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ABSTRACT. We present self-dual spin-3 and 4 actions using relevant Dreibein fields. Since these
actions start with a Chern-Simons like kinetic term (and therefore cannot be obtained through
dimensional reduction) one might wonder whether they need the presence of auxiliary ghost-killing
fields. It turns out that these actions must contain, even in this three dimensional case, auxiliary
fields. Auxiliary scalars do not break self-duality since their free actions do not contain kinetic
terms.

RESUMEN. En este articulo presentamos acciones autoduales para campos de espin-3 y 4 usando
la representacidn triddica. Como estas acciones contienen como término cinético un término
generalizado de Chern-Simons, es natural preguntarse si, también en ese caso, se necesitan campos
auxiliares para matar a los fantasmas. Resulta que estas acciones deben contener, aun en este caso
tridimensional, campos auxiliares. Los escalares auxiliares no rompen la autodualidad de la accién
complexiva puesto que sus acciones libres no contienen términos cinéticos.

PACS: 11.10.Kk; 11.10.Qr; 11.15.—q

Self-dual theories for odd dimensions were discovered time ago by Townsend, Pilch and
van Nieuwenhuizen [1]. For Abelian vector theories, they can be shown to be classically
and quantum mechanically equivalent [2] to the Maxwell-Chern-Simons (MCS) (3] model,
if one allows a non minimal coupling in the self-dual model while keeping the minimal
one for the gauge invariant second order MCS theory.

Otherwise, although both models propagates one massive spin-1 mode, these theories
will not be equivalent if they are minimally coupled to the same sources.

Spin-2 presents a new feature: there are three topological spin-2 theories: linearized
topological massive gravity [4], a second order Einstein-CS action (5] and the first order
self-dual one [6]. In the vector case the topological massive action is second order, whereas
the self-dual one is first order. Spin-two fields present a new feature: exact topological
massive gravity [4] is a third oder action while self-dual gravity (5] is, by definition, a
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first order action. Self-dual gravity is a good example of the relevance of the Dreibein
representation [7] for higher spin gauge fields: its more compact form is obtained when
the spin two fields is represented by the (linearized) unsymmetrized second rank tensor
W,,, Where p is the gauge index and a is the flat remnant of a Lorentz index. Its gauge
variation is given by éw,, = 9,§,.

When dealing with higher spin particle (s > 3) one is always concerned with whether
they can have consistent interactions with other basic elementary systems or (at least)
with themselves. Along this direction, the existence of higher-spin self interacting bosonic
theories has recently been shown [14]. These theories are third-order in the basic fields,
and their structure is very similar to metric topological Chern-Simons gravity [4].

In d = 4, bosons obey second order field equation. Due to this fact, coupling them to
Abelian vectors (when charged) or to gravity (which is always mandatory because of the
universality of gravity) leads to considerations of a wide variety of different types of non
minimal coupling, once it is shown that the canonical ones do not work, as it is generally
the case. The natural solution to this problem comes from charged-string theory models
which consistently contain all spins in their spectrum [15].

In dimension 3 we have the peculiarity of the existence of these first order, Dirac-like,
bosonic self-dual theories for spin 1 and 2. It seems to us worthwhile to construct flat
models for spin-3 and spin—4 in order to investigate whether they can be consistently
coupled either to Abelian vectors or to gravity.

Here we report about the precise, Dirac-like, self-dual actions we found for spin 3 and 4.
We want to mention an additional (more technical) problem.

Massive spin-3 fields in dimensions d > 4 cannot avoid the presence of auxiliary fields
as it is clearly shown by dimensional reduction from their massless, gauge invariant d + 1
dimensional spin-3 ascendant action [8]. In d = 3 it is hard to imagine what might be
the 4-dimensional ascendant of a three dimensional self-dual action (whose kinetic term
is essentially given by ~ wy €edw(y)). Therefore, one might ask again whether a self-
dual pure spin-3 (or higher) field needs the presence of auxiliary fields. Even if self-dual
spin-3 needed no auxiliary fields, one should ask what is the fate of spin—4 since the real
higher-spin field has spin-4. This is due to the fact that if one works in the symmetric
representation where w4y is the basic 4-index symmetric tensor which carries the physical
massless excitation, wy) has to be doubly traceless [9], i.e., w = w,,,, = 0. This condition
is uniformly satisfied by any spins-s greater than, i.e., Woprrty. £y =

In the following we will show that both self-dual spin-3 and spin-4 actions require the
presence of self-dual auxiliary fields of spin-1 and 0 for the former and spin-2 and 1 for
the latter.

