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ABSTRACT. An important set of solutions of 2 + 1 dimensional gravity consists of spacetimes
which contain an open neighborhood which admits a slicing 'Bg,N,b x (0,1) in a family of genus 9
Riemann surfaces with N punctures and b asymptotic regions. We define a set of polygons ll', an
equivalence relation R, and a bijective map from ll'IR to this set of spacetimes. The construction of
a spacetime froIn the corresponding polygon leads to a natural extension beyond singular surfaces.
We discuss the existence of a global spacelike foliation, and generalizo to de Silter manifolds, or
2 + l-dimensional gravity with a cosmological constan!.

RESUMEN. Un conjunto importante de soluciones de las ecuaciones de Einstein en 2+ 1 dimensiones
es el de los espacio-tiempos que contienen una vecindad abierta que admite una foliación Lg,N,b x
(0,1) en una familia de superficies de gen". 9 con N punturas (partículas) y b fronteras, o regiones
asint6ticamente planas. Definimos un conjunto de polígonos Ir, una relación de equivalencia R
y una biyección de ll'IR sobre el conjunto de soluciones. La construcción del espacio-tiempo a
partir del polígono correspondiente lleva a nna extensión natural de las soluciones más allá de las
superficies singulares. Consideramos la existencia de una foliación global regular y generalizamos
a soluciones del tipo de Sitter, que corresponden a la gravedad en 2 + 1 dimensiones con constante
cosmológica.

PAes: 02.40.+m; 03.20.+i; 04.20.-q

INTRODUCTlON

An important problem in 2 + 1 gravity is to find a convenient parametrization of the
reduced phase space. Achucarro and Townsend showed that the action of 2 + 1 gravity is
related to the Chern-Simons invariant [1), and \Vitten identified the reduced phase space
implicitly as the component of the lIlod uli space of fiat 150(2, 1) connections with maximal
Euler elass [2]. Moncrief used the ADM formalism to reduce the phase space explicitly to
the cotangent bundle of Teichmuller space [3]. Carlip [4] amI !lloncrief have showed the
equivalence of the :-loncrief and \Vitten approaches in the case of genus one. A thorough
study of the solutions of 2 + 1 gravity was carried out by Mess [5] using Thurston's
geometric structures [6]. Our aim in this article is to provide a simple parametrization for
the set of solutions.

\Ve will introduce a set of polygons Il', which generalize Poincaré's 1882 "fundamental
polygon" [7]' and an eqllivalence relatioll R togetllPr with a bijective map from PI R
into the desired set of three-manifolds. This \\'ork formalizes a recent sollltioll of 2 + 1
gravity 18J.
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After a review of Poincaré's fundamental polygon (Sect. 1), our polygon representation
of a three.dimensional manifold is constructed in Sect. 2. We then define a map from a
well-defined set of polygons (Sect. 3) to the set of solutions of 2 + 1 gravity, and show
that the map is surjective (Sect. 4). The bijective map is achieved by modding out the
translation and mapping dass groups, in Sect. 5. In the last two sections we discuss the
existence of a global spacelike foliation, and the generalization from ISO(2, 1) to SO(3, 1)
and SO(2,2).

1. POINCARÉ'S POLYGONANO FLAT SO(2, 1) CONNECTIONS

In the process of studying Fuchsian functions, Poincaré defined a 6g - 6 dimensional
set of polygons on the upper half plane. He proved that any polygon in this set is the
fundamental domain for a discrete subgroup oC SL(2, IR), and vice-versa, any discrete
subgroup of SL(2, IR) defines an equivalence relation that tiles the upper half plane with
a lattice of equivalent polygons. The identified polygon, defined to be the quotient of
the upper half plane by the discrete subgroup of SL(2, IR), is a compact genus 9 surface
with a Riemannian structure inherited from the constant curvature metric on the upper
half plane, and all genus 9 Riemann surfaces can be represented in this way (Poincaré's
theorem), so the 6g - 6 parameters that define a "polygon" are labels for the space of
hyperbolic structures on a genus 9 Riemann surface.
\Ve review Poincaré's fundamental polygon following a modern approach due to

Maskit [91. In Minkowski space, one constructs a family of hyperbolic sur faces defined
by t2 - x2 - y2 = 7"2, and 4g timelike planes through the origin which define a cone
with polygonal cross-section, as shown in Fig. 1. The intersection of the filled cone with
any one of the hyperbolic surfaces is a "fundamental polygon" if the two conditions are
satisfied:

i) The polygon is bound by pairs of equal length segments.

In that case, the two segments in a pair are matched by the Lorentz transformation
which matches the two corresponding timelike planes. Define the "identified polygon"
(Maskit, [8]) as the polygon with boundary edges identified in pairs. All of the corners
of the polygon are identified, and will be referred to collectively as the "vertex of the
identified polygon".

ii) The "cyc1e transformation" is the product of al! these Lorentz transformations in the
order which corresponds to a small loop arollnd the vertex (Fig. 1), and mllst be the
identity. In the standard basis {Ui, Vi}, where the only intersections are those of Ui with
Vi (i= 1, ... g),

-1 -1 -1 -1 1
UIVIU1 VI ... UgVgUg vg = .

This guarantees that the sum of the interior angles of the polygon is a mllltiple' of 2rr;

'Since the hyperbolic surface is invariant under SO(2, 1), the identified polygon is differentiable
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FIGURE l. A spacetime which admits a slicing into a family of genus two surfaces, is represnted as
an octagonal cone in Minkowski space, with eight waUs that are identified in pairs. This spacetime
is locally Minkowskian everywhere, and yet paraUel transport around a non-contractible loop is
not trivial. The identifications are hyperbolic elements of the Lorentz group (boosts), and are
uniquely determined by the pairs of waUs that are identified. They generate a "fuchsian" group
of identifications, ¡.e. one that divides the future light cone in a lattice of equivalent ceUs -the
octagonal cone being one such ceU. The dotted line represents a cirde around the vertex.

it is further required that the multiplicative factor be equal to one (so that there is no
deficit angle at the vertex).

