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ABSTRACT. Applications of a new version of the effective (self-consistent) field method for eval-
uation of elastic properties and microstresses in homogeneous medium with thin inclusions are
presented. Two type of thin inclusions are considered: stiffer than the medium (hard flakes), and
softer than the medium (quasicracks and cracks). Sorne results concemed with the influence of
space distribution of thin inhomogeneities on effective elastic moduli of composites are discussed.

RESUMEN.En este trabajo se presentan las aplicaciones de una nueva versión del método de
campo efectivo (autoconsistente) para estimar propiedades elásticas y microtensiones en un
medio homogéneo con inclusiones delgadas. Se consideran dos tipos de inclusiones delgadas:
más rígidas que el medio (hojuelas duras) y más suaves que el medio (casi-grietas y grietas).
También se discuten algunos resultados que consideran la influencia de la distribución espacial de
inhomogeneidades delgadas en el módulo elástico efectivo de materiales compuestos.

PACS: 03.40.De; 46.20.+e; 62.20.-x

1. INTRODUCTION

Thin inclusions represent an important class of inhomogeneities in real materials. On the
one hand, cracks, microcracks and thin flaws in solids can be considered as such inclusions.
Modeling of physical properties of materials with cracks and quasicracks is a problem of
considerable interest for mechanics of fracture, geophysics and material science [1,2).
On the other hand, stiff thin inclusions are known as the most effective fillers for increas-

ing the elastic moduli of plastics, rubbers etc. [3,4]. With the same volume concentrations
and moduli of elasticity of the filler, the stiffness of composites reinforced with thin stiff
inclusions is higher than when filled with fibers or quasispherical particles.
The attention of most authors was focused on the problem of elastic properties of

cracked solids. (See, e.g., reviews [5,61 were one can find a number of references to this
problem). As it was emphasized in [61 this problem has sorne particularities. For exam-
pie, the bounds for elastic moduli of cracked salid s degenerate: neither the upper nor
the lower non-trivial bounds can be established in this case. The simplest self-consistent
schemes allow to obtain sorne solutions, but these solutions are not satisfactory from many
points of view. For instance, elastic moduli of cracked solids obtained by effective medium
method [71 tend to zero when concentration of cracks is not very large. The simplest
variant of the method of effective field in the Mori-Tanaka's form gives the result which
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coincides with the case of non-interacting cracks [8]. (Note that in Mori-Tanaka's method
every inclusion is assumed to be in constant and the same for all inclusions local external
field). Thus interactions between cracks can not be taken properly into account when
simplest self-consistent approaches are used. The same problem appears if one applies
the aboye mentioned methods to the medium with thin inclusions, i. e., in a more general
situation.

In this article, the advanced self-consistent method is applied to the evaluation of
elastic moduli in solids with thin inclusions of various types. This method differs from the
aboye mentioned one in that the local external field which affects every inclusion in the
composite is assumed to depend on the orientation of the inclusion. Such a modification
of the effective field method permits to describe interactions between the inclusions in
more details; it also takes into account the particular nature of the space distribution of
thin inclusions.
The proposed method is based on the solution of a "one particle problem". It is an

elastic problem for an isolated inclusion in infinite homogeneous medium under the ac-
tion of constant external field of arbitrary structure. Inclusions with properties strongly
different from the properties of the medium are of particular interest to the mechanics
of composites. This is the reason for considering them in this article. Thus there are two
small parameters in the problem under consideration: geometrical -the ratio of char-
acteristic linear dimensions of the inclusion-, and physical -the ratio of characteristic
elastic moduli of the medium and the inclusion, or its inverse. In this work only the main
terms of the expansion of the solution in the series over these parameters are taken into
account. The problem of constructing these terms is considered in the Sect. 2 of the article.
Then in Sect. 3, the general scheme of the new version of effective field method and the
solution of averaging problem is developed. In Sects. 4 and 5, this scheme is applied for
obtaining the effective elastic moduli of the medium with thin stiff and soft inclusions.
Sorne generalizations of the method are discussed in the conclusion.