The symmetric formulation of massless spin-3 in d > 3 was given in [9]. The first
order Vierbein formulation was presented by Vasiliev [7] and a second order action was
introduced in [10]. The associated massive spin-3 models are discussed in [8].

In three dimensions there exist three additional possibilities, (taking into account the
analysis performed in [5] for the spin-2 case): the topological massive third-order for-
mulation discovered by Damour and Deser [11], the first-order self-dual action which is
presented here and the intermediate second-order action equivalent to these two, similar
to the spin-2 intermediate action [12]. Since spin-3 is simpler, we treat it first.
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Self-dual spin-3 action is the addition of three layers:

S =83+ S + Sy, (1)
where
Sy = §1{Wya,3," " O Wnaya,) — 17 (€7 €N 0 W W), (2)
Sy = uX(wu,) + yap(u,eP™0, w,) + %ﬂuz(upup), (3)
S10 = u($8,u,) + 37(600) + J6u’(¢%). (4)
In three dimensions [¢] = m!/? = [w] = [u]. The basic field Wpayay is symmetric and

traceless in its Dreibein Lorentz indices wy; 5, = Wya,a,1 Wpas = 0 while p is a world
index, unrelated to them. (In the following, a set of barred indices will indicate that the
assocmted tensor is symmetric and traceless in this set.) The algebraically irreducible

decomposition of w,; 5, is

= _ . 2
wpﬁlaz e wﬁﬁzﬁl i spalbhbﬁq + Epdgbh‘bal + b(npalwa2npa2wal - 'S—Walagwp)’ (58')
The 15 independent components of Wps 5, are represented by the 7 components of
Wpa,as: plus the 5 needed to describe hj;, plus the last 3 which determine w, = w, ., the

rrp?
unique nonvanishing trace of w,; 5,. Taking the trace in Eq. (5a) one obtains b = 3/10

and calculating the symmetric part of ¢, *w

paz one is led to determine hg,:

h = hl_JE = _é(ebpawpﬁé g Ecpawpas)' (Sb)

The first interesting fact is that S% has the good spin-3 and spin-2 behaviour. The
associated field equations EP*1%2 = §§ /(Swpal a, = 0 propagate one parity sensitive spin-3
excitation, do not propagate neither the other possible spin-3 variable nor any spin-
2 degree of freedom (those contained in AT apy the transverse part of hg;: G hT = 0).
However, S; has spin-1 ghosts and this is the reason why one has to add a second layer
which will fix this situation. S3; is a pure self-dual vector action for the auxiliary vector
u, plus the simplest contact term ~ (ww,). In general one might also consider terms
~ p(w,€P™" 9, u,) but we have been lucky and there is no need to include them. Addition

of these two layers leads to S; + S3; whose field equations are

pajaz — _pmn 1 -
E =£ 3 Wy +6ru(npalw +npa'z walﬁﬁzwazﬁﬁl)

i 2 —
£ iu(npmuaz + MpazUay — §nﬂ1ﬂzup) =0, (6)

FP = ae?™"0,,u,, + Buu, + pw, = 0. (7)
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These two equations can be analyzed by further breaking of the algebraic decompo-
sition (5a) in terms of its SL(2,R) irreducible representations. We introduce the three
dimensional covariant (and non local) T-projectors which, in the vector case, are

_ 3 5 = /2
u, = uz - Bpur‘, a2, = 0y,
A o (8a)
B ut =0, 8,-8,=1

For spin-2 and 3, similar decompositions for symmetric traceless second and third rank
tensors have the form

. T q 3L A AT o f o= BT
hsa = hpa + pha), Ophpa =0 = hgp, (8b)
Wpap = w;aé + (pwaTE)’ pwgaE == w;f-a- (8¢)

Symmetric traceless transverse 3d tensors (u ;‘;,hga, :ab, ;v _) have two independent
components corresponding to the two P-sensitive pseudospin-j (j = 1,2,3,4) excitation

they can propagate. A final covariant splitting of these set (symmetmc, traceless trans-

verse) tensors is obtained by means of the pure pseudospin—j projectors pj p e [ 1
:l: IR .. QT . :i:l mn j _ (9)
Py ﬁﬁb we T wﬁ&B---E = 2Wsap..c 2j E(p ImWaab--g)

where the indicated symmetrization is the minimal one and does not carry a normalization
coefficient. It is straightforward to check that

495 =1, B -py=zel0 ). (10)

