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ABSTRACT. The aim of this work, first of a series of papers with a pedagogical character, is to
discuss the background in the formalism developed on the basis of the Wertheim-Baxter method.
This method was applied for the uncoupling of the correlation functions that appear in the
Ornstein-Zernike (OZ) equation. We present the well known results for hard spheres (HS) and
sticky hard spheres (SHS) systems with detail and discuss the sticky potential interpretation.

REsuMEN. El objeto de este trabajo, primero de una serie de caricter pedagdgico, es discutir
los fundamentos del formalismo desarrollado sobre la base del método de Baxter-Wertheim. Este
método fue aplicado en el desacoplamiento de las funciones de correlacién que aparecen en la
ecuacién de Ornstein-Zernike (OZ). Presentamos los bien conocidos resultados para los sistemas
de esferas duras y esferas duras adherentes con detalle y discutimos la interpretacién del potencial
adherente.

PACS: 61.20.Gy

1. INTRODUCTION

The aim of the theory of liquids is to understand why particular phases of fluids are stable
in a particular range of temperatures and densities and to relate this behavior with the
characteristic magnitudes of their components (molecules, atoms or ions).

A great deal of research on the theory of liquids and dense systems has been based
on the original works of Baxter and Wertheim [1,2], in which they have developed a
method based on the factorization of the Ornstein-Zernike (OZ) equation [3] using the
Wiener-Hopf [4] technique, which gives, in a natural way, auxiliary functions called factor
correlation functions (FCF).

The OZ equation is a convolution integral equation that involves the direct (c(r)) and
total (h(r)) correlation functions as

hr) — efr) = p / ds h(s)e(jr — si). )

*Permanent address: Facultad de Ciencias Fisico Matematicas (BUAP), A.P. 1152, Puebla, Pue.
72001, México.
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The use of approximate relationships between the direct ¢(r) and total h(r) correlation
functions give us a possibility of the closed solution of the OZ equation. These relationships
have been proposed in different ways, namely, Percus-Yevick (PY), mean spherical (MSA),
hypernetted-chain (HNC), and other approximations [5)].

In this work (first of a series of papers) a review is made of the Baxter’s factor correlation
functions (FCF) applied to different fluid systems: hard spheres (HS) and sticky hard
spheres (SHS) in the PY approximation. The discussion involves the explicit derivation
of these functions and the thermodynamic properties of both systems associated with the
FCF'’s.

The factor correlation functions for other systems (such as electrolytes, dipoles and
dipole mixtures) will be discussed in future works.

The study of liquid systems requires to take into account that the interactions between
the particles are basically electromagnetic and that the qualitative and quantitative pre-
dictions of the properties of fluids would be found with the solution of the many-body
Schrodinger equation that involves all the nuclei and electrons of the system [5].

There exist some important simplifications that allow us to avoid this exceedingly
difficult task. The first one consists in the derivation of the potential energy depending
only on the nuclei coordinates due to the fact that the nuclei masses are much greater
than the electron mass and to the assumption of symmetrical molecules, i.e., the potential
energy does not depend on their orientation [5]. As a consequence of the high mass ratio
the system can be described by classical mechanics or classical statistical mechanics.
At first approximation, the inter molecular potential energies can be taken as pairwise
additive:

Un = Z u(rij) = Z u(|ri — rjl), (2)

i<j i<j

where r; and r; are the position vectors of particles i and j.

The triplet and higher order terms in the expansion of the potential energy can be
accounted for by using perturbative techniques.

With the above simplifications, the probability of finding L particles with coordinates
in (dry,...,dry) and momenta in (dpy,...,dpL), is given by

N
’Pndr,- dp;, ‘ (3)
=1
with
1 |
s h:H\fGeﬁ(Mu E)’ )

where g is the chemical potential, 3 = 1/kT, where k is Boltzmann’s constant and 7" the
absolute temperature, h is Planck’s constant and N the total number of particles in the
system.
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The differential factors in Eq. (3) represent three-dimensional elements of volume and
momenta for each particle—i, i.e., dr;dp; is a six-dimensional volume element of phase
space for the particle i, and E, given the initial simplifications can be written as

E= i + ) uis(r). (5)

The normalization factor © = ©(u, V,T) is the grand partition function

2. BN
e=zﬁ/'"]dn-°-dr~dp1-~dp~e"33- (6)
N=1 ’

If we define the configuration integral as
Zy = /drl---drN e PUN (7)

Equation (6) can be written as

| 3]

N
|ZN7

2

N=1

where the result of integration over momenta has been introduced in the fugacity z. Since
p# = kT In(z), then the difference in chemical potentials between two states is given by
Ap = kT In(az/a;), where a; and a; are the activities (see Ref. [6]).

