Investigacion Revista Mezicana de Fisica 39, No. 6 (1993) 870-892

Conformal curvature and spherical symmetry

ROBERT H. BOYER!
Department of Physics, University of Liverpool, England

AND

JERZY F. PLEBANSKI*

Departamento de Fisica, Centro de Investigacion y Estudios Avanzados del IPN
Apartado postal 14-740, 07000 Mézxico, D.F. Mérico

(August, 1966)
Recibido el 29 de abril de 1993; aceptado el 28 de mayo de 1993

Special Note

This article was written together with Robert Boyer in June of 1966. Robert Boyer
came to work with me during my first five years in Mexico.

After returning to the University of Austin, he was shot by a madman, together
with some other twenty people, close to the rectory tower. Of course, I don’t need to
tell what was my moral state upon hearing this news and this paper was set aside.

Recently I found it digging in my drawers and I decided to ask the Editors of
the Revista Mexicana de Fisica whether it would be possible to publish it. They
accepted. I think that the article deals with a basic issue. At that time, very few
people were aware of the conformal structure of the interior Schwarzschild solution.
This article is to honor the memory of my friend.

Jerzy Plebanski
May 19, 1993.

ABSTRACT. Spherical symmetric space-times are found to have simple type D conformal curva-
ture. We classify all such conformally flat spaces, showing in which cases conformal flat spaces,
showing in which cases conformal flatness becomes strict flatness. We show how to obtain explicitly
the conformal factor of such spaces. As special cases, it appears that the interior Schwarzschild
and the Friedmann space-times are conformally flat. These are studied in more detail. We also give
results on the embedding of space-times in five and six flat dimensions.

RESUMEN. Se encuentra que los espacio-tiempos simétricamente esféricos tienen una curvatura
conforme simple tipo D. Clasificamos todos estos espacios conformalmente planos, mostrando en
cudles casos llegan a ser estrictamente planos. Mostramos cémo obtener explicitamente el factor
conforme de tales espacios. Como casos especiales, se encuentra que el interior de los espacio-
tiempos de Schwarzschild y Fridmann son conformalmente planos; estos se estudian en més detalle.
También damos resultados sobre la inmersién de espacio-tiempos en cinco y seis dimensiones planas.
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1. INTRODUCTION

In this paper, we wish to gather together some results on space-times in which the spherical
symmetry interacts with the curvature tensor. The most immediate result is that all such
space-times have conformal curvature of type D with one independent invariant. This
is perhaps, not too surprising, as spherical symmetry picks out unique space-like two
elements at each event, and the two null normals might be supposed to be good candidates
for double Debever vectors. What is less obvious is that the coefficient of the conformal
curvature is greatly simplified in spatially isotropic coordinates, and contains only the
spatial derivatives of one structural function. Thus the classification of conformally flat
spaces with spherical symmetry is easy, and we also give formulas to exhibit the conformal
flat mess explicitly.

Our experience has been that to study the Einstein curvature of spherically symmetric
space it is better to use standard coordinates. If we use the field equations and suppose
the material sources to be hydrodynamical, we find curious relations between the fluid
variables and the single conformal invariant which are reminiscent of thermodynamics,
and which may be useful in non-static collapse problems. But the most direct outcome of
our study of the connection between the fluid variables and the conformal invariant is the
recognition that the familiar interior Schwarzschild metric is conformally flat, a fact which
certainly cannot be well known. Another by-product is the better-known result that all
the Friedmann universes are conformally flat. We display explicitly the conformal flatness
in all these cases.

Finally, we give some results on embedding space times in flat spaces of higher di-
mension. It is easy to see that all spaces of spherical symmetry can be embedded in six
flat dimensions. One of us has already worked out the details of the embedding of all
conformally flat spaces in six flat dimensions. And we conjecture that all conformally flat
spaces of spherical symmetry can be embedded in five flat dimensions.

2. THE CONFORMAL CURVATURE OF SPHERICALLY SYMMETRIC SPACES

In this section we examine the curvature of a normal V4 the riemannian space-time of
signature (+———) which contains O(3) as the sub-group of its (possibly larger) group of
symmetries.