Armed with these projectors one can analyse the behaviour of EP®T  the spin-3 sector
of Eq. (6). It turns out that EP%®T propagates the spin-3T part of w'f_b and annihilates

w__b Then ones goes to the spin-2 sector and it is immediate to verify that 9, 2

Jhe = z—:{bpaEp 3) do not allow the propagation of haB . The spin-1 dynamical behaviour
is determined by BPGEPE“’, 9,E*®, E* = EP?® and FP. In order not to have any spin-1
excitation alive we must choose

a=pf=-18 (11)

Unfortunately this is not the last step in order to get a pure pseudospin—-3* propagation.
S3+ 53, has scalar ghosts and therefore they have to be destroyed by an auxiliary scalar ¢.
This is the reason for adding the last layer S, defined in Eq. (4) to the first two layers
S3 + S3;. In principle one should consider the possibility of kinetic terms like ~ ¢[J¢
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which are of second order and would therefore break the full system self-duality. The
fields equations derived from S are

6,8 ~ EPM82 = (12)
8,5 ~‘FP=FP - 8,6=0, (13)
84S ~ G =vU¢ + 6u°¢ + pd,u, = 0. (14)

~ ~

) Thel:e are five scalar excitations which the system might propagate: 9,,,Wsz5, 9uphap,
d,w,, O,u, and ¢. However, since BPET"_"’ and E® tell us that

#'h'BE = _3(abuc + 3C'ub = %'nab(a * TJ.)), (15a)
abwc + acwb = (3pwb;—,5 + apwcﬁg) + 3(8buc + acub — %’J}bc(au)) = 0, (15b)

it is iﬂmmediate that, if neither d,u, nor 9,w, propagate (i.e., u, =0 = Gw,), ?_pabwﬁﬁa
and d,,h;; will not propagate either. The key equations are the vanishing of 8, EPP°, o

and G, where in the first one, one makes use of Eqgs. (5a) and (15). They can be written,
respectively,

(12|:] +-g—u2)3-u+ %,u,:la-w:(), (16a)
pBo - u+ pd-w—-0¢ =0, (16b)
pd-u+ (O + 6p?)p = 0. (16¢)

Introducing the dimensionless operator z = T DI/Q, it is straightforward to see that
the inverse propagator of - w, @-u, ¢ is

Az) = —(va? + 6) (1222 + &) + 12? + 1 8(72? + 6). (17)

These scalar variables (and consequently épabwﬁag, épahﬁa) do not propagate if the
polynomial A(z) becomes of zero order, i.e., A(z) = A, - 2% = A, - 1. This condition

uniquely determines =, §
y=0, §=4. (18)

Note that the vanishing of v makes the action S}, of first order (scalars of the self-dual
type also appear), leading to the final S being fully first order. Observe that we do not
claim mathematical uniqueness for a pure spin-3™ (or 3*) 3d action: in the scalar sector
one could consider coupling terms like ~ ¢(@ - w). However, it seems to us that, if one
starts with the right-spin Dreibein seed (in the case S3), then Sy, is unique if we demand
that it must be the vector self-dual action coupled in the softest possible ways to S; (the
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coupling term must be, at most, first order and if possible algebraic). The construction of
the auxiliary scalar action S), again is unique: it contains the free self-dual scalar action
(~ p2¢?, no Klein-Gordon kinetic term) and it is next-neighbour coupled to the auxiliary
spin-1 field, discarding ¢(d - w) which is not of the next-neighbour type.
All these results will be useful when dealing with the much complex case of spin—4.
We start this analysis by introducing the spin—4 part of the final action Sy, with the
right physical behaviour up to the spin-2 sector. It reads

o 1,2 be
Sys = 1u(w,z5eP™ 0 Wpase) — S (P e NpaWrnbdy dy Wnedydy )
2 1
+p ('wpﬁaguab) o §ap(upaepm"6‘muna)
+ %ﬁp2<spm"s"bcnpaumbum), (19)

where w5, is symmetric and traceless (ST) in its three last barred indices and u,, is an

auxiliary self-dual second rank tensor, [w] = [u] = m!/2. Their algebraically irreducible
representations are, respectively,

o = 2 5 . 2
Wyahe = Wpabe T Ep(adlabe) T 21Mp(aWhe) — 21 Wp(aTbe): (20)
— 1 - 1. pa
Upg = Ugg + €padfa t 3Mpalls hg = =584 Upa (21a,b)
where w55 = wy; and w,, are the unique non-vanishing contractions which can be made