Given an explicit interaction potential it is possible, at least formally, to obtain the
thermodynamics of a system, by means of the previous equations written for the grand
canonical ensemble. In the case of liquid systems, however, it is more convenient to use
the language of distribution functions. These will be introduced, with the discussion of a
hard-sphere system, in the following section [6,7).

2. HARD-SPHERE SYSTEM. THE CORRELATION FUNCTIONS

Consider a system formed by mixed species of hard spheres (different diameters). A con-
venient treatment of mixtures of neutral hard spheres is provided by the Percus-Yevick
(PY) theory [8]. The simplest possible model of a fluid is a system of hard spheres, for
which the pair potential u;;(r) is given by

0, ifr=|r-rj|> Ry,
wij = wij(r) = (8)

oo, kr< Ry
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where R;; = (R; + R;)/2 assumes additive diameters. This simple model is ideally suited
for the study of phenomena in which the hard core of the potential is the dominant
factor [9).

The probability of finding a particle ¢ at r can be computed using the Dirac delta
function

§(ri —r) = S_EE/dkeik.(r.-—r)’ (9)
and is given by
N; 1 N;
i) =3 (6 =) = [ aes-dey e > 6w =)
i= i=

where N; is the particle number of i—species.
The combined probability of finding two particles, at ry and r,, respectively, is given by

N
pij(ri,ra) = 2(5(1‘1 —1;)8(rz — r;)) = pip;gij(r12)

t,J=1
= pip;gi;(T), (11)

where the function g;;(r), called the radial distribution function, has been introduced. For
the simpler case of a pure fluid, it is given by

N(N -1 -
p(riz) = (TNl/drs---drNe AUN = p?g(r12). (12)

Using Eq. (2) we can rewrite the exponential as

e~ U — e—ﬂzﬂi_f - He—ﬂﬂu == H(l + fij)

i>j i>j

=1+Zfsj+ZZfijfk:+“', (13)

where
fis(r) = e~Puss) _ 1 (14)

is the Mayer function.
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SECOND COORDINATION SHELL

FiGURE 1. Liquid structure: schematic representation of the radial distribution function. Note
that it represents the first layers around of a choice molecule and shows a short-range order.

Now, for a hard spheres interaction potential [see Eq. (8)] we have

1, =

€ij = e~ Buii(r) — { T4 (15)
01 r S EJ;

0, T > Tij

fii=Fij(r)=ej-1= { (16)

-1, r< Tij-

Without going into details, we notice the following properties of the expansion of the
pair correlation function [Eqs. (11)-(12)), as given by (13):

N(N —1) [drs---den [ (1 + fi5)
P fdrl roodry Hi)j(l -+ fij)-

g9(r) =g(ri2) = (17)

Note that in expression (17) the integration in the numerator is made in r3,---,ry
only. A schematic view of this function, drawn in two dimensions, can be seen in Fig. 1.

The diagrammatic formulation can be reviewed in Stell, Hiroike and Chandler-Ander-
sen-Weeks [10]. The end result is '

9(7'12)=1+o—o+o/\o+vo+l l+cr>1+---
1 2 1 2 1 2 1 2 1 2

sum of all topologically different, connected dia.-} (18)
grams on two white 1-circles, with no articulation. J °

=1+f("12)+{



804 L. BLUM ET AL.

where the graphs represent products of integrals of f—functions and white circles are root
points, black circles are p f dr operators and lines are f(r) factors so that

0—o0 — f(r12) = —0(R—r12), (19)
1 2
where R is the diameter of hard spheres and 6(z) is the Heaviside function:
0, ifz<0,
0(z) = (20)
1, H=>10,

and we have
OAO = P/dl‘a f(Tla)f(Taz) (21)
1 2

and

l l L f dry deg fria)f(raa)f (Fez)- (22)
1 2

When an articulation circle (white or black) is removed from a diagram, the diagram
falls apart into at least one disconnected part with no white circles.