By an appropriate coordinate transformation the line element of such a space can
always be brought to the form*

Vi:  ds? = ¢72(2%, u)[v? (20, u) (dz°)? — dz® dz®] (1.1)

This statement requires some justification. Let the metric of an arbitrary spherically
symimetric space-time be written as

Vi:  ds® = hap(z®)dz? dzf + H(2C) (d9? + sin® 9 dp?), (1.1a)

*Latin letters will run from 1 to 3, greek from 0 to 3.
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where 2! = r and A, B = 0,1. We seek a transformation to 20 = g(z*) and z! = f(z4)
which will reduce h4p to say, ||hap| = Hf~?| diag(¥? — 1)||, so that we shall have (1.1)
with ¢ = fH~1/2, Since hAP = g—igg—ighoD, we must have

P _ .
“H =h Bf,Af,B, (1.1b)
0="h""f 49,8, (1.1c)
f2 — hAB 1.1d
H'(,b2 = g,Ag,B' ( - )
Representing f = f(z#) as ®(z4, f) = 0, (1.1b) is equivalent to the equation
AB f2 oy .
h27® 4@ g + Eq)'f =0, (1.1e)

which always admits solutions locally because h4p is hyperbolic normal. Equation (1.1c)
then determine g as a function orthogonal to f and (1.1d) serves to determine 1.

The coordinates z# = (z° 2%) of (1.1) will be called spatially isotropic coordinates.
We shall see that they are very convenient in the study of conformal curvature. We shall
leave the topology of the manifold My covered by Vy unspecified in this section; we assume
merely that locally My is a differentiable manifold.

The space Vj is conformally equivalent to

Vi ds? = ¢*(2% u) (dz®)? - dzx, dz®, (1.2)

the conformal curvature tensor C%; ; being the same for both. But since V, contains only
one arbitrary function 1, its curvature quantities are very simple.

In fact, let us consider a space Vj slightly more general than VJ, with a more general
function 3(z#):

Vi ds®=¢%(z*) (dz°)? — dz, dz°. (1.3)

One easily finds that

VJ': { 00[1- } = 7’[’_1‘/),# { an } = IDT/J,a, (14)

while all other Christoffel symbols vanish. One then quickly finds the Riemann tensor,
and hence the Einstein and conformal curvature tensors:

V;”: Goa - 0, Gab = —1,0_1(11),.15 - 5.1::1!’:’9), (15)
V't Copea =0, Coaos = — 3% (V.ab — 36ab%%), (1.6)

=
Ca.bcd = —Tl’ Eabrfcdscﬁro.s-
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Notice the absence of temporal derivatives in all the curvature quantities of V,'. Also
observe that (1.6) imply that if Vj is understood as a space conformally equivalent to | 74
with proportionality factor ¢—2, then

Vir  CapysC7 = 26972 [Pt ® — §(¥,00)’]- (1.7)
One easily sees that Go = 0 in V)’ implies that V;’ is flat. Indeed, from (1.5), Gop =

0 — Yap—0ap¥% =0— ¢ = a(z%) + kq(z%)z®, with a(z?), k() arbitrary. But this ¢
used in (1.6) yields Cog,s = 0. Therefore Rog,s = 0, and the space

ds? = (a(z®) + 2k%(2%)2°)? (d2°)” - da® dz® (1.8)
is flat.*
On the other hand, V}' can be conformally flat but not strictly flat. Indeed, according

to (1.6):

Caprs =0 = 1 ap — 2806%,5s = 0

— ¥ = a(z?) + 2k%(2%)z® + b(z®)z%z®, (1.9)

with a(z9), ku(2®), b(z®) arbitrary. With this ¥, the Einstein tensor becomes, according
to (1.5)

Goa =0, Gap = _%bwwlé‘ab‘ (110)
Thus, if b(z°) # 0, then Gos # 0 and the conformally flat V}' with % from (1.9) is not
strictly flat.

We include, for completeness, a method for displaying explicitly the conformal flatness
of such a V' satisfying (1.9). Let f(z°) be the (unique) solution of the integral equation

f(u) = fuf(z)H(s,u) ds + ®(u), (1.10a)
0
where

H(s,u) = /” [4ka(3)k“(t) — 2a(s)b(t) — 2a(t)b(s)] dt
su (1.10b)
®(u) = f [Aa(t) + 2K®kq(t) + Bb(t)] dt + /K.K* — AB
0

*E.g., metrics of the type ds* = (z° — £3)? (dz°)? — dz, dz® are simple examples of so-called

“coordinate waves”.
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A, K,, B are five arbitrary constants subject to K,K* — AB > 0. From

o) = [ Fia®,a)da. (1100)
Then
ds? = ¢72[¢? (d2°)? - dza dz®) (1.10d)

is flat. The proof, which is a straightforward application of a theorem of Schouten [1] will
not be given here, as the details of a more practical method for the special case k, = 0
will be given in Sect. 2.