out of wyzp, and wu,,, respectively. Symmetrizations are minimal with coefficient one in
front and sets of barred indices still indicate ST tensors.
Variations with respect the w,;;; and u,, yield the initial set of field equations

o _ 1
Epﬁbé = E?namwn&bé - Eﬁ{np(awaé) - w(aBE)ﬁ}

1 i} 2 _
+ E!‘{Wp(a“be) - Eﬂ(ab“aﬁ)} =0, (22)
B = il 008 Gt uﬁspm“affnmumb =il (23)
in—4% itati i o i e
The spin-4= excitations are carried on the transverse part of Wpabe* Woager apwpasa =)

while there are two sets of spin-3 variables: those contained in épwpage and those defined
by h7;.. Use of the spin—4* projectors defined in Egs. (9) and (10) show that E a5z
uniquely propagate spin—4% (make the spin-4~ degree of freedom to cancel) and does

not propagate neither (épwﬁEEE)T nor hl; . In fact, equations 9,E z;: = 0 = EJ(D:E Zic) 2re
equivalent to g
-3
dphgpe = 37?(ab3puﬁé) = 3(.1“55)» (24)

3(::'“"55) - apw(ap“Eé) = %n(abapuﬁ?:) - a(au('aa)- (25)
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These equations imply that both A, and 0, wszp; are curls of spin-2 objects and
therefore their pure spin-3 parts have to vanish. . R

Four variables describe the spin-2 sector of Sy, (9,,wsa5:)", (Bphza8)", Wi, Ups- The
equations which determine their dynamical behaviour are 8,, EP3% = 0, E3 = , E;, =
E, 55 = 0 and F,, = 0. After some algebra one is led to a separated propagation equation
for uz; = w, pw = w:

(22 + 1 - 38) (w* +w™) + 2z(az + Bt + 2z(az — B)w™ - faz(wt —w™) =0. (26)

Projecting on this spin-2% (27) subspaces we obtain the two uncoupled equations which
determine their evolution:

{21+ 30)Fi2a-B1z+ (L - 48)}u* =0, (27)

(either all upper indices or all right down). Non-propagations of one of these two variables
determines the values of a, 3:

Q= _'%1 ﬁ = _33 (28)

and, due to Eq. (27), entails the non-propagation of the other companion variable. Syo
(19) has been uniquely determined requesting its good physical behaviour in its highest
spin sector (s = 4,3,2). However, it contains vector and scalar ghosts. This is the reason
why we have to add two additional layers. The most difficult of them is the spin-1 fixing
action. Its ambiguity stems in the wide range of mathematically consistent terms one
might have to consider ab initio.

In principle S5, may be

521 = -2’\1#(}"4131;@&3) i 2)\2}1('1)133,.%,-.;3
+ Yo uu{he%8,h,) + %’yly(vpspm"amvn)
+ o (R2) + 36uP (v2) + 2ep®(hyv,) + 2kp(h, Oywg,)

+ 20p(v,0,w55) + 20u(v,e" ™0, h,,), (29)
which can be regarded as the addition of the self-dual action for the spin-1 variable
h, contained in u,,, plus the auxiliary self-dual action for the auxiliary vector u, al-
gebraically coupled through ~ h - v, plus more bizarre terms like ~ h,dyuz;, h,8w;s,
V0, Uis, Vae?¢8,h, and the exotic term ~ v, 8,wz;. We will not consider them, the first
because we already have chosen a good kinetic term for u,,, [u,,eP™"0,,u,, as in Eq. (19)],
the last one because it is not of the next-neighbour type (it is spin—4 - spin-1), and the
second, third and fourth because we have decided to choose, whenever possible, algebraic
couplings and we have already a spin-2 - spin-1 contact term ~ h.v. Therefore we rule
out the presence of terms ~ v, 8,uz;v,e%9,h, as well as the need for a term ~ h, d,wy;,
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a different coupling term linking spin—4 with spin-2 for the same reason. In other words,
we take Ay, = Ay =k =0=¢=01in 5.