A function of considerable interest is the mean force potential [10,11] related to the
radial distribution function by

g(r) = e7Pv(), (23)

The formulation of approximate expressions for w(r) requires another correlation func-
tion, the direct correlation function introduced originally by Ornstein-Zernike (OZ) [3]:

ho(r) = )+ 3 o [ ' bl e =, (24)
k

where the sum on k refers to the species in the mixture and the total correlation function
is given by (an elementary discussion of the total correlation function, for a monodisperse
system, can be seen in Ref. [7])

hij(r) = gij(r) — 1. (25)

The OZ equation means that the total correlation between particles 1 and 2 is given
by the direct correlation between them [first term of r.h.s. of (24)] and the sum of the
direct or total correlations of 1 with 3 (variable) and 3 with 2 [integrals sum in the r.h.s.
of (24)].
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The importance of the direct correlation function is that it has a simple structure, and
that simple approximations for it work very well in many cases [10]:

o(r1z) =0—0 + vo +{2l—l + l:l + %a@wr %oég +}

_ [sum of all diagrams of g;2(r) Eq. (18) that have

- {no cutting circles } (26)

When a cutting circle is removed from a diagram, the diagram falls apart into two (or
more) disconnected pieces which may or may not contain a white circle.
On the other hand, from Eq. (23) we have

Bwiz(r) = —Ingia(r)

= Pua(r) + o/\o + l_l + B l_—l + %o@o ¥ m +-0 (27)

Comparing the diagrams of hy2(r),c12(r) and wy2(r) we can see that

higher
Ing12(r) = —PBurz(r) + haa(r) = era(r) + % + Eﬁ?fée
diagrams
or, rewriting,
c12(r) = —=Busa(r) + h12(r) — In g12(r) + {bridge diagrams}. (28)

Here we call {bridge diagrams} the sum of the higher order diagrams in the expansion.

The different approximations made for ¢(r) allow us to solve the Ornstein-Zernike
equation for various systems. The hypernetted chain approximation (HNC) cuts all the
terms corresponding to bridge diagrams from Eq. (28):

c(r) = —Bu(r) + h(r) — Ing(r) (29)

or, expanding the logarithm and considering that lim h(r) =0,
r—00

e(r) = —Bu(r). (30)
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All the terms are of short range except the first in the right hand side of Eq. (27). This
fact permits us to consider only this first term as an approximation for ¢(r) for long range
potentials. This is the mean spherical approximation (MSA).

For our system of hard spheres the MSA is equivalent to Percus-Yevick approximation
(PYA) and is written as [12-14]

{c.-,-(r):O, for r > Ri;,
(31)

hij(r) = -1, forr < R;;.

The OZ Eq. (24) for a system of hard spheres was first solved by Wertheim and
Thiele [2,15] and although there exist several ways to solve it, subject to the PY closure
conditions [Eq. (31)], we choose the simplest, in our opinion, developed by Baxter [1,13].

3. FACTORIZATION OF THE ORNSTEIN-ZERNIKE EQUATION

Consider first the Fourier transforms of the OZ Eq. (24) for a pure fluid of hard spheres:
é(k) = /dr e*Te(r),

h(k) = f dr e®Th(r).

By integrating the angular part we have

é(k) = 4wjdrr2jo(kr)c(r), (32)
where
: _ sinkr
JO(kT) == kr (33)
Integrating by parts
R
gk)= 2/ dr S(r) cos(kr), (34)
0

with

R
Sir) = 211'/ ds sc(s). (35)
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Similarly
_ o0
h(k) = 411'[ dr r¥jo(kr)J(r),
0
with
o o]
J(r) = 2#/ ds sh(s).

The Fourier transform of the OZ equation is therefore

h(k) — &(k) = P/dl‘lz kT2 /dr;; h(r13)c(raz)
or, equivalently,

Fl(k) - E(k) = p/dl‘m eik"l’h(r13)fdr3g eik-r”C(T;;g),
given that

r12=r1—r2=r1—r3—(r2—r3).
Eq. (39) can be written as
h(k) — &(k) = ph(k)é(k)

or

[1+ ph(k)] [1 - pé(k)] = 1.

807

(36)

(37)

(38)

(39)

(40)

(41)

(42)

For our system, the first factor, 1+ ph(k), is a bounded function with no poles in the
real k-axis. Therefore, 1 — pé(k) has no zeros on the real k-axis. Because of the spherical
symmetry of ¢(r), é(k) = &(—k), that is, &(k) is an even function of k. Thus, using the

Wiener-Hopf factorization theorem [4], 1 — pé(k) can be factored as

1 pé(k) = [1 - pQ(k)] [1 - pQ(~F)],

(43)

where Q(k) has no zeros in the upper complex half plane and Q(—k) has no zeros in the
lower complex half plane. Since ¢(k) is an entire function, Q(k) must be entire also. Notice
that the property (43) is nothing really special. It is simply the square root property: any

even function of k can be written as

oo

f(k?) = He""’(a"-" — k)(a] — k)e™*®.

i=1
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For example,

oo
cosk = cH [g(Qn + l)2 + kz]

= {ﬁ ik + 2";’11r]} {E[l [~k + 2“2""11r]}.