2. A TlIIN ISOLATED INCLUSION IN HOMOGENEOUS ELASTIC MEDIUM (ONE PARTICLE
PROBLEM)

Let us examine a homogeneous medium with tensor of elastic moduli Co and with a
single inclusion having moduli tensor C. The inclusion perfectly fits into the undeformed
medium and occupies finite volume V. One characteristic length parameter of this volume
h is much smaller than two other (of the order 1). Thus the ratio 61 = h/l is smal!. The
external loading in the medium is represented by body forces and stresses at infinity.
Thin inclusions with elastic moduli essentially different from the moduli of the medium

are of prime interest for uso In this case the ratio of characteristic moduli of elasticity of
the inclusion and the medium (62 = O(CC;l)) is either small (soft inclusions), or large
(stiff inclusions).
It should be noted that the most valuable information about the stress fields in the

vicinity of thin inclusion is contained in the main terms of the asymptotic expansion of
these fields over the parameters 61 and 62• In order to construct these terms, it is necessary
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to find the Iimiting solution of the suggested elastic problem when Ól -+ 0, Ó2 -+ ° (or
Ó2 -+ 00), and the ratio Ó¡jÓ2 (or product Ó\Ó2) remains constant and equal to its value
for the given inclusion. Such asymptotic expansion describes the behavior of elastic fields
at distances from the surface of the inclusion larger than its characteristic transverse size
h, and this is precisely of interest for the mechanics of solids with thin inclusions.

Let us begin with thin soft inclusions when the parameter Ó2 is small. The middle surface
of inclusion !1 will be considered as a smooth Lyapunov surface with given continuous
field of its normal vector n(x). The surface !1 is bounded by a closed contour r and
X(X\,X2,X3) is a point of the medium. It has been proved in Re£. [9] that the main terms
of strain c(x) and stress a(x) of the asymptotic expansions in Ó¡, Ó2 in the medium with
thin soft inclusion can be written as

Cij(X) = COij(X) + in J(ijk/(X - x,)c~'mnnm(x')bn(x') d!1',

aij(x) = a~(x) + in Sijk/(x - x')nk(x')b/(x')d!1',

J(ijkl(X) = - [V iv\Gj/(x)] (ij)(kl)'

Sijk/(x) = c~jmnJ(mnpq(X)C¡;qkl _ C~jkIÓ(x),

(2.1)

where co(x) and ao(x) are the external strain and stress fields that would have existed
in the medium without the inclusion under the given external loading, G(x) is Green's
function for the homogeneous medium with moduli C and ó(x) is the 3-D delta-function.
The vector field b(x) is the density of the potentials in the r.h.s. of (2.1); it satisfies on !1
the following equation [91:

ij 1 kijl
,\ (x) = h(x) nk(x)C n/(x),

(2.2)

where h(x) is the transverse dimension of the inclllsion in the direction of normal vector
n(x) at the point x E \l.

N?tice that the operator T in (2.2) can be written as an integral operator only con-
ventlOnally becallse the appropriate integral diverges for every smooth fllnction b(x)
(T(x, x') - Ix - x'1-3 as x' -+ x). Reglllarization of this operator for fllnctions with
continllolls first derivatives was obtained in [10].

~et liS consider the c~e of stiff inclllsions, ¡.e., when the parameter Ó2 is large. The
mam terms of asymptotlc strain and stress (the limits of c(x) and a(x) when Ól -+ 0,
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Ó2 -+ 00, Ó¡Ó2= 0(1)) can be written in this case as follows [9]:

éij(X) = éOij(X) -1Kijkl(X - x')ll(x') dO',

"ij(x) = ,,~(x) -1Sijkl(x - X')CO¡lmnqmn(x') dO',

where q(x) is a tensor on the surface O given by

(2.3)

8(x) is an operator of orthogonal projection on the tangent to the O plain:

n = n(x),

where Ei(n) are the elements of the following tensor basis:

(2.4)

and Óij is a Kronecker's symbol.
The field q(x) satisfies on O the following integral equation:

J.lijkl(X)qkl(X) +1Uijkl(X,X')qkl(X') dO' = 8f}(X)éOkl(X),

J.lijkl(X) = h(~) (x)8:T(x)C;;;~pq8n(x),

Uijkl(X, x) = e:T(x)J(mnpq(X:- x')e~1(x').

Regularization of the operator U in this equation has also been obtained in Re£. 191.
Methods of numerical solutions for Eqs. (2.2), (2.4) have been discussed in Ref. [11).
Let the inclusion be a thin ellipsoid with semiaxes a¡,a2,h (h/a¡,h/a2 « 1). Then O

is aplane elliptical surface, and the normal to it will be denoted by m. It was shown in
Re£. [10] that in the case of constant external field (éO, "o), the solutions of Eqs. (2.2) and
(2.4) have the form

kjb¡(x) = B¡j(m)mwo z(x),

(2.5)
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where Xl, X2 are Cartesian coordinates along the major axes of the ellipsoid. Rere the
tensors B and Q are expressed in terms of the absolutely converging integrals