Poincaré's theorem states that the identified polygon is a genus 9 surface, and that,
conversely, any genus 9 surface can be cut up and unfolded to become such a fundamental
polygon (the proof in the preseut context is due to Maskit [9]). Milnor [101 considered the
three-dimensional manifold which is the cone with polygonal sections, with walls identified
two by two, and pointed out that the curvature vanishes at every point, ¡.e., that it is
a solution of Einstein's equations in 2 + 1 dimensions. In the "time evolution" picture,
one thinks of each section of the cone by a hyperbolic surface t2 - x2 - y2 = r2, as the
universe at time r. It is easy to see that the various slices are homothetic, and therefore
the Teichmüller parameters are preserved in time.
Milnor also noted that there are other solutions of 2 + 1 gravity, which can be nnder-

stood as follows. One shonld consider not only Loreutz identifications, but more generally
Poincaré identifications, siuce that is the isometry group of Minkowski space. In 2 + 1
dirnensions, there are as rnany translation generators as Lorentz generators, so this gen-
eralization implies doubling the number of pararneters to 129 - 12. The additional 69 - 6
variables are the velocities of the Teichmüller pararneters, roughly speaking. One would
like to have a generalization of Poincaré's construction to inelude these non-stationary
universes. The task at hand, ironicaUy, is to generalize Poincaré's fundamental polygons
to the Poincaré group.

al thc identified edges and the extrinsic curvature vanishes al the point. Any spacetime curvature
singularity at the vertex must be a singularity of intrinsic curvaturc. The cycle being equal to the
identity matrix, the intrinsic curvature singularity (surplus angle) must be a multiple of 2Jr.
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2. CONSTRUCTION OF A POLYGONFROM A GIVEN TIIREE-MANIFOLD

DEFINITION 2.1. Let M",N,b be the set ofthree-dimensional manifolds M with Lorentzian
metric of vanishing curvature, that contain an open submanifold N e M which admits
a foliation Eg,N,b x (0,1) by a family of orientable genus 9 Riemann surfaces with N
punctUJ"es and b asymptotic regions. \Ve will denote the M the union of the sets M",N,b
over all positive integers {g, N, b}.

THEOREM 2.1. (N = O) Given a manifold M E M",O,b, a surface Eg,O,b e N and a point
Pon Eg,O,b, there exist 2g+b closed segments ,i(8), 8 E [0,1], based at P = 'i(O) = ,i(I),
that are geodesic in M except at P, and form a basis of the fundamental group "1 (Eg,O,b)'

Proa!. Consider a set of 2g + b non.contractible loops ,(8) on the surface Eg,D,b, based
at P, which form a basis of "¡(L.,D,b)' \Ve first show that any su eh loop ,(8) can be
smoothly deformed to be M-geodesic except at P (this deformation generally draws the
loop out of the surface, but P E Eg,O,b is held fixed). \Ve will do this in two steps: First
we define a variational principie which can only admit a geodesic as extremum, then we
show that the extremum is attainable by smoothly deforming the original loop. Among
all loops homotopically equivalent to a given ,(8), we define a subset JL., as those loops
that are differentiable in the open interval 8 E (0,1) and such that the tangent at S ---+ 0+
is the same as the tangent at the end of the loop (8 ---+ 1-) parallcl-transported back
to 8 = O along the path. Let JU, he the set of loops ,(8) minus their intersection with
an €-hall at P; we choose a parametrization 8 E [€, 1 - '1 for the truncated loops. \Ve
denote by Diff(D') the subgroup of diffeomorphisms which respects this condition on the
parametrization. \Ve will need the following non-negative functional on JU, x Diff(D').
The geodesic equation is the vector equation

where Ua(8) is the tangent vector at ,(8). Let

over the domain D = [,,1 - 'l. Choosing , small enough and given the differentiability
of the curve, the boundary conditions defined aboye state that the tangent at 8 = , is
the same as the tangent at 8 = 1 - " parallel-transported back aloug the path. Given
these boundary conditions, one easily shows that the variational principie based on the
functional L'bl has a minimum at Lbmin] = O, ¡.e., ,min is geodesic for 8 E [f, 1- 'l. Thus
although the integrand is not covariant, the variational equation (geodesic equation) is
covariant. Since , can be chosen arbitrarily small, in the limit we obtain a geodesic except
at 8 = O, where it gene rally has a discontinuous tangent. \Ve need to show that the
minimum can be attained (¡.e., that the loop 'min exists in 1L).Consider all paths within
the same homotopy dass and which satisfy the boundary condition stated aboye; since
it is non-negative, Lb] has a lower bound on this set of loops; suppose this lower bound
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were nonzero, and is attained with the loop I'm;o' Consider the open curve 1'0 which is
I'mio minus its end-point. There exists an open coordinate patch O ::) D which contains
1'0 and is isomorphic to an open neighborhood in 2 + 1 dimensional Minkowski space.
Since I'm;o is not a stationary point of L, there is a loop deformation within this open
neighborhood which leads to a smal!er value of L, contradicting the assumption that L
was at a minimum. Thus the lower bound must be zero. _

TIlEOREM2.2. (b = O)Given a manifold M E MIg,N,O, a surface Eg,N,O e N and a point
Pon Eg,N,o there exist 2g elosed segments 1'.(8), 8 E [O,1j, based at P = 1';(0) that are
geodesic in M for 8 # 0,1 and form a basis of the fundamental graup of Eg,o,o, and N
geodesic segments which connect P to each puncture Pj.

Proof. The first part is a corol!ary to Theorem 2.1, for b = O.Given a choice of 2g basis
loops on Eg,o,o, there is a unique curve from P to each puncture Pj that does not intersect
any of the 2g loops. Each such curve can be smoothly deformed into a M-geodesic segment
(proof as for Theorem 2.1). _

THEOREM2.3. (N # O,b # O)Given a manifold M E MIg,N,b, a surface Eg,N,b e N and
a point P on Eg,N,b, there exist 2g elosed segments 1';(8), 8 E [0,1], based at P = 1',(0),
b points Pj E Eg,N,b and as rnany elosed segments I'j(8) based at Pj = I'j(O), such that
the 2g + b segments are geodesic in M for 8 # {O,1} and forrn a basis of the fundamental
group of Eg,o,b, and N = b geodesics which connect P to the punctures and to each of the
b points Pj, and al! punctures and handles lie to the inside of the worldsheet generated
by the b geodesics 1'.(S).

Proof. Each of the "asymptotic regions" tends to a cone with helical shift [lIj, which
can be given coordinates T > TO, IJ E 10,27r].\Ve choose b points P, = (T;, O), The loops
1',(8) = (T,,211'8) can be srnoothly deforrned into M-geodesics as in Theorem 2,1. \Ve
divide M into three nonintersecting regions: Mio is the part of M in the causal past or
future of the geodesic curves 1'.(8), Mout is the region outside the curves (which ineludes
the asymptotic regions) and Mio, the part ofM inside the b curves. \Ve can always choose
T; large enough so that the N pnnctures lie in the interior region Mio. _

TlIEOREM2.4. Given a manifold M E MIg,N,b and a choice of 2g + N geodesic segments
based at PE Eg,N,b, (as constructed in Theorern 2.1), there exists a surface E;,N,b which
contains them and inherits a positive definite dilferentiable metric fram M.