The factorization then is really taking a square root and, as such, is not uniquely
defined. Now, substituting (43) into (42) in the form

= " 1
[1+ ph(k)] [1 - pQ(k)] = 1,008 (44)

and taking the inverse Fourier transform. We have for the right hand side of Eq. (44)

1 dk e~ k"

i P 1= p0) (43)

where we have closed the circuit through the lower half k-plane, where 1 — pQ(k) has no
zeros. This means that the function has no poles and, for that reason, the integral must
be zero. The other member of Eq. (44),

1 2 " p o
g [ e [1-4 oA - pQ(K) - PRI = 80r), (46)
must be computed term by term:
;;; f dr e~ " / dry e*m J(r) = / dry J(r1)8(r — 1) = J(r). (47)
We finally get, using (36),
R
IO =QE)+s [ dndlr=ri@m), >0 (18a)
0
Fourier inversion of the defining equation for Q(r) (43) yields, using (32),

e / dry Q1) Q(rs — 7). (48b)
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We need to solve the Egs. (48) to find the unknown factor function Q(r). The first
property of Q(r) is that it must be of the same range as c(r). Remembering (43) and the
fact that the factor functions are defined only for 0 < r < R:

R R
211'/ dssc(s) = Q(r) — p[ dr1 Q(r1)Q(r1 — 1)

r

=0, forr>R, (49)
which necessarily requires that
Q(r)=0, forr>R. (50)

We need to consider (48a) only for 7 < R. In that case, because of the definition of
J(r) [Eq. (37)], and the boundary condition Eq. (30), we have for r < R

00 R oo
dlr) = 21r/ ds sh(s) = —21] dss+21r/ ds sh(s) (51a)
T P R
=7(r? — R%) 4+ by, forr <R, (51b)

then, by taking successive derivatives (Q'(r) = dQ/dr), we can show that Q(r) must be
a polynomial of the second degree, since

Q"(r) =0, (52)
and that, to conform to (50), it must be of the form
Q(r) = (r - R)[3ra + B]. (53)

To find the actual values of the coefficients a and 3 we take successive derivatives
of (48a):

R
2rr = Q'(r) + 21rp/ dry (r —71)Q(m1), (54)
0
R
25 = Q")+ 27 | dni Q). &)
0
Now,
o R R®
/0 dTl Q(T’l) = —Tﬂ - 1—20, (56)

R
d SO 1
/0 rimQ(r) 6 71 (57)
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So that, if we take r = R/2 in (54), we get

3
7R = Q'(R/2) + 2mp [- ’i—f] , (58)
but Q'(R/2) = B, so that
_ TR . . pR37r
ﬁ__E’ with A=1- 5 (59)

where A is the fraction of volume not occupied by the hard spheres. Eq. (55) yields

R?3 R
2r = a+2mp [—-—-2-— - F] y (60)
g8, [ 4, BB | OB g ¢ HID (61
T A 2 T A 2A |’ )

which completes our solution. To compute the pair correlation functions, we simply sub-
stitute Q(r) into Eqgs. (48).
To compute the pair correlation function (or radial distribution function) g(r) we take

R
2nrh(r) = 21rp'/0 drih(r = r)g(r —=m)Q(r1), >R, (62)

to which we add the analytic continuation of (54) for r > R. Remembering that g(r) =
h(r) + 1, Eq. (25), we obtain

r—R
2rrg(r) = Q(r) + [o dry hir — r1)glr — r)Qr), (63)

which can be solved numerically (see Fig. 2, Appendix and Ref. [14]).
It will be interesting to notice that when r = R

2Rg(R) = Q(R) = f+ o (64)

The result shows layering of the spheres around the central one. The short range struc-
ture in a dense fluid is similar to that of a close packed solid, but it is quickly washed out.
The PY theory is quite good in representing the pair correlation function of a hard core
fluid, as can be seen by comparing with computer simulations [5,9,12,16].

An equivalent treatment is made to solve the more general case of a mixture of hard
spheres [17,18].
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FIGURE 2. The radial distribution function for a HS system for two different reduced densities:
a) 7 = 0.1 and b) = 0.4469. In both we take z = r/R, where r is the distance between two hard
spheres and R is their diameter.