Bij(m) = [h-lmkCkijlm¡ + s~] -1,

Q;jkl(m) = [h-le;T(m)C~~pqe~r(m) + UOijkl] -1,

s~j = J mkSkijl(x)m¡[z(x) - 11 dn,

UOijkl = J e;TJ(mnpq(x)e~r[z(x) - 11dn,

(2.6)

where integration is over the plane Xl, X2 and the function z(x) vanishes outside of n.
These integrals are expressed in terms of elliptical functions. In case of isotropic medium
and thin spheroids (al = a2 = a), tensors B and Q have the following forms:

I [7f ] -1
Bl = Jio (+ 8(2"0 + 1) , [ ]

-1
12(1-1') 7f

B2 = JiO ((1- 21') + 2""0 ,

[
1 - V 7f ]-1

Ql = al'o (-- + -(2 - 1(0) ,
1+ v 8 Q2 = 2al'0 [( + 1

7f
6(4- "o)] -1, (= ;~:' (2.7)

where Ji, vare the shear modulus and Poisson ratio for the inc!usion, ¡'o, 1'0 respectively,
are their values for the matrix, "01 = 2(1- 1'0); Pi are the elements of tensor basis related
to the basis (2.4) by the equations

P¡(m) = El - 2Es(m) + E6(m),

P3(m) = E3(m) - E6(m),

Ps(m) = Es(m) - E6(m),

P2(m) = E2 - E3(m) - E4(m) + E6(m),

P4(m) = E4(m) - E6(m),

P6(m) = E6(m).

(2.8)

3. MEDlUM \VITIl AN ARRAY OF TIlIN INCLUSIONS

Let us considcr an infinitc medium in which a randolIl set of thín inc1usions is homoge-
neously distributed. The external field applied to the medium (i.e., £0 or ao) is assumed
to be constant. The middle surface of the i-th inc!usion ni is the plane with normal
mi. Thus the inc!usions are space oriented objects. Let us introduce local external field
on the ¡-th inc!usioIl. This field is composed of external field £0 and the fields induced
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by the surrounding inclusions. It is obvious that the orientation of the ¡-th inclusion in
relation to the total external field and surrounding inhomogeneities influences the local
external field on this inclusion. Method of effective field is used here for description of
the interaction between the inclusions [121. Due to the special shape of inclusions under
consideration, the main hypothesis of the method should be reformulated. We assume
that every inclusion in the composite is in a local homogeneous external field e. which
depends on the orientation of this inclusion m. Using this hypothesis, the expressions for
strain and stress tensors in the medium with thin inclusions can be represented in the
form analogous to (2.3) (in the following the subscripts will be dropped for simplicity):

e(x) = eo - J J(x - x')q(x')dx',

O'(x) = 0'0 - J S(x - xl)CiJlq(xl)dx', (3.1)

q(x) = A(x)c.(m)O(x), O(x) =¿O¡(x).

. O¡(x) in (3.1) is a generalized function concentrated on the surface of ¡-th inclusion.
The function m(x) coincides with the normal m to the surface O¡ when x belongs to
O¡(x). The function A(x) is found when x E O¡ from the solution of the elastic problem
for the isolated thin inclusion in homogeneous external field e.(m). For thin ellipsoidal
inclusions, in particular, the expression for the function A(x), x E O¡, has the form

A(x) = A(m¡)z¡(x), (3.2)

where the function z¡(x) in the basis of the main axes of ellipse is defined by the rela-
tion (2.5). The tensor A(m) depends on the orientation m¡ of the inclusion, and elasticity
moduli of the latter and those of the medium. In the case of thin stiff inclusions the tensor
A(m) coincides with tensor Q in Eqs. (2.5)-(2.7). For thin soft inclusions A(m) has the
form

A(m) = -CoM(m)Co, (3.3)

where tensor B is defined in Eqs. (2.6) and (2.7). Let us introduce the function

O(x; x') = L::O¡(x'), when x E 0j.
¡;I'j

(3.4)

It allows to express the local external field at point x placed on the middle surface of
an arbitrary inclusion in the following formo

e.(x) = eo - J J(x - x')A(x')c.(m')O(x; x') dx, x E O. (3.5)
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Let us average this equality with the condition that point x is placed on the middle
surface of the inclusion with normal m. This averaging is denoted as (.Ix, m). If the mean
(ó.(x)lx, m) is identified with an effective field acting on the inclusion of orientation m,

(ó.(x)lx, m) = ó.(m),

one can obtain from (3.5) the expression for ó.(m)

ó.(m) = óo - J I«x - xl)(A(xl}ó.(m')I1(x; x')lx, m} dx'. (3.6)

Let us consider the mean integrand in this relation. Assuming that elastic properties
of the inclusion are statistically independent from their space positions, one can obtain
the expression for this mean taking into account (3.1)

(A(x')ó.(m')I1(x,x')lx,m) = (AO(m')ó.(m'))wm.(x - x'), (3.7)