Taking into account Eq. (21b) we write down the modified spin-2 field equations which
govern this system (note that EP = 0 remains intact). They have the form

‘Fpa = Fpa + 7‘2(8th = allhp) = pspabhb = EEPab’Ub = i), (30)
An additional vector-like field equation appears after varying v,
G, =9k, > Opuy, + 6pvy, + 2eph, = 0. (31)

We want to determine V15 Y2r Ps 6,¢ in such a way that none of the six spin-1 variables:
wg = (apabw;pabc)T’ Wy = (3 h;pab)T’ Wy = (ap”ﬁa)Ta Wy = h wyp = hy pr W13 = 'Up
can propagate. Since wg is given by 8,,,E,z;;; in terms of the ﬁve remammg varlables
Wgs - - - , W13, We consider the non propagation of them. They are determined by &, bEb
0,Ep: =0, 8,'F,, =0, ‘F* = 0 and GP = 0. After minor algebra and some use of Eq (24)

the five equations become

4}"’8 abé ok Daauaé 5 a ( abu&fn) =0, (32)
—40,p g5z — %EgTap(awaf o %ﬂapw;ﬁa + p pc) (33)
pywss — 3pudyuss + (p — 3)pel O,h, + 2ud,u

+7, (Db, — 0,(8,h,)) + euel’ 8,v, =0, (34)
20, ugp + 2(p = 3)uhy, + 2euv, + (27, + 2)e ey Oh, — Gu =0 (35)

and Eq. (31) as it stands.
Working in a way similar to what we did for the spin-3 case, the vanishing of wg, ..., w3

is equivalent to their non propagation and this is achieved if A(x) = Agz* + - + A, - 1
becomes A, - 1. Straightforward calculations give

A2) = — 5197 +8)2 + {1 (1 - 2) - 36(3n +4) }°
+{-Fn(n+3) - 5o + 36+ F
—Z6(27, + 3) + 270 fa + B{2* — 6"} - 1, (36)

where for convenience p' = p — 3. Requesting the vanishing of the coefficients Ay, 4 of
the inverse propagator A, one is led to o

= 8
,},2_§1 p’_.g._p_gj (,0_ 4,},2)‘
18 .2 72 .2 (3‘)
,Yl —?E . 5__471 55
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Redefining 2¢v,, — v, the final unique form of Sy, becomes

Sp1 = ~ 3l e°0h) ~ Fip(u,e ™ 0,0,)

+ 322 (hE) - 2P (02) + (hyu, . (29b)

The action Sy, + Sy; has the right physical properties up to spin-1. However, its scalar
sector contains ghost which we have to exorcize by introducing an auxiliary self-dual
scalar ¢. Its associated action S, constitutes the last layer we need in order to determine
the final pure self-dual spin-4* action S.

The most general scalar auxiliary action one can add to Sy, + Sy, is

Sio = 2a,1(@0,u,) + 2a91{0,h,) + 2a7p(ud,h,) + 2a5pu(ud,vy)
+asu*(du) + 3a3u’(9%) + 3a4(609)

+ Sagu®(u?) + dag(uOu) + a;o(ulg). (38)

Taking advantage of what we learned from the spin-3 case, we assume that there will
be a final scalar auxiliary fully self-dual action, i.e., that there exists a non trivial S,, with
vanishing a4, ag and a,;. We also assume a vanishing a;, since this term can be seen as an
unpleasant kinetic term to add to the self-dual actions u;;e?""0,,us; and h,e?™"9, h,,.
The final equations are

Epaie = 0, (22)
“Fuo = Fyy + paghy,® + ageg 0,9+ agHTpa U + 2a8npa(6‘ 2 g, (39)
‘G, =G, — 20\p0,¢ — 2a30,u = 0, (40)
_ 855
H= W=2a1(8-v)+2a2(8-v)+a4uu+,ua3¢==0. (41)

The scalar sector has eight independent variables:

Wy = pabcwﬁﬁBE! Wy = pubh;ﬁagy Wy = 8abwa5,
L‘J4 - abuﬁg’ wﬁ = aah‘aa (-b'ﬁ = Hu, (42)
Wy = 0,7, wg = [-L¢,

whose evolution is determined by 8,4, Epases Oube Eaer Ope Eper 9y “Fpar Oy = 9,'G, and H.
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The first set of 3 equations is derived from Eq. (22) taking into account the algebraic
structure of w5, as given in Eq. (20). It turns out to be

—58)qpc Wpahe + & 08,,wsz +30855uz5 =0, (43)
48,y hsar + 218,qu55 = 0, (44)
—48, oy hsap + §10,0 W55 + LHB,qus; = 0. (45)