Proof. \Ve construct a positive triangulated surface, fram which the desired Riemannian
surface is obtained by smoothing. \Ve choose any triangular of Eg,N,b which ineludes the
2g + b loops as links, the points P, P,(i = 1, ... b + N) as vertices, plus any number
of other links and vertices, and is such that each triangle with its boundary removed is
a topological!y trivial open set. \Ve can smoothly deform al! links of this triangulation
into spacetime geodesics, as in Theorem 2.1 This leads to a triangulated surface which
ineludes the 2g +b geodesic loops and b+ N geodesic segments -we need to show that al!
segments of this triangulated surface are spacelike. Let 1'(8) be any M-geodesic segment
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with its end-points on L.g,N,b' \Ve project it on L.g,N,b fol!owing a field of parallel timelike
geodesics, and show that the projected segment could not be spacelike if ')'(s) were timelike,
Specifically, consider a topologically trivial open neighborhood which indudes the geodesic
segment ')'(s). If we are dealing with a loop, the construction proceeds with the segments
s E [0,1 - El. Since N = L.;,N,b(O, 1), one can define a field of parallel timelike geodesics
through ')'(s), V s E [0,1 - E), which intersect L.g,N,b at ')"(s); since the end-points belong
to L.g,N,b we have ')"(0) = ')'(0) and ')"(1) = ')'(1). The curve ')"(s) lies on L.g,N,b and
therefore must be spacelike. Now, the regio n between ')'(s) and ')"(s), for s E [0,1], can
be mapped into Minkowski space (possibly with identified points); the mapped segments
lie on a timelike plane, or 1+ 1-dimensional Minkowski space. There cannot be spacelike
curve in 1 + 1-dimensional Minkowski space which connects two causal!y related points;
therefore if ')'(s) were timelike, ')"(s) would have to be timelike as wel!, which cannot be
since ')" E L.g,N,b' •

Denoting M;n the regio n of M to the inside of the b lines, as in Theorem 2.3, the surface
L.' N b nMin can be cut up along the 2g + 2b + N geodesics and unfolded in Minkowskig, ,
space, In this map, it becomes a polygonal surface bound by 2g + 2N + 2b edges which are
identified two by two, and b edges which are not identified to any other. Al! these edges
are geodesic segments, therefore they are represented by straight segments in Minkowski
space, In the next section we establish the converse, i.e., define a dass of polygons bound
by straight segments and a map from this set to the set of three-manifolds, Mg,N,b'

3, GENERALIZED POLYGON

DEFINITION 3.1. \Ve wil! call generalized polygon P a surface embedded in 2 + 1-
dimensional Minkowski space, bound by straight edges, and a set of proper orthochronous
Poincaré transformations, with the following properties:

i) Edges of the firsl kind come in pairs of equal length segments and are identified by
a proper orthochronolls Poincaré transformation. Edges of the second kind are not
identified with any other edge.

ii) The identified polygon, obtained by identifying the matched edges, is differentiable
at the identified edges,

iii) The induced metric from the Minkowski embedding is positive definite.

\Ve will refer to the set of such polygons as lP, and its elements as P E lP.

PROPERTY 3.1. There exists a piecewise flat triangulated surface in Minkowski space
which indudes all edges of the polygon and is spacelike.

Proof. The edges of the polygon are spacelike geodesic segments in Minkowski space,
by definition. Consider a triangulation of the surface which indudes the edges and any
number of other segments. There is no obstruction in Minkowski space to deforming each
segment into a geodesic (straight segment). Suppose that it were to beco me timelike as
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a result of this deformation. This timelike segment can be projected vertically onto the
polygon, and the projected segment is spacelike (as in Theorem 2.4). On the plane of
the projection (1 + l-dimensional Minkowski space) we would have a spacelike segment
connecting two causally related points, which is absurdo _

PROPERTY 3.2. Let s be an edge of the first kind, identified to another edge s' by an
150(2,1) transformation g(s). Denote the future of s by X+(s) and its past by X-(s).
The remainder XO is further divided into two nonintersecting regions, to the inside and
to the outside of the polygon: XO(s) = Xi(s) + XO(s). Let O(s) be any open set which
ineludes the edge, and consider the interseetion of O(s) and Xi(s). The image under g(s)
of O(s) n Xi(s) does not intersect with the corresponding region Xi(s') to the inside of
the matched edge. This statement, together with the existence of a spacelike triangulation
and the choice of proper orthochronous identifications, is necessary and suflicient for the
existence of a spacelike surface which rests on the polygon, is differentiable at the identified
edges and is orientable. 5uch a surface will be said to respect the matching conditions.

Proof. The proof was given by Maskit [9) fol' 50(2,1); it remains valid upon replacing
50(2,1) by 150(2,1). _

DEFINITIONS 3.2. \Ve will need some important definitions based on the following con-
struction. Consider any comer of the polygon, and a surface which respects the matching
conditions. On this surface, draw a cirele centered at this comer, starting from the interior
of the polygon. \Vhen the cirele crosses an edge of the first kind, use the identifications to
continue the cirele from the identified edge, around the identified point. The procedure
stops when the cirele crosses an edge of the second kind, or when the cirele eloses. The
corners of the polygon that lie within this cirele are identified; the set of such points will
be called vertex of the identijied polygon. If the cirele eloses, we will talk of a vertex of the
jirst kind. If cirele is interrupted at an edge of the second kind, we will talk of a vertex of
the second kind. The intersection of two edges of the second kind will be called a vertex
of the third kind. The various points which are identified will be called images of the
vertex. A vertex of the third kind has only one image, while a vertex of the second kind
has at least two (it belongs to an edge of the first kind, which is identified with another
edge). For a vertex of the first kind, consider the elosed cirele on the identified polygon
constructed in the definition aboye. The product of all the Poincaré identifications, in
the order in which the edges are crossed as one follows a cirele around the vertex will be
called the cyele transformation at the vertex. For a vertex of the second or third kind, we
define the "cyele transformation" simply by setting it equal to the identity.'