Some thermodynamic quantities of fluid systems whose interaction potential is known
can be written in terms of the radial distribution function and also, as we will see, in
terms of the FCF’s of Baxter [9,13].

4. THERMODYNAMIC PROPERTIES OF HARD SPHERES (HS) AND STICKY HARD SPHERES
(SHS) sYSTEMS

In this section we deduce some thermodynamic quantities for a single hard spheres system
following the formalism of Baxter’s original work.
First, we deduce the mean energy U in the grand canonical ensemble

N
= %(N)kT-}- Eé’Zﬁf"‘fdrl"'drN¢12(")e—ﬁU~’

therefore

uv = s = PT+ b f dr $(r)a(r), (65)
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where the first term is the mean energy of a ideal gas and the second term is called the
excess energy [9,7,17].

If we derive the grand partition function (6) with respect to the volume V, we can find
the known virial pressure [6]

00
Vv

=/dl‘1 pi(r1) — %/dl‘l dry ¢;(|r1 — ra|)pij(ry, r2)
m,T

or, considering (10) and (11) and the limiting case V — oo,

3
Po=p- 2L [ drrig(r)g(r) (66)

where ¢’ is the derivative with respect to r.
From the thermal compressibility coefficient

KTZ

|

v,r

© -
A

the state equation for the grand canonical ensemble PV 3 = log ©, and Eq. (10), we can
obtain directly [9,17]

| _ AN | _(v-ovy
*T 3p OP|, ;.  9(log®)|, (N) 187
We can easily show that [9]
/ / drl er p(rla l‘L) < (N L) >
and we can rewrite (67) as
k921 =14, [dra) (68)
3P '
and by the fact that the integral in (68) is A(0) [9,17], we get
1 9p ~ 2
—_— = . 69
o 7], = (90} (69)

This latter equation can be integrated over p or n = mpR®/6 to obtain the compress-
ibility state equation for a hard-sphere fluid system [9,16,17]:

P 14+

PhT = (L= (70)




CORRELATION FUNCTIONS I:... 813

Now we are going to discuss a second model, for which the PYA gives an analytic
solution, called sticky hard-spheres (SHS) system. For the monodisperse SHS system
Baxter has proposed an analytical form for the sticky potential [11]:

+00, O<r< R,
Bo(r) = { log [@E}J—R')] , R <r<R, (11)
0, r >R,

where 7 is an adimensional measurement of temperature, being zero for zero temperature
and taking higher values when the temperature increases. This potential model contains
two of the most important ingredients of a real molecular interaction, namely, a harsh
repulsion and an attraction, and yet is the only potential, with these properties, for which
the PY approximation has been solved analytically. We consider in this work the limit
R — R.

For this system, the Mayer function, [Eq. (14)], takes the form

&(r —
—-1+£(T—Rl), for0 <r <R,
f(r)= 127 (72a)
0, for r > R,
and the total correlation function is
—1+M, for R < r <R,
h(r) = 12 (72b)
0, for0<r <R,

with A a parameter to be determined below [20]. Following the same procedure as for the
hard-spheres case, we find that the FCF can be written as

a AR?
Q(r) = —2-(r2 - R*) +BR(r-R)+ - (73)
where
1429 —p p—3n
R S ot (8 74
- Py (")
and the pg and 7 parameters are defined as
TpR?
n="F=,  u=x@-n), (75)

with A an adimensional parameter.
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The PY approximation can be written as

1+ h(r) = [1+ f(r)]y(r), (76)
where y(r) is defined by
y(r) =1+ h(r) — ¢(r), (77)
which is a continuous function in the limit R = R. One can take the limiting forms of
f(r) and h(r), [Egs. (72a) and (72b)], and then obtain, for the PY approximation, using
the Eqgs. (76) and (77):

Q(0)nA
[p

yR)=Ar=a+p+
or

_l+p/2  gx g

)‘T_(l-—q)z_l—n-*_ 12"

(78)

This equation determines the behavior of A [9,19].
The compressibility state equation for the SHS system can be obtained, again, from
Eq. (69) with the definitions of Eq. (75)

3
1 . £
P +n+9" —p(l+9/2)+ 367

pkaT (1—7)3

(79)

Notice that if we make A = 0 we get again the state equation for HS Eq. (70): A is a
measurement of stickiness.