AO(m)= (z(x)l1(x)}A(m), wm(x - x') = (11(~;;~\~,m). (3.8)

The mean (AO(m)ó.(m)) is calculated over the ensemble of distributions by orientations
and properties of inclusions. The function wm(x) describes geometrical particularities of
the inhomogeneities distribution in composite materia!. It follows from definition (3.4) of
the function l1(x;x') that the function wm(x) has a property

Wm(x) = O, when x = o. (3.9)

Due to the weakening in geometrical linkage between positions of the inclusions when
the distan ces increase between them, the following relations take place

Wm(x) --+ 1 when Ixl --+ oo. (3.10)

The function wm(x) defines the shape of a "correlation hole" inside which a typical in-
clusion of the orientation m is located. Let us assume that there is a linear transformation
of x-space that rearranges the function wm(x) into a spherically symmetric one:

y = a(m)x,

In this case, ellipsoid A given by the equation

la(m)xl = 1,

with semiaxes al, a2, a3 describes the form of the correlation hole.
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After substituting (3.7) in (3.6) and calculating the appropriate integrals (see the Ap-
pendix) one can obtain the expression for é.(m) in the form

é.(m) = éO+ A(m)(AO(m)é.(m)},

A(m) = J K(x}[1 - Il1m(x)] dx.

(3.11)

(3.12)

The external strain field éO here is assumed to be fixed for the problem [see Eq. (AA)].
Let us multiply both sides of (3.11) by the tensor AO(m) and average the result over

the ensemble of random orientations and properties of inclusions. Solving the obtained
equation for tensor (AO(m)é.(m)}, we have

(3.13)

The expression for the effective field é.(m} can be found if we substitute (AO(m)é.(m)}
from (3.13) to the r.h.s. of (3.11).
The mean values of strain and stress fields follow from (3.1) after averaging both parts

of these relations over the ensemble of random sets of inclusions:

é(X) = éO- J K(x - x')(Ao(m)é.(m}} dx',

er(x) = ero - J S(x - x'}Co-I(Ao(m)é.(m)} dx'.

In order to obtain (3.14), (3.15) we take into account the relation

(A(x)é.(m)n(x)} = (AO(m)é.(m)}.

(3.14)

(3.15)

(3.16)

Note that (AO(m}é.(m)} is a constant tensor. Since the external strain field éOhas been
assumed to be fixed, the regularization procedure ofthe integrals in (3.14), (3.15) has the
form given in Appendix AA, and we obtain the final result in the form

(é) = éO, (er) = C.(é},

C. = Co + [El - (Ao(m}A(m))] -l(Ao(m)}, (3.17)

where C. is the tensor of effective elastic properties of a composite with an array of thin
inclusions which we are looking foro
Note that when inclusions do not interact, then é. = éOand the expression for C. takes

the form
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4. ELASTIC MEDIUM REINFORCED WITH STIFF FLAKES

In this section we apply the aboye results to the calculation of elastic moduli of composites
reinforced with stiff inclusions having the shape of f1attened spheroids. In this case the
middle surface of every inclusion is a circular area of random radius a. The material of
the inclusions is supposed to be isotopic. In this case, tensor A(m) in (3.2) coincides with
tensor Q(m) given by the expression (2.7).

Let us consider tensor A(m) [Eq. (3.12)], which is present in Eq. (3.17) for the effective
elastic moduli tensor of the composite. Function Wm(x) is assumed to have the symmetry
of an ellipsoid which is coaxial with the considered inclusion. Let the semiaxes of this
ellipsoid be O¡ = 02 = o and 03. The axis X3 is directed along the normal m to the middle
surface of the inclusion n. In this case the tensor A(rn) has the form (-y = 0/03 > 1)

1
A3 = --f¡,Ito

1
A¡ = - [(1 - 1<0)Jo + f¡],

2lto

1As = -11 - Jo - 4f¡j,Ito

1
A2 = -2 [(2- 1<0)Jo + f¡],Ito

1
A6 = -[(1- 1<0)(1 - 2Jo) + 2f¡],Ito

1 - 9
Jo = 2(1 _ ')'2)'

1<0 [ 2 2]
f¡ = 4(1_')'2)2 (2+')' )g-3')' , g=

')'2 ~
ry--; arctan V ')'2 - 1.

V ')'2 - 1

Thus in this case, tensor A depends only on one scalar parameter ')'. If the positions of
the inclusions in space are statistical1y independent, ')' has the order of (al h), which is a
mean aspect ratio of the inclusion of the orientation m.

Let us consider some particular cases.