EXAMPLE. The heptagon of Fig. 2 is composed of six edges of the first kind, i.e., three
pairs, and one edge of the second killd. Following a cirele around the point 1 in a elockwise
direction, we meet the edge 17, which is of the second kind. In the counterelockwise
direction, we meet the edge 12, continlle through the edge 34, then meet the edge 45,

'This represents the fact that the asymptotically conical region should be glued on without intro-
ducing any singularity.
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FIGURE2. This heptagon embedded in 2 + 1 Minkowski space, with the identifications indicated
by arrows, represents a surface with one handle, a puncture {6} and a boundary. The boundary is
the only edge (17) whicb is not identified to any other. Upon "gIuing" together the edges 56 and
67, a conica! singularity appears at the point {6}. The edges 12 and 23, and their images 34 and
45, are the two generators choscn as basis for the homotopy group oí the torus.

continue through the edge 23 then meet the edge 34, continue through the edge 12 then
meet the edge 23, continue through the edge 45 then meet the edge 56, continue through
the edge 67 then meet the edge 71, which is of the second kind. Starting from the point 6,
we meet the edge 67 then continue through the edge 65 and close the circle. There are two
vertices, {1, 2, 3, 4, 5, 6} and {6}. The cycle at the vertex {6} is the Lorentz transformation
which matches the sides 67 and 65, the other cycle is the identity by definition.

A smooth surface which respects the matching conditions has only one boundary, the
edge 71. The identified polygon is a torus with a puncture, at {6}, and a boundary (Fig. 3).

PROPERTY 3.3. The cycle transformation at a vertex of the first kind is an elliptic
element of the Lorentz group.

Proa!. The cycle transformation is the holonomy of the Poinearé eonneetion along the
circle; such holonomies depend only on the homotopy class, sinee the 1001'S eonsidered
are in Minkowski spaee (with identifieations). Given any " we ean ehoose a eircle of
radius smaller then f. The holonomy must be a Lorentz transformation eombined with a
translation parallel to its axis [U]. Sinee the differentiable surfaee is spaeelike, this axis
must be timelike (a point like souree with hyperbolie holonomy (taehyon) would imply the
existenee of closed timelike lines [12], whieh would eontradict the faet that M E M",N,b)' lf
the translation parallel to the timelike axis \Vere nonzero, one eould ehoose , small enough
so that the circle would be timelike [12], in eontradietion \Vith the faet that it lies on a
spaeelike surfaee. Thus the eycle transformation must be apure Lorentz transformation
with timelike axis. •

THEOREM 3.1. Properties 3.1, 3.2, 3.3 are neeessary and sufficient for conditions (2)
and (3) to be satisfied.
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FIGURE 3. A smoolh surface which rests on lhe polygon of Fig. 2 and respects lhe malching
condilions, will remain smoolh when lhe identified edges are glued togelher. Nole lhe conical
singularily and lhe boundary on lhe lorus lopology. To recover lhe heplagon, one wonld cul from
lhe verlex {123457} following lwo inlersecling loops around lhe lorus, fram lhis vertex lo lhe verlex
{6}, and also along a palh which surrounds lhe boundary. The resull is lopologically equivalenl
lo lhe heplagon, and can be made lO be geomelrically equivalenl by deforming lhe palhs inlo
geodesic segments.

Proo/. Thallhe condilions are necessary was proved aboye for each properly. The Properly
3.3 is a con sequen ce of 3.1, since lhe proof of lhe former depends only On lhe exislence of
a spacelike surface. Thal 3.1 logelher wilh 3.2 imply condilions (2) and (3) was proved
by Maskil [9], as menlioned aboye. •

The idenlified polygon is a surface wilh a posilive definile, differenliable melric induced
by lhe embedding in Minkowski space; whal is lhe lopology of this surface? A vertex of
the first kind is a curvature singularily, un!ess the cyele happens to be the identity. The
number of such vertices is therefore the number of punctures, N. To find the number of
handles, or genlls, consider lhe number of images for each vertex, n(v). Then the number
of handles is 9 = Ev[n(v)/4] (consider a surface with 9 wormholes; the surface can be
unwrapped by performing 29 culs which intersect two by two, each interseclion point is
split into four images in the process. Vice-versa, for any set of four identified images lhere
must be lwo pairs of idenlified edges, and one can draw two independent non-contractible
loops which intersecl at one point). Finally, the number of boundaries is equa! to the
number of vertices of the second kind.

4. TIIREE-MANIFOLD FROM A GIVEN POLYGON: SURJECTIVE MAP

DEFINITION 3.3. \Ve define a map /: P ~ ,\.1 by explicitly construcling a three-manifold
from a given polygon, as follows. For each verlex of the first kind, choose an image of
that vertex and construct the corresponding cyele transformation, an elliptic element
of 50(2,1). Draw a line lhrollgh lhis image of the vertex ane! parallel lo lhe axis of
this 50(2,1) transformalion (the axis is limelike since lhe cyele is elliptic). Following
lhe identifications, all other images of the verlex are related lo the chosen one by a
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FIGURE 4. The three-manifold which is represented by a fundamental polygon (a pentagon in this
example) is constructed by attaching to each comer of the polygon a timelike line, in such a way
that these respect the identification conditions. A family of polygons is obtained by pushing the
corners oC the polygon along these timelike lines, again respecting the identification conditions, and
the three-volume interior to the farnily of polygons, with the identifications, is the three-rnanifold
with topology E.,b,N x IRand vanishing three-curvature. In the example, 9 = 1, N = Oand b = 1.

Poincaré identification; likewise, one obtains the images of the timelike line under these
identifications. Every image of every vertex of the first kind is thus endowed with a timelike
lineo The cyele may be equal to the identity matrix, in which case the axis is ill-defined;
in this case, and for all vertices of the second kind or third kind, the first image of the
vertex is endowed with an arbitrary timelike line, say (t, O,O); the lines through of other
images of such a vertex are obtained by applying the corresponding identifications, as in
the previous case. Each comer of the polygon is thus cndowed with a timelike line; one
can construct other polygons (or "si ices" ) P( t) by moving each comer along its timelike
line for a fixed proper time, connecting the corners with geodesic segments (like the edges
of the original polygon), and choosing a surface P(t) which ineludes these segments and
respects the matching conditions. \Ve wil! show in Sect. 5 (Lemma 5.2) that the map
f is a function f:P ~ M/R', where two manifolds M,M' are R'-equivalent if they
are isomorphic up to a possible singular surface. In this section, we will show that P( t)
genera tes a three-manifold M E M and that any such manifold can be generated in this
way.

TIIEOREM 4.1. Let M be the regio n of Minkowski space spanned by the family of
polygons M(t) for t E (-00, +00), with the Poincaré identifications, and any singular
surface removed. Then M is a three-manifold which belongs to the set NI (Fig. 4).

