-R!) forO < r < R,
f(r) = 12r'

O, for r > R,

and the total correlation function is

(72a)

{

-1+ >.R!é(r- R!)
h(r) = 12'

O,

for R! < r < R,

for O< r < R',
(72b)

with >. a para meter to be determined below [20J.Following the same procedure as for the
hard-spheres case, we find that the FCF can be written as

where

(73)

1+2'1-1-'
C>= (1 - '1)2 ,

and the 1-' and '1 parameters are defined as

7fpR2
'1 = -6-'

with ), an adimensional parameter.

1-' -'3'1
/3 = 2(1 _ '1)2'

1-'= ),'1(1 - '1),

(74)

(75)
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The PY approximation can be written as

1+ h(r) = [1+ f(r)]y(r),

where y(r) is defined by

y(r) = 1+ h(r) - c(r),

(76)

(77)

which is a continuous Cunction in the ¡¡mit R! = R. Qne can take the Iimiting forms oC
f(r) and h(r), [Eqs. (72a) and (72b)], and then obtain, Cor the PY approximation, using
the Eqs. (76) and (77):

or

'1>' '1>.2--+-.
1 - '1 12

(78)

This equation determines the behavior oC >. [9,19}.
The compressibility state equation for the SIIS system can be obtained, again, Crom

Eq. (69) with the definitions of Eq. (75)

1'3
P 1+ '1+ '12 - 1'(1 + '1/2) + 36'1=-----------pk.T (1-'1)3

(79)

Notice that if we make >. = O we get again the state equation for liS Eq. (70): >. is a
measurement oC stickiness.
The state equation Cor liS in the PY approximation [Eq. (70)] is well compared with

the obtained by another approximations [51. In the SIIS case a phase transition can be
observed due to the complex valu~s of the stickiness parameter >. [9,19].

ApPENDIX

Using the algorithm oC Perram [14], one can plot the total correlation function (or the
radial distribution function) for different concentrations:

/..........................•••.•............ \

Implementation ot Perram'. method tar the
evaluation ot h(x) and g(x) (with x-r/R).

Honodiapera. hard-apheres case.
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R - hard .phere diemeter
teta • r . h(r)
x - r/R
q(x) - Barter'. funetion
dq(x)- derivative of Barter'. funetiono

Language: Turbo C++
, /

.1nclude <ma~h.h>
#include <stdio.h>
#include <conl0.h>
#inelude <ftool.h>

/+ variables declaration +/

II teta(x) valueo file
II h(x) valueo file
II g(x) valueo file

II paeking fraetion
II defined funetion ao r . h(r) for r outoide

tI values 01 the total correlation functioD
II value. of the radial diotribution funetion
II valueo of q(x) between O and 1
II ineremento of x-n . delta
tI number o:t intervala trom 1.0
II number of divioiono of 1

double ete.;
double teta(SOO);
of lntegration range
double x (500); II
sphere core
double h(SOO);
double g(SOO);
double qx(100);
double delta;
int regiana;
int D_int;
FILE ofopenO,

*tdata.
*hdata.,
-gda.ta;

x-r/R la the relative distance from hard

lo funetion deelarationo 01

double q(double x);
double dq(double x);
double Al(double eta);
double A2(double eta);

lo main progrem 01

mainO
{

lnt k;

elrserO;
printf("\n Reduced density: 11);
eta - read_flt(O,O,8);
printf("'n Number of regions (from x-LO): ");
regiaDs - read_int(O,O,2);
printt("\n Number0'1 diviaiona o:t 1.0: lO);
n_int - read_int(O,O,3);
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l' ov.lu.t1on 01 x. q(x). tot.(x) ond h(x) in (O.l-dolt.) '1
k • O;
do {

x[kl - k'dolt.;
qx[kl - q(x[kl);
tot. [kl - -x [kl ;
h[kl - -1.0; l' - tot.[kl/x[kl '1
g[kl - h[kl + 1;

} wh110 (++k (- n_1nt);

l' cont.ct v.luo. 01 x. q(x). tot.(x) ond h(x) '1
x [n_1ntl - 1.O;
qx[n_1ntl - 0.0;
tot.[n_1ntl - dq(x[n_1ntl) - 1;
h[n_1ntl - tot.[n_1ntl/x[n_1ntl;
g [n_1ntl - h [n_1ntl + 1;

l' v.luo. 01 x. q(x). tot.(x) ond h(x) 10r x>1.0 '1
l' Porram' •• 1gor1th '1
k • 1;
do {

int a • 1; double sum • 0.0;
do {

.um +- qx[.l.tet.[n_1nt+k-.l;
} wh11e (++. ( n_1nt);
x[n_1nt+kl - (n_1nt+k)'delt.;
tot.[n_1nt+kl - 12'et.'dolt./(1-6.0'et.'dolt.'qx[Ol)'.um;
h[n_1nt+kl - tet.[n_1nt+kl/x[n_1nt+kl;
g[n_1nt+kl - h[n_1nt+kl + 1;

} wh110 (++k <- reg1on.'n_1nt);
tdata - fopen(lIperrt.datll,llv");
hdata • fopen("perrb.datll ,'IV");
gdata • fopen(llperrg.datll ,'IV");

l' d.t. to 1110. '1
/. valuea 01' correlation functiona in x-1- ./
fprintf(tdata,"%8.3f %8.3f \n".l.0,-1.0);
1pr1nU (hd.t •• "y'8.31 %8.31 \n" ,loO.-1. O) ;
1pr1nU(gd.t •• "Y.8.31 %8.31 \n" ,1.0.0.0);
/. valuea ot correlation tunctions tor x>1.0 ./
10r (k - n_1nt; k <- (reg1on.+l)'n_1nt; k++) {

pr1ntt("\n x-%8.31. $\thoto$-Y.8.31. h(x)-Y.8.31.
g(x)-%8.31" .x[kl ,tot.[kl .h[kl .g[kl);
1pr1ntt(td.t ••••%8.31 %8.31 \n".x[kl.teto[kJ);
1pr1nU(hd.t ••••%8.31 %8.31 \n".x[k],h[kJ);
1pr1nU(gd.t ••••Y.8.31 %8.31 \n".x[k],g[kJ); }

fcloae(tdata):
1clooe(hd.t.) ;
:teloae(gdata)¡

}
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double q(double x)
{ return O.S'Al(eta)'(x'x-l)+A2(eta)'(x-l)¡ }

double dq(double x)
{ return Al(eta)'x+A2(ota)¡ }

double Al(double eta)
{ return (1.0+2.0.eta)/pov«1.0-eta),2)¡ }

double A2(double eta)
{ return (-1.S'ota)/pov«1.0-eta).2); }
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