1. Inclusions are thin spheroids (f1akes) of the same orientation.

According to (3.8), tensor AO(m) has the form

where no is the numerical value of concentration of inclusions.
In this case the composite medium wil1 be transversely isotropic with the axis of isotropy

directed along the common normal m to the surfaces of the inclusions. According to (3.16),
the tensor of the effective moduli of elasticity C. takes the form

(4.2)
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where coefficients Q¡, Qz and A¡, Az are given by (2.7) and (4.1). If, » 1 then, to the
accuracy of the terms of order ,-¡, the expression for A¡, Az has the form

2. Inclusions are thin spheroids homogeneously distributed over the orientations.

In this case, the composite is macroscopically isotropic and the express ion for the tensor
C. takes the form

(4.3)C. = k.Ez + 2¡L.(E¡ - ~Ez),

A¡ + 3Az
¡L. = ¡Lo+ [( ) ],15 - 2 2A¡ A¡ - A3 + 3AzAz

4A¡
k. = ko + [ ( )]'3 3 - 4A¡ 2A¡ + A3

where the coefficients A¡, Az are the same as in (4.2). Note that the case ofnon-interacting
inclusions follows from (4.1) and (4.3) when, -> 00 (A¡,Az,A3 -> O).
Let us compare the obtained theoretical results with the experimental data from mea-

surements of the moduJi of elasticity in plastics reinforced with mice f1akes with high
aspect ratio (a/h » 1) [13]. In this work, the so-called "f1exural" modulus of elasticity
of composites in the plane of the f1akes was measured. The orientation of the f1akes was
approximately the same, at least near the sur faces of the sample, i.e., in the regions whose
properties largely determine the f1exural modulus of elasticity.
More than 100 experimental values of the moduli of elasticity of composites with dif-

ferent ratios of the matrix and inclusions moduli, different aspect ratio of the f1akes and
different volume concentration [13,14], were used for analyzing the value of él. = IEl¡ -
EI¡I/ Eh -the relative difference between the theoretieal El¡ and the experimental Ell
values of the effective Young's modulus in the plan e of the f1akes. It turns out that the
value of él. does not strongly depend on the eoneentration of fillers. It is determined by the
values of parameters , and ( = a¡Lo/2h¡L "" aEo/2hEll. The minimal value of él. averaged
over all samples is aehieved for the value of, approximately equal to (a/2h).
The graph of él.(() is given by the solid Jine in Fig. 1. The "experimental" values of

él. are given by the points, the scale along ( axis is logarithmie. The maximum value of
the relative differenee for all samples with the same value of parameter (, but different
values of r = 1"rrno(a3) was seleeted as él.. When ( > 0,2 the deviation of El¡ from Eh
did not exeeed 10% up to r = 200 (the volume eoneentration of f1akes attained the value
of p = 0.7 (p = (a/h)-lr) [13]).
The error of the theoretieal formulae obtained he re has two main sourees. First, the use

of only dominant terms in the expansion of the solution of the one particle problem with
the small parameters 6¡ and 6z. The eorresponding error is of the order of max(6¡, 6z). It
should be noted that with relatively small aspeet ratio ((a/ h) < 5) and high stiffness of
the inclusion (Ell / Eo > 100), when parameter ( is small, the error duc to substitution of
real f1akes of ellipsoidal shape inereases (the elevation of the eurve with small ( in Fig. 1
is apparently related to this).
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FIGURE 1. Dependence of the relative difference between the calculated and experimental values
of the moduli of elasticity for composites reinforced with stiff ftakes on parameters ( characterizing
the properties of the ftakes.

Secondly, consideration of the interaction between inclusions is approximate. Analysis
of experimental data shows that integral effect of the interaction in these composites is
relatively weak. Within the framework of the proposed theory, the degree of interaction
correlates with the value of parameter 1, which is determined by the space distribution
of the inclusions. We note that total neglect of the interaction (-y-l = O) results in the
increase in the relative error of tl. (the dashed curve in Fig. 1 corresponds this case).
The comparison of the theoretical and experimental data thus permits to draw the

following conclusions. The area of applicability of the formulae obtained here can be
estimated with the dimensionless parameter ( = aElI/hEo. \Vhen ( > 0,15 these formu-
lae predict the elastic properties of plastics reinforced with thin stiff inclusions with the
accuracy of 10 to 15%. This accuracy is acceptable for application in almost the entire
range of change in concentration of the filler. The value of parameter 1 is equal to half of
the average aspect ratio of the reinforcing elements. \Ve note that the value of 1should
be determined from statistical analysis of the picture of the distribution of the filling
elements in the bulk of the composite.