Proa/. Each P(I) has the identification rules ofP(O), and therefore the same topology. The
polygons are generated by sliding the corners along timelike lines, so one can attempt to
construct surfaces P(I) such that there is no intersection between two polygons P(t) and
P(I/), for I i' 1'. This is clearly possible locally in 1, to extend for all 1, it is necessary to
appeal to the mapping class group symmetry; we show in Theorem 5.4 that a timelike line,
such as the world line of a comer of a polygon with intersections with singular surfaces
removed, can be covered with a countable set of open neighborhoods O;, and that there
exists a choice of generators of the fundamental group in each such neighborhood such
that nonintersecting surfaces P(t) can be chosen in each interva!. The regio n spanned by
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P(t) minus the singular surfaces therefore has a regular slicing, and can be endowed with
a map {O~,} generated from maps of the polygons P(t) (the map of P(t) is the set of
open neighborhoods {O~; n P(t)} for t E O,). The region of Minkowski space spanned
by P(t), with identifications, is a three-dimensional manifold. The curvature is identical!y
zero except possibly at vertices. \Ve have set the cycle equal to the identity at al! vertices
of the second kind and of the third kind, so that glueing the asymptotic regions does not
introduce any curvature singularity. Curvature singularities occur along the worldliness of
vertices of the first kind, which are the "punctures". It remains to show that there exists
an open region N e M which admits a slicing into a family of spacelike surfaces of genus
9 with N punctures and b boundaries. Since the family of polygons P(t) is continuous
in t by construction and the polygon P(O) is spacelike, there exists and E > O such that
the polygons {P(t), t E (-E, E)} are spacelike. They have the same topology as P(O), as
argued aboye, so these polygons generate an open neighborhood N, with the required
properties. •

TIIEOREM4.2. The map J: P ...•M is a surjection onto M.

Prooj. Any f1at three-dimensional manifold which contains an open neighborhood N e M
which admits a slicing in a family of genus 9 Riemann surfaces with N punctures and b
asymptotic regions, for any g, N, b, can be represented by a generalized polygon as defined
in the previous section. This is proved by construction, using the theorems of Sect. 2. From
a point a of the three-manifold, one draws 2g closed spacetime geodesics which form a
basis of the homotopy group of Eg,o.o, N + b geodesics which connect the point a to the
worldlines of the punctures and b points in the asymptotic regions along with b geodesic
loops based at these points and such that the punctures lie to the inside of these loops,
as explained in Theorem 2.3; altogether 2g + 2b + N geodesic segments. ane chooses a
smooth spacelike snrface E' which includes these geodesics (Theorem 2.4), then cuts this
surface along the geodesics to obtain a surface with 4g + 2N + 3b edges and the topology
of a disk; the cut surface is topological!y trivial and can be mapped in Minkowski space,
leading to a polygon P. \Ve must show that P E 11". Since al! edges are spacetime geodesics,
they become straight segments in Minkowski space. The polygon is bound by 4g +2N +2b
edges of the first kind and b edges of the second kind; the identified polygon is the smooth
spacelike surface E', so it is differentiable at the idel)tified edges and inherits a positive
definite metric from the Minkowski embedding, by construction, therefore P E 11". To show
that J(P) = M, consider the vertices in M and timelike geodesics through each vertex;
since M has the topology Eg.N,b x IR" where IR, is the real line with points removed (8
is the number of singular surfaces) the map in Minkowski space of these geodesics gives
a timelike line at each image of each vertex of the polygon P. \Ve have constructed the
map J(P) from within M, therefore necessarily M = J(P). •

5. EQUlVALENTPOLYGONS;BIJECTIVEMAPJ:P E II"/R ...• M

In this section we will define three equivalence relations in the set of polygons 11", related
to translations of vertices in M, to surface deformations and to the mapping class group.
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The map f: P --+ M defined in 5ect. 4 allows us to define a bijective map /': pi E
P/ R --+ M E M by choosing an element pi in each class. Finally, the mapping class group
symmetry allows us to define a covering of the three-manifold with a countable set of
open neighborhoods, and later to discuss the existence of a global spacelike foliation.

TRANSLATION OF A VERTEX. Given a polygon P, one chooses an image of a vertex and
constructs the corresponding cycle transformation. One draws a line through this image
of lhe vertex and pamllel to the axis of the 50(2,1) transformation. If the cycle is equal
to the identity matrix one chooses an arbitrary timelike line, say ,(t) = (t, O, O). All other
images of the vertex are endowed with an image of this line following the identifications.
One constructs the polygon pi by moving each image of the vertex along its timelike line
for a fixed proper time, connecting the corners with geodesic segments (Iike the edges
of the original polygon), and choosing a surface pi which includes these segments and
respects the matching conditions. Note that P E P does not guarantee that pi E P, for
instance pi may not be spacelike.

DEFINITlON 5.1. Two polygons P, P' E Pare RI-equivalent if there exists a set of
translations of the vertices that take each image of each vertex of P to each image of each
vertex of P'.

EXAMPLE. The polygons P(t) which we constructed to define the map f: P --+ A1 are
RI-equivalent, for t E O•.

THEOREM 5.1. Iftwo polygons P, P' E Pare RI-equivalent, then they can be derived from
manifolds M,M' E M which admit isomorphic submanifolds: N e M,N' e M', where
N = N' admits a slicing into a family of positive surfaces L-g.N.b x (O, 1). Furthermore, M
and M' are isomorphic except possibly for their continuation beyond singular surfaces.

Proof. Assume first that the polygons are R¡-equivalent by timelike translations. Given the
polygon P E P, we construct a three-manifold as in section 4 by choosing timelike lines at
the vertices that are parallel to the translations by which Pis equivalent to P', when these
are nonzero, and arbitrary otherwise. In this way we construct a three-manifold ,VI which
contains the slices P, pi by construction and belongs to M, so it admits a submanifold
N e M with the required properties (in this case M = ,VI'). If the translations are
not timelike then they are combinations of two timelike translations; the first (forward
in time) generated a manifold M as before, which contains P and P". The second set of
timelike translations leads to a manifold M' which includes P" and pi. \Ve must show
that M and M' are isomorphic except possibly for different continuations beyond singular
surfaces. Consider the manifold M and the vertices of the identified polygon P" E ,VI.
\Ve can construct timelike geodesics in M at these vertices and parallel to the second
set of timelike translations. Following these geodesics for proper times equal to those
which defined the translations of the vertices of P" to those of pi, one obtains a set of
points of M which are connected to the vertices of P" by tirnelike geodesic segments. The
map of this construction in lIIinkowski space shows a polygon P" and timelike geodesic
segrnents from the corners of this polygon, with direction and length corresponding to the
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translations which took the polygon p" to P'. We construct along these lines a family of
polygons P'(t) where pl(O) = 'P", P'(I) = p' and each P'(t) represents a surface of the
manifold M. Since P'(t) genera tes M' (by definition of M'), we conclude that the open
neighborhood N = {P(t), t E (0,1)} is subset of both M and M'. This shows that M
and M' are evolving in time the same Cauchy data on an "initial surface" Po, where Po is
the identified polygon at any to E (0,1). Therefore the time evolution generates a unique
three-manifold up to possible singular surfaces. _

COROLLARY. The manifolds constructed in Sect. 4 admit a submanifold N e M E MI
which is independent of the timelike lines chosen for vertices of the second or third kind.