The state equation for HS in the PY approximation [Eq. (70)] is well compared with
the obtained by another approximations [5]. In the SHS case a phase transition can be
observed due to the complex values of the stickiness parameter A [9,19].

APPENDIX

Using the algorithm of Perram [14], one can plot the total correlation function (or the
radial distribution function) for different concentrations:

/oo sk kR ok ok ok ok kR kR kR ok ok Rk k|

Implementation of Perram’s method for the
evaluation of h(x) and g(x) (with x=r/R).

Monodisperse hard-spheres case.
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R = hard sphere diameter

teta = r . h(r)

x = r/R

q(x) = Baxter’s function

dq(x)= derivative of Baxter’s functions

Language: Turbo C++

A L Y

#include <math.h>
#include <stdio.h>
#include <conio.h>
#include <ftool.h>

/* variables declaration */
double eta; // packing fraction

double teta[500]; // defined function as r . h(r) for r outside
of integration range

double x[500]; // x=r/R is the relative distance from hard
sphere core
double h[500]; // values of the total correlation function
double g[500]; // values of the radial distribution function
double qx[100]; // values of q(x) between 0 and 1
double delta; // increments of x=n . delta
int regions; // number of intervals from 1.0
int n_int; // number of divisions of 1
FILE #fopen(),

*tdata, // teta(x) values file

*hdata, // h(x) values file

*gdata; // g(x) values file

/* function declarations */

double q(double x);
double dq(double x);
double Al(double eta);
double A2(double eta);

/* main program */

main()

{
int k:

clrser();

printf("\n Reduced density: ");

eta = read_£1t(0,0,8);

printf("\n Number of regions (from x=1.0): ");
regions = read_int(0,0,2);

printf ("\n Number of divisions of 1.0: ");
n_int = read_int(0,0,3);

815



816 L. BLUM ET AL.

delta = 1.0/(n_int);

/* evaluation of x, q(x), teta(x) and h(x) in (0,1-delta) */
k=0;
do {
x[k] = k+*delta;
qx[k] = q(x[k]);
tetalk] = -x[k];
h[k] = -1.0; /* = teta[k]/x[k] =/
glk]l] = h(k] + 1;
} while (++k <= n_int);

/* contact values of x, q(x), teta(x) and h(x) */
x[n_int] = 1.0;

qx[n_int] = 0.0;

teta[n_int] = dq(x[n_int]) - 1;

h(n_int] = teta[n_int]/x[n_int];

gln_int] = hln_int] + 1;

/* values of x, q(x), teta(x) and h(x) for x>1.0 */
/* Perram’s algorith */
k=1;
do {
int s = 1; double sum = 0.0;
do {
sum += qx[s]*teta[n_int+k-s];
} while (++s < n_int);
x[n_int+k] = (n_int+k)*delta;
teta[n_int+k] = 12+eta*delta/(1-6.0%eta*delta*qx[0])*sum;
h[n_int+k] = tetaln_int+k]/x[n_int+k];
gln_int+k] = h[n_int+k] + 1;
} while (++k <= regions*n_int);
tdata = fopen("perrt.dat","v");
hdata = fopen("perrh.dat","w");
gdata = fopen("perrg.dat","w");

/* data to files */

/* values of correlation functions in x=1- */

fprintf(tdata,"%8.3f %8.3f \n",1.0,-1.0);

fprint!(hdata,"%8.3f %8.3f \n",1.0,-1.0);

fprintf(gdata,"%8.3f %8.3f \n";140,0.0):

/* values of correlation functions for x>1.0 */

for (k = n_int; k <= (regions+1)*n_int; k++) {
printf ("\n x=%8.3f, $\theta$=y8.3f, h(x)=%8.3¢f,
g(x)=%8.32",x[k],tetalk] ,h(k],glkl);
fprintf (tdata,"%8.3f ¥%8.3f \n",x[k],teta(k]);
fprintf (hdata,"%8.3f %8.3f \n",x[k],h(k]);
fprintf(gdata,"’8.3f %8.3f \n",x[k],glkl); }

fclose(tdata);

fclose(hdata);

fclose(gdata);

¥
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double gq(double x)
{ return 0.5*%A1(eta)*(x*x-1)+A2(eta)*(x-1); }

double dq(double x)
{ return Ai(eta)*x+A2(eta); }

double Al(double eta)
{ return (1.0+2.0%eta)/pow((1.0-eta),2); }

double A2(double eta)
{ return (-1.5%eta)/pow((1.0-eta),2); }
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