The second set comes from Eq. (39). It consists of

0pa“Fpg = 10, W55 — 310,455 + 1(2 + ag) Du

a

+ pas0é + 2¢4010,v, = 0, (46)
3,“F, = %apawﬁa + %uaphp + p6,v,
—0Ou - 2e,20¢ =0, (47)
“Fo, = 0,h, + (2 + ag)pu + agp¢ + 2a30,v, = 0. (48)
The last two equations are
9,'G, = 6,0,v, + pd,h, — 2a,u0¢ — 2a30u = 0, (49)

and Eq. (41), H = 0. In terms of the w-variables (42), Egs. (43)-(45) allow to obtain w,,
Wy, wq as functions of w,. In particular

wg = —%(93:2 + Twy. (50)

Then it is immediate to realize that Eqs. (46)-(49), (41) become a decoupled subset of
the full system. They can be written as

—2(x® + 3w, + (2 + ag)wg + 2057w, + agwg =0, (51)
3w, + Rws + wy — 2w — 2a,0w5 = 0, (52)

Tws + (2 + ag)wg + 2agTwy + aswy =0, (53)

ws — 2agTwg + bw; — 2a,2wg = 0, (54)

297wy + a5wg + 2a; 7wy + agwg = 0. (55)

The inverse of this determinant Ay, ., .0 4. 46.ag) 1S the propagator of the system. We
wish to determine the a,, ..., ag coefficients in such a way that A(z) is a non-vanishing real
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number. First we investigate the possibility of having a solution with pure next-neighbours
coupling terms, i.e., where a, = 0 = a5 (they are spin-2-spin-0 couplings). In this case

A(ay = 0 = a5) = — 312 («® + 3) (4ala® + a3(8 — 2a4))
— 182% (a2ag + azad) — $6ayaq, (56)
where ag = 2 + ag. Vanishing of its highest power coefficient leads to
a; =0, (57a)
and subsequent cancellation of quartic and quadratic terms impose
az =0, (57b)

which seems an inconsistent possibility, since in this case A in Eq. (56) becomes identically
zero. However, since we are not having ¢-dependent action (a; = a, = a3 = a5 = 0),
we have to consider the appropriate system of field equations which consists of Eqs. (22),
(39) and (40) for these values of ay 235 and does no longer contain Eq. (41). Its crucial
decoupled part consists of Egs. (51)-(54) (a; = a; = a3 = a5 = 0) and the non propagating
character is determined by imposing to its associated (quartic) determinant the condition
to be a non-zero real number. This leads us to determine ag and ag:

ag = =, ag = — 3. (58)
S, takes a very simple form

S5 = —gu(uapvp) + %,uz(uz), (59)

where there is no auxiliary scalar field present.

This is the minimal solution. If we relax a little bit the assumption of considering
only next-neighbours coupling and investigate the consequence of only imposing a, = 0
(leaving room for an algebraic non-next-neighbour spin-2-spin-0 coupling), we are led to
a; = ag =0, ag, ag arbitrary and a; arbitrary non-vanishing.

Similarly, one might constraint ag to vanish and try to determine a,. In this case one
obtains (after redefining ¢ — a,¢)

206%(2 + ag)

1
a; = 50, Oy, = 1 =
172 g 3= Bag + 12 — 567 (60)
ag 553, ag = %5,

and the corresponding full action is a pure spin-4* action too.
It is worth observing that the simplest, self-dual, next-neighbour coupled pure spin-4+
is then given by

S = S4[Eq. (19)] + Sy, [Eq. (29a)] + Sy[Eq. (59)], (61)
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and contains only one auxiliary self-dual spin-2, u,,, and one (self-dual) vector auxiliary
field v,, in addition to the fundamental physical spin-4 carrier w, ;5.

In conclusion, we have been able to uniquely construct self-dual spin-3 and 4 actions
where auxiliary fields also appear in a self-dual form (including scalars) and where coupling
terms are next-neighbours. In both cases we needed one self-dual auxiliary field of spin
s —2, s—3, up to spin-1.

Since spin—4 clearly is the higher-spin case, we may conjecture that this self-dual picture
exists for arbitrary integer spin, where the unique non uniform structure is the final layer
fixing the good spin-0 behaviour.

An additional interesting question is what should be the higher spin structure of topo-
logically massive theories. We are inclined to think that all of them will be of third-order,
as it is the case for gravity and spin-3.

It would also be interesting to see what is the connection between the present self-dual
spin-3, and 4 formulations and the recently proposed [13] anionic relativistic actions for
spin-j real, since this scheme consistently contains the self-dual abelian vector case.

However, as we mentioned in the beginning, whether this Dirac-like bosonic structures
can be consistently coupled either to Abelian vectors or to gravity is a worthwhile question
which deserves further analysis.
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