DEFINITION 5.2. Two polygons P, P' E lP' are R2-equivalent if DP = ap' and the sets of
ISO(2, 1) identifications of P and P' are the same.

TIlEOREM 5.2. If P, P' are R2-equivalent, lhen both can be derived from the same
three-manifold M E M.

Proaf. Since DP = ap', there is a compact submanifold P - P' of 2 + l-dimensional
Minkowski space bound by P P'. \Ve construct lhe manifold ,Vi = f(P), as in Secl. 4.
Since P, P' are spacelike lhese lilles inlersecl P - p' only at lhe corners. The manifold
M is the region of Minkowski space conlained wilhin the timelike walls defined by lhe
corners and limelike lines, wilh idenlificalions, so clearly P ami P', which are spacelike,
must be included in lhis manifold, q.e.d.. _

DEFINITION 5.3. Two polygolls P, p' E lP' are R3-equivalenl if lhe corresponding sets of
ISO(2,1) idenlifications are relaled by a mapping class group lransformalion.

TIlEOREM 5.3. If two polygons P, P' E lP' are R3-equivalenl, lhen both can be derived
from the same manifold M E M.

ProaJ. Let M = f(P). The idenlified polygon is a posilive surface Eg,N,b embedded in
M. The mapping class group lransformation wilh lakes the ISO(2,1) idenlifications of
Ponto those of P' has a represenlalion on Eg,N,b which corresponds lo changing lhe
basis sel of loops and segmenls which inlersecl al lhe verlices, holding these vertices
fixed. The new loops and segments can be deformed smoolhly lo be geodesic except at
the vertex, remain noninlersecling excepl al lhe verlices, and there exisls a positive,
differenliable surface E;,N,b which includes lhe new geodesic segments and loops (all of
lhis was proved in Sect. 2). The map of E' N b in Minkowski space is a polygon P' whichg, ,
has lhe same verlices and ISO(2, 1) idenlificalions as P' by construclion, lherefore lhey
are R2-equivalent, and the lheorem becomes a corollary of Theorem 5.2 _

COROLLARY. The manifolds constructed in Sect. 4 are independent of the choice of
generators of lhe fundamental group.

TIIEORE~I 5.4. Given a limelike geodesic ¡(t) e M, where t E IR, is lhe real line
wilh s points removed (where ¡(t) inlersecls singular surfaces), there exisls a countable
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set of open neighborhoods Oi which covers 'Y(t) and for each i there exists a basis of
generators of the homotopy group at sorne 'Y(t) E 0i, that can be smoothly translated
into nonintersecting generators of the homotopy group at 'Y(t'), 'ti t' E Oi.

ProoJ. The proof is by construction with the help of the polygon representation. Since
M E M, it admits a surface Eg,N,b e N which can be smoothly deformed into the
identified polygon P(O) whose map in Minkowski space is bound by straight segments.
A family of polygons P(t) is constructed by associating a timelike line to each image
of each vertex and pushing the corners of the polygon along these lines, as discussed in
Sect. 4 Let Si (O) be the edges of the polygon P(O), and Si(t) the edges of the polygon P(t)
which results from translating by a proper time t. Each Si(t) defines a "timelike wall" in
Minkowski space (a timelike tlat surface). As long as a comer of P(t) does not inlersect
with a wall 'Y(t) (other than the two which is belongs to by construction), the construction
just described is the required smooth translation of generators of the homotopy group
within the first open neighborhood 01, If an intersectíon occurs at t = ti, we must show
that there exists an open neíghborhood O2, where 'Y(t¡) E 02 and a choice of geodesic
generators of the homotopy group which do not intersect for 'Y(t) E O2• \Ve first show
thal the intersection point (a comer of P(t¡)) must intersect the wall at the same tI'
If it did not, then 'Y(tl) and the intersection point would form a timelike triangle and
P(t¡), which includes 'Y(t¡) and the intersection point, could not be spacelike (proof as for
Theorem 2.4); thus we \Vould aIread y have passed a singular surface at some t < tI and
the open neighborhood 01 would be valid up lO lhe singular surface, as required. Thus,
the intersection point belongs to the geodesic segmeul s e OP(tl)' The comer lies on
the geodesic segment s and as a comer of the polygon it is the intersection of t\Vo other
geodesic segments, so the three geodesic segments are intersecting. Any choice of a basis
of non-intersecting generators of the fundamental group can be deformed into spacelike
geodesics as shown in Sect. 2; it is always possible to choose the basis so that these geodesic
generators intersect only at their common base point, as long as the surface is not singular.
This allows us to construct a new polygon P2(t¡), R3-equivalent to P(tl), and a family
of polygons P2(t) which will be non-intersecting for some open neighborhood 'Y(t) E 02.
Repeating this procedure leads either to crossing a singular surface, covering of the line
'Y(t) with a countable sequence of open neighborhoods, 01' convergence to an accumulation
point of the series of intersections 'Y(tl), 'Y(t2), 'Y(t3)," .. Such an accumulation point can
only occur if for any choice of generators of the homotopy group and any €, there is an N
such that for N' > N there is a comer of P(tN') which líes at a distance less than € from
a segment 'Y(tN') to which it does not belong. This cannot happen if P(t) is a regular
surface at the accumulation point, so P(too), would be a singular surface. •

DEflNITION 5.4. \Ve define the subset P, e 1I' by choosing a representative of each
equivalence class of 1I' modulo R = RI U R2U R3.

LEMMA 5.1. Consider P E 1I' and P', a spacelike surface with lhe topology of the disk
and boundary 8P = OP'o The three-manifold ;1.1 = f(P) belongs lo MIg.N.b, for some
g, N, b. The surface p' rcpl'esents a geuus 9 Riemaun surface iu M, ",ith N punctures
and b asymptotic regions.
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Proa/. The three-manifold M is the region of Minkowski space bound by timelike
walls .;(t), where .;(t) are the edges of the polygons P(t) constructed in Sect. 4, and
the walls generated by segments of the first kind are identified. Since pi is spacelike
and the walls are generated by timelike translations of the corners, the surface pi intersects
the walls only at the edges .;(0) of OP = 0P' and pi is contained in M. pi and Pare disks
with the same identifications on the boundary, therefore they have the sarne topology. •

DEFINITION 5.5. M, M' E M are R'-equivalent if and only if there exist isomorphic
open neighborhoods N e M, N' e M', where N and N' satisfy the conditions stated in
Definition 2.1

LEMMA 5.2. / is a function /: ll' -> MI R".