5. THIN SOFT INCLUSIONSAND CRACKS IN ELASTICMEDIUM

Next we examine the case of thin inclusions with elastic moduli essentially smaller than
the moduli of the medium (CCOl = 0(82), 82 « 1). \Ve begin with considerations on the
medium containing homogeneous randa m set of thin ellipsoidal inclusions. The method
of effective field is used again for the description of the interaction between inclusions. As
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before, we assume that every inclusion of the orientation m is located in a constant local
effective stress field u.(m)(u.(m) = Coó.(m)). To the accuracy of dominant terms in the
expansion of elastic fields with respect to small parameters of the problem, 61 and 62, the
strain and stress fields in the medium with such inclusions are represented in the form
which follows from (3.1),

ó(x) = óo - J K(x - x')CoM(x')u.(m')rl(x') dx',

u(x) = Uo- J S(x - x')M(x')u.(m')rl(x') dx',

(5.1)

where function M(x) is determined from the solution of the corresponding one particle
problem. In case of flattened spheroids, this function on the inclusion middle surface with
the orientation m has the form

1

M(x) = M(m) [1- (':1) 2] ~ Ixl = Jx¡ + x~,

where a is the largest radius of the spheroid. Tensor M(m) is defined in (3.3).
The equation for effective stress field u.(m) can be obtained in the same way as (3.5)

and has the form

u.(m) = Uo- J S(x - x')(M(x')u.(m')rl(x; x')lx, m) dx', (5.2)

where function rl(x; x') is defined by (3.4). The mean integrand in this equation takes the
form

(M(x')u.(m')rl(x;x')lx,m) = (Mo(m)u.(m))wm(x - x'),

MO(m) = irra2noM(m),

where function wm(x) is given by (3.8) and properties (3.9) and (3.10) hold for it. This
function is supposed to have the symmetry of a ellipsoid coaxial tl' the inclusion of orien-
tation m. Taking into account the properties of Wm (x) one can calculate the integral in
the r.h.s. of Eq. (5.2) (see Appendix) and obtain the expression for u.(m) in the form

D(m) = CoA(m)Co - Ca,

u.(m) = Uo- D(m)(Mou.(m)),

D(m) = J S(x)[l - Wm(x)J dx,

(5.3)

where tensor A(m) is defined in (4.1). The external stress field ud is assumed to be fixed
in the problem.
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Let us multiply both sides of (5.3) by the tensor M(m) and average the result over the
ensemble distributions of orientations and properties of inclusions. The equation for the
mean (MO(m)a.(m)) may be obtained in such a way and its solution has the form

After averaging the expressions (5.1) for strains and stresses and taking into account
the relation

(M(x)a.(m)íl(x)) = (Mo(m)a.(m)),

we obtain the result

Since fO = Colao, one may rewrite these relations in the form

(a) = ao.

(f) = B. (a), B.=C;l, (5.4)

where C. is the desired tensor of elastic moduli of the medium with thin soft inclusions.
Let the medium be isotropic and the symmetry of the function "'m (x) be determined

by the spheroid with semiaxes al = a2 = a, aJ. Tbis ellipsoid is coaxial to the inclusion
of orientation m. In tbis case the representation of tensor D(m) in P-basis (2.8) has the
form

dI = 1'0[1 - 4"0 - 2(1 - 3"0)/0 + 2"ohj,

dJ = 21'0[(1 - 2"0)/0 - 2"ohj,

d2 = 2/lo[1 + (2 - "0)/0 + "oh),

ds = -4/'01/0 + 4"ohj,

d6 = -4/'0[(1 + 2"0)/0 - 2"ohj,

where functions /o(-y), h(-Y) (-y= afaJ > 1) are the same as in (4.1).
lf "'(» 1, then to the accuracy of the terms of order "'(-1, the coefficients d; (i =

1,2, ... ,6) in (5.5) are transformed to the following ones:

"1'0dI = 1'0(1 - 4,,0) + -(7,,0 - 2),4"(

"l'OdJ = - 2"( (3,,0 - 1), "1'0ds = --(1 + 2,,0)'
"(

"1'0d6 = --(1 + "0),
"(
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In the ¡¡mit (¡~ 00) we have

The other limit (¡~ 1) corresponds to the correlation hole with the shape of a sphere.
In that case D(m) is an isotropic tensor

The case, = 1 corresponds to the model of a random set of inc1usions when there is a
spherical arca around every inc1usion and the probability that other inc1usions appear in
this arca is small.
Let us consider the expression for B. (5.4) in sorne particular cases.

1. Thin soft inclusion of the same orientation. It follows from (5.4) and (5.5) that tensor
B. has the form

(5.6)

\ [ ]-1)MO T 71" (2 - vol
1 = 2/10 ~ + "8 (1 - vol ,

MO / T [_2(I-V) _71" ]-1)
2 = \-2/1-0 ~ (1 - 2v) + 4(1 - vol ,

4 3r = j"7ra no,

where inc111sions are supposed to be thin spheroids of random radius a.
In case of cracks (k = /1 = O) and , » 1 this expression for B. beco mes

-1 4(T) ( (T))-1
B. = Co + 71"/10(1+ 2/10) 1 - ----:; P5(m)

+ ~ [1 _ (T)(1 + "o)] -1 P6(m).
71"/10"0 ,"o (5.7)

The ¡¡mit of , ~ 00 here gives the formulas obtained in Re£. [15] which correspond to
the case of non-interacting inc111sions.

2. Homogeneous distribution of inclusions over the orientations. Tensor B in this case is
isotropic and has the form
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The expressions for bulk KO and shear ¡Lomoduli for composite follow from this result
and take the forms

[
kOM~]-¡

k. = ko 1+ 1+ i2 ' [ ]

-¡
2¡LO o o

¡L. = ¡Lo 1 + 15(1 + j¡) (3M¡ + 2M2)

The limit , -+ 00 gives in the case of cracks (k = ¡L= O):

k. = ko [1+ (r)ko(3ko + 4¡Lo)] -¡ ,
7r¡Lo(3ko+ ¡Lo) [

4(r)(2ko + ¡Lo)(3ko + 4¡LO)]-¡
/1. = JLo 1+ ----------

37r(3ko + 2¡Lo)(3ko + ¡Lo)

If , = 1 these expressions take the forms

o 2¡LO(MO MO)Mk = koM¡ , M" = 15 3 1 + 2 2 ,
3ko

81=----,
(3ko + 4¡Lo)

Note that within the framework of the effective field method, the stress intensity factor
at the crack edge can also be estimated. According to the main assumption, every inclusion
behaves as isolated in an effective field of external stress a.; in case of a circular crack,
we have the expression for the coefficient J(¡ in the form

The analysis of the accuracy of this formula is discussed in Ref. [16].
Let us consider the obtained formulae for the plain problem. The effective field method

formalism can be reduced to the plain problem without any additional difficulties. The
2-D case is exceptionally interesting because there is a lot of experimental data for this
situation, and there is also a number of exact solutions for the elastic plane with rectilinear
cracks. Thus the opportunity appears to estimate the accuracy of the method.

For the plane with homogeneous array of thin soft elliptical inclusions, the tensor of
elastic moduli is defined by the relation (5.8), where tensors MO and D(m) have the forms

(5.8)

M _ 7r12no (, 2(1 - v) )-¡
2 - 2¡Lo '(1 _ 2v) + KO ,

1¡L
( = 2h¡LO'

d¡ = -4¡LOKo(1 - 2fo + 3f¡),

1
fo = (1 + ,)'

2+,
f¡ = 6(1 + ,)2 '

a2,= - > 1,a¡



EFFECTIVE ELASTIC PROPERTIES. • . 865

where m is normal to the middle line of an inclusion, 1 and h are semiaxes of the latter,
and "1 is an aspect ratio of a correlation hole for typical inclusions.
Let us consider the express ion (5.4) for B. in sorne particular cases.

1. A rray 01 inclusions 01 the same orientation m:

where MI, M2 and d3, d6 are defined in (5.7) and (5.8).

2. Homogeneous distribution 01 inclusions by the orientations:

-1 (M2) (MI + M2) ( 1)
B. = Co + 4(1 + i2) E2 + 4(1 + j¡) El - 'iE2 ,

JI = k(Mlds + 2M2(d6 - d3», i2 = !(M2(d3 + d6»'

lf "1 - 00, then j¡, i2 - Oand this is the case of non- interacting inclusions. In the case
of cracks (k = /1 = O), the expressions for the Young's modulus E. and Poisson's ratio /l.

follow from (5.6) and have the forms

EoE. = --,
l+r

/lo
/1=--
• 1+ r' (5.10)

where Eo is Young's modulus of the medium.
lf "1 = 1, the express ion for B. for cracks takes the form

-1 r [ ]B. = Co + . ( )( ) 8E¡+ r(E2 - 4E¡) ,
4/10"0 2 - r 4 - r

where El, E2 are the elements of the basis (2.4) for plane problem.
It follows that E. and /l. have the forms

[ ]

-1E. r(8 - 3r)
Eo = 1 + (2 - r)(4 - r) ,

/l. E. [ r
2
]

/lo = Eo 1- /lo(2-r)(4 -r) .