Proaj. The lemma is a direct consequence of Theorerns 5.1, 5.2 and 5.3. •

LEMMA 5.3. Let P, pi E ll' represent two slices of the same open neighborhood N e
M E Mg,N.b such that P represents a genus 9 surface with N punctures and b boundaries
and N admits a foliation into spacelike surfaces. Then pi has the same topology as P.

Proa/. Since P, pi belong to ll', they represent spacelike surfaces Eg,N,b and E' in M. The
corners of Pare images of vertices Pi E Eg,N,b e M. The map /(P) = M (Iemma 5.2)
associates a timelike geodesic to each vertex Pi. Let P: denote the intersections of these
timelike geodesics with E' (which exist since M has the topology Eg,N,b x IR. Since M
has the topology Eg,N,b x IR, and N admits a spacelike foliation, there exists a spacelike
surface E;,N,b which ineludes these vertices and has the sarne topology as Eg,N,b' Consider
a basis 01 2g + b loops and N + b segrnents on E", which intersect only at the vertices. By
Theorem 2.3 we can smoothly deform them into spacelike paths 1,,(') which are geodesic
for • 'i {O, 1} and intersect only at the vertices. We can smoothly deform E' holding
the vertices fixed so that the deforrned surface E" ineludes the 2g + 2b + N geodesic
segments. Cutting E" and E" along these segments we obtain polygons p" and P" with
OP" = OP", so Lemma 5.1 tells us that E" has the same topology as Eg,N,b, and also E'
by transitivity. •

THEOREM 5.5, The restriction of / to ll'" /': P, -> M, is a bijection from ll', to MI R".

Proaj. It was shown in Sect. 4 that / is surjective onto M, the restriction /' is also
surjective as a result of Theorems 5.1 and 5.2. Given that /' is surjective on M, it is also
surjective on MI R". \Ve need to show that it is also injective. Suppose two polygons P, P'
lead to the same three-manifold M. The identified polygons would be two spacelike slices
E, E' of M, and therefore must have the same topology (Iemmas). Therefore, there is
a mapping e1ass group transformation which takes P to p", where P" is R3-equivalent
to P and is such that its boundary can be smoothly deformed to that of pi; we will
show that the displacement of corners is a combination of translations of vertice., and
therefore that OP" is RI-equivalent to &P', so P is equivalent to pi by transitivity and
R2-equivalence. Consider one comer P of P" and the corresponding comer P' of pi; there
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is a translation which takes Ponto P'. Consider another comer which is an image of the
first under the identification g(P), where 9 E 150(2,1). The image g(P') must be the
corresponding comer of p' (if it were not, then the two corners of p' would not be related
by the given 150(2,1) identification, which would contradict the fact that P' belongs to
M). The transformation of aH such images of a vertex for aH vertices of p" shows that
p" is RI-equivalent to P'. •

6. GLOBAL EXISTENCE OF A SPACELIKEFOLIATION

The boundary of a given polygon consists of a olle-dimensional closed figure in Minkowski
space formed of straight edges. COlIsider a triallgulation such that its segments consist
exclusively of sums or difIerences of the boulldary segments. \Ve have seen that the space-
time A1 can be constructed by sliding the corners of the polygon along timelike geodesics,
leading to the family P(t) of polygolls Like\Vise, this generates a family of triangulated
surfaces. An important question is under what circumstances can the polygons P(t) be
chosen to be spacelike for aH t (no singular surface). It is clearly sufficient that the tri-
angulated surfaces be spacelike for aH t. To determine whether this is true, note that the
edges of the polygon T(t) are three-vectors in Millkowski space which depend linearly on
t; let us denote these vectors by Ew For segments of the first kind, these are identified to
a Lorentz rotated three-vector E_I, = M;;-l E", where M" is the Lorentz projection of the
150(2,1) identification (the minus sign and inverse are conventional). The arca vector of
a triangle is the antisymmetrized product of t\Vo of its edges; the conditioll that aH such
area vectors remain timelike is thus expressible as a set of conditions on the initial vectors
and their velocities.

TUEOREM 6.1. Let P(O) be a polygon representing a genus 9 surface in the standard way
(one vertex and 4g edges identified in pairs). It represents a manifold M which admits a
regular spacelike foliation in a family of genus 9 surfaces if and only if the vectors {E"
(1' = 1, ... , 2g), El +E2, El +E2+E_I, El +E2+E-l +E-2, El +E2+E_l +E-2+E3,.' .},

are spacelike for aH t.

Proa!. The given vectors form a spacelike triangulation of the polygon, so the condition is
sufficient. To sho\V that it is nccessary, note that each of these vectors conncct t\Vo images
of the single vertex of the identified polygoll, i.c. they are closed geodesic segments. A
manifold M which admits a closed timelike geodesic segment could not admit a spacelike
triangulation (see theorem 2.4). •

EXAMPLE (GENUS T\vo). Consider the genus two surface represented as an octagon
in Minkowski space (Fig. 5). The eight images O, of the vertex of the identified polygon
are endowed with timelike lines respecting the identification conditions, namely N at 01,
M¡M2M¡IN at O2, M2Ml-

IN at 03, MI-IN at 04, M2-1M1M2Ml-1N at 05, M3-
1N at

06, Jl.f4M3
-IN at 07 and M3Jl.f4J'v1¡IN at Os. The boundary segments are the vectors

O, - Oj, for instance El(t) = E¡(O) + (M¡M2M,1 - l)Nt. It is spacelike if

(EI(O))2 + (M1M2M,¡ - l)Nt)2 + 2(El(0) . (M¡M2M,1 - l)Nt) > O1ft.
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FIGURE 5. The octagon corresponds to a genus two surCace, a slice oC the spacetime represented
in Fig. 1. The points O" i = 1, ... ,8 are the eight images of the same vertex of the identified
polygon. The edges oC the polygon are straight segmcnts in Minkowski space which we rcpresent
by three-veetors, sueh as El and its identified partner MIJE1•

The statement is neeessarily trne at t = O, it will be true for all t if and only if the
characteristie determinant for the second order polynomial in t is negative, i. e., iff

A similar ealculation for the other segments of the triangulation gives the complete set
of conditions of the initial values E,,(O) and M" (the latter are independent of t, so they
are also "initial conditions").

THEOREM 6.2. Let P(O) denote any polygon in the set !P. It admits a spacelike tri-
angulation 7(0) whose vertices are corners of the polygon, by definition of !P. Given a
choice of timelike lines at each vertex of the identified polygon and the images of these
timelike lines at each comer of the polygon uniquely defined by the identifications, we
obtain the triangulated surface 7(t) by sliding the corners of the triangulated polygon
7(0) along these timelike lines. If 7(t) is positive, then the manifold M = f(P) admits
a global foliation in a family of positive definite differentiable surfaces Eg•N•b and M is
independent of the choice of timelike lines.