(5.11)

(5.12)

The curves 1, 2 and 3 shown in Fig. 2 represent, respectively, functions (5.10), (5.11)
and (5.12). They are compared with experimental data cited in Ref. [171. Experiments
were carried out on thin rubber sheets with a set of rectilinear through slits (/1 = 0.5).
Experimental data are approximated by the dash line with small circles for (E./ Eo) and
dash-dot line for (/1.//10)'
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FIGURE 2. Theoretical and experimental dependence oC the relative Yonng's modulus [(£'/£0)-
curves (1), (2)1 and Poisson's ratio [(v./vo)-curves (1), (3)J oC the plain with set oC cracks VS. the
parameter T characterizing density oC cracks.

The statistical analysis shows that the set of cracks investigated in Ref. [17] is sat-
isfactorly defined by the model with the restriction on crack intersection. The formulas
for the effective elastic constants obtained for this model are in good agreement with
experimental data.

It turned out that formula (5.10) for Poisson statistically independent set of cracks
(-y -+ 00) correctly describes well sorne experiments and results of computer simulation
of the elastic properties of cracked solids, when the coordinates of the crack centers are
statistically independent and homogeneonsly distributed in the plane [6]. \Ve mentioned
before that the limit 'Y -+ 00 corresponds to the assumption of non-interacting inclusions.
1f 'Y is finite, interactions bctween the inclnsions take place. According to the obtained
formulas, interactions always rednce the stiffness of the medium with soft inclusions. The
same general statement was made by the authors of Ref. [18].

6. CONCLUSION

In this article, on!}' the first step of generalization of the effective field method was con-
sidered. The effective field is assumed to depend on the orientation of the inclusion. The
next step is to accept that the effective field randomly changes from one inclusion to
an other. The outlining scheme for snch a generalization was considered in Refs. [12.19].
This generalization permits to obtain not onl}' the effective properties of composites but
to estimate fiuctuations of the elastic microfields. :o.loreover, this method allows to take
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into account the details of many particle interaction between inclusion [191and to describe
the non-local properties of inhomogeneous medium [121.

ApPENDIX

Here we give a short survey of the properties of generalized functions connected with the
second derivatives of the Green's function G(x) for homogeneous elastic medium. This
function is the solution of the equation

where V'i is del-operator.
Fourier transform of G(x) has the form

Fourier transforms of functions J(x) and S(x) in Eqs. (2.1) alld (2.3) take the forms

Thus J(k) and S(k) are homogeneous functions of zeroth degree in k.
Let us consider the actions of functions S(x) and J(x) on a fUllction of class S(R3)

(as Ixl - 00, they decrease more rapidly than any negative power of Ixi). These functions
are generalized homogeneous functions of power -3 and their regularizations on function
<I> of the mentioned class have the forms [20,211

J S(x)<I>(x)dx = Do<I>(O)+det(a-I) f S(a-Iy)<I>(a-Iy) dy,

J J(x)<I>(x)dx = Ao<I>(O)+ det(a-I) f J((a-1y)<I>(a-Iy) dy,

(A.I)

where a is an arbitrary non-degenerate linear transformation of x-space. The integrals
on the right hand side exist and are taken in the sense of Cauchy's principal value. The
constant tensors Do and Ao are expressed in terms of Fourier transforms S(k) and J(k)
of functions S(x) and J(x) by the formulas

Do = ~ r S(ak) dn,
4" }n,

Ao = _1 r J(ak) dn,
4" }n, (A.2)

whcrc nI is the surface of the unit sphere in the k-spacc of Fourier transforms. Note that
if <I>(a-Iy) = q'(lyl) the integrals in the r.h.s. of (A.l) vanish.
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Let us now consider the effect of the action of the convolution operator with the kernels
S(x) and K(x) on the constant mo. the respective integrals formally diverge at zero and
infinity. Note that the integrals

J S(x - x')mo dx', J K(x - x')Como dx'

have the meaning of internal stresses and strains, respectively, in homogeneous medium
containing dislocation moments of constant density mo [22]. Jf the deformation of the
medium is not constrained at infinity, such distribution of dislocations does not result in
the appearance of internal stresses but induces an additional constant ("plastic") defor-
mation of the medium of magnitude equal to mo. Consequently in this case

J S(x - x')mo dx' = O, J K(x - x')Como dx' = mo. (A.3)

However, if the deformation of the medium is constrained at infinity, the result is
obviously different:

J S(x - x')mo dx' = -Como, J K(x - x')Como dx' = O. (A.4)

Another way to obtain these formulae was proposed in Ref. [211.
These formulas allow to find the action of generalized function S(x) and K(x) on the

function wm(x) = 1 - 'i>m(x), where 'i>m(x) is a function of S(R3) class. Note that the
pair correlation wm(x) considered in this paper is a function of that type.
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