Prooj. The foliation can be constructed directly by a smoothing of the triangulated sur-
faces 7(t), holding the boundary edges fixed. Note that the condition is sufficient but
not necessary, since if a given triangulation falls there may exist another which remains
spacelike. It is however necessary that all dosed segments of the triangulation be spacelike
at all t, as explained in Theorem 6.1. That M is independent of the choice of timelike
lines is a direct consequence of the eorollar)' of Thcorem 5.1 and the fael that the surfaees
are positivc definite. •
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7. COSMOLOGlCAL CONSTANT

The construction of a f1at three-manifold from a generalized polygon can be extended
to three-manifolds of constant curvature. We give the construction without proofs, as
they are straightforward extensions of the proofs given in the previous section. Consider
Minkowski space in 3 + 1 or 2 + 2 dimensions, and the 2 + 1 the de 5itter spacetimes
which are the hypersurfaces defined by 9abxa Xb = :1:1 (the sign is + or - if the
Minkowski metric 9ab has signature {-, +, +, +} or {-, -, +, +}, respectively). These
hypersurfaces are invariant under 50(3,1) and 50(2,2), respectively. To construct a
polygon, choose N points on the hypersurface and a set of 29 + N - 1 identification
matrices in the corresponding group, that are a faithful representation of the fundamen-
tal group of a genus 9 surface with N punctures. The images of these points under the
identification matrices provide the other corners of the polygon. The identification matri-
ces are restricted by the requirement that the polygon satisfy the topological condition
stated in Property 3.2, to guarantee the existence of an orientable surface which respects
the matching conditions, and that there exist a positive surface which includes these
points (Property 3.1), and that the N cycle transformations have a timelike invariant
planeo
The plane which is invariant under the cycle transformation at a vertex of the identified

polygon intersects the constant curvature hypersurface along a timelike line which is a
geodesic of the hypersurface (de 5itter space) and is invariant under the cycle transfor-
mation. Each comer of the polygon is endowed with such a timelike line, as in 5ect. 4.
The polygon can be pushed forward in time along these timelike lines, leading to a 2 + 1-
dimensional region in the hypersurface, which is 2+ 1 de 5itter space, with identified wal!s.
The three-manifold obtained by identifying the wal!S two by two is local!y de 5itter by
construction, and has the same topology as in the case of zero cosmological constant. The
introduction of boundaries is straightforward, the only difference being in the homotopy
group of which the identification matrices are a representation. To prove that al! 2 + 1
local!y de 5itter spacetimes can be represented in this way, one proceeds by construction as
before, the only difference being that the geodesic cuts are not represented by three-vectors
but by geodesic segments in de 5itter space.

8. CONCLUSIONS

We have generalized Poincaré's fundamental polygons, from the isometry group 5L(2, IR)
to the group 150(2,1), and implicitly to the homogeneous groups 50(3,1) and 50(2,2).
While Poincaré's polygons parametrize the moduli space of f1at 5L(2, IR) connections, the
generalized polygons parametrize the moduli spaces of f1at Poincaré connections, or its
homogeneous generalizations. Rather than a representation of Riemann surfaces, or of
stationary spacetimes, the generalized polygons provide a representation of a large set of
f1at spacetimes, stationary or not.
The limitations of our approach are the following. Only point like sources can be rep-

resented in this picture. No progress is made towards the purpose of representing any of
these solutions in the form of a metric tensor, in sorne coordinate system. The residual
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discrete "braid" symmetry was only mentioned; it is a difficult but important symmetry
to impose at the level of a quantized theory.

On the other hand, the approach has the potential to be applied to other problems of
interest: What has been done he re in 2 + 1 dimensions can likely be generalized to higher
dimensions, i.e., to give a parametrization of flat (or de Sitter) manifolds with simple
topologies; for instance the extension is trivial for separable topologies E x IR x IR, or
E x IR X Si. Another possible field of generalization is to the supersymmetric extensions
of the group IS0(2, 1).

Perhaps of greatest interest to the physicist is the quantization of 2 + 1 gravity, con-
sidering that to this day, none of the conceptual problems of quantum gravity posed by
DeWitt [131 have yet been convincingly resolved. We can only hope that the explicit
representation of aH classical solutions will prove to be a useful step toward this goal.

ACKNOWLEDGEMENTS

This article was completed thanks to the input of a great number of people, most notably
Richard Matzner, Vince Moncrief and Steve Carlip. 1 wish to thank Adriana Criscuolo for
completing the proof of Theorem 2.4. The generalization to nonzero cosmological constant
stems from conversations with Luis Urrutia and Federico Zertuche. FinaHy, many ideas
were developed during a tour of the East coast, where 1 received valuable input from Vince
Moncrief, Ted Jacobson, David Brown and Jim York. This work was supported by NSF
grant PHY8806567, by CONACYT contracts PCEXCEU-022621 and 400349-5-1714E,
and by the Association Générale pour la Coopération et le Développement (Belgium).

REFERENCES

1. A. Achucarro and P. Townsend, Phys. Lett. B180 (1986) 89.
2. E. Witten, Nuc!. Phys. B311 (1988) 46.
3. V. Moncrief, Ann. Phys. 167 (1986) 118.
4. S. Carlip, UCDPHYS-PUB-23-90, University of California, preprint (1990).
5. G. Mess "Lorentz spacetimes of constant curvature", Institut des Hautes Etudes Scientifiques,

preprint IHES/M/90/28 (1990).
6. W.P. Thurston, Low.dimensional topology,London Mathematical Society Lecture Notes Series

48, ed. Brown and Thickstun, Cambridge University Press (1982), 9; W.P. Thurston, Bull.
Amer. Math. Soco 6 (1982) 357; A good review of Thurston's approach can be found also in:
P. Scott; Bull. London Math. Soco 15 (1983) 401.

7. H. Poincaré Acta Math. 1 (1882) 1.
8. H. Waelbroeck, Phys. Rev. Lett. 64 (1990) 2222; H. Waelbroeck, Nuc!. Phys. B364 (1991)

475.
9. B. Maskit, Adv. Math. 7 (1971) 219.
10. J. Milnor, Adv. Math. 25 (1977) 178.
11. M. Henneaux, Phys. Rev. D29 (1984) 2766.
12. S. Deser, R. Jackiw and G. 't Hooft, Ann. Phys. (1984) 152.
13. B.S. De Witt, Phys. Rev. 160 (1967) 1113.