Finally, we indicate how a general V' can always be embedded (locally) in six flat
dimensions. For constant ¢ let

o=z,  XO=fy(z*),
22 =z%  X*={y(z*)sinh(z0/0), (1.11)
2 =2%  X° = ty(z*)cosh(z?/¢).
Then
ds? = ¢? (dz°)? — dz, dz°
=(dX9) = (@X1)P = [@X) = WP XY < XY (1.12)

Eliminating z* from (1.11), one sees that V' is the intersection of the surfaces

4
(X024 (XY = (X% =0, X° =10y [E’tanh_l (%) ,X‘,XQ,X:’} ; (1.13)

in the (flat) 6-dimensional space with metric (1.12).
This concludes our discussion of the more general V,'. We now specialize to V{, where
¥(z*) = ¥(2% u). One finds from (1.6)

Byl
Vi Coun = —2upwun (222 = §6us) - (1.14)
Equivalently,
1
AU yu = Yrr — ;w.,., (1.15)

which shows why we prefer to use u = r? in (1.14).
With (1.14) and (1.6) we can easily determine the algebraic type of the conformal
curvature tensor of V; and hence of Vj.
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Let

¥ 1 z° 1 2@
C YD) e D) e

Without the factor ¢~! we understand these vectors in the sense of VJ. They satisfy
Vi,Vi: k=000 =0, k=12 (1.17)

Remembering that Caﬁﬁ in V4 and V] coincide, but that operations with the metric
require an additional factor in V4, we find that

Cau,ﬂuk#ky = _%u‘;bgw_]w,uukakﬁa
Coupul € = —3ud* ™19 yulal, (1.18)
Cappr k™t = +3ud® ™19 wukisl,).

This allows us to infer that C%_; is of Petrov type I degenerate (type D, or (22) in the
Penrose notation) with k,, {, as double Debever vectors. And when

Yuu =0 — ¥ = a(z?) + b(z°)x, (1.19)

V4 is conformally flat. This is of course, a special case of (1.9). We shall show in Sect. 2
that the important special case of (1.19) when a and b are constant is conformal to the
interior Schwarzschild metric. Eq. (1.19) seems then to be as close a conformal counterpart
as possible to the well-known Birkhoff theorem, which deals with spherical symmetry and
Ricci-flatness.

We wish to discuss the spinorial description of the facts established above. Select as
the Pauli matrices in Vj:

T R N N )

where spinorial indices run over 0, 1. The vectors kg, £, in V4 can be written as
k* = gh48k kg, 4= gtABY 4p, (1.21)

ka= (cos ﬂ/?eiﬂ/Q,sinﬁ/Qe_iﬂfr‘)),
_ ' (1.22)
£y = (—sinﬂ/?e"’/?,cos19/26"9/2).

We have the angular variables 9, ¢:

! =rsindcosp, x?=rsindsin @0, x° =rcosd; (1.23)
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k4 and €4 depend only on the angles and are normalized by

kalt = APk tp =1, B (_‘1) (1]) s
Construct from the Pauli matrices the mixed object (spin tensor)

S,uuAB -1 uRA vSB _

2€hs (9 YRASP).

g g5

Then the conformal curvature can be represented by its spin-image
08 = §PRAR G SO0 4 e

Using (1.18) one finds after some work that

Cascp = CDapep,
where

Dagep = K(4Kplctlpy — DapcpDAPCP = 1

and

C = —ud*y Y uu.

D spcp depends only on the angles. In fact,

Diji = $(1 - cos9)e®,  Dygyp = 3(1 — cos9)e™ 2%,

D1112 = —% sin 196“’0, D2221 = %Sil} 198_1"’0,

D1122 = %(% + COos 19)

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

The conformal curvature possesss in general four invariants, namely, the real and imag-

inary parts of the two complex quantities

2 3 \
_ ~AB  ~CD _ AB  ~CD  EF
C=C"cpC~" 4B, C=C"cpC™"pprC" 45

(1.31)

(Strictly speaking, the real parts and the squares of the imaginary parts are scalars).

However, in the (2-2) and (2-1-1) cases we have the condition
3
(€)"-6(C) =0,

L
so that C contains all the information about curvature invariants.

(1.32)
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In our spherically symmetric V; we find from (1.27-28):

2

Vi C=£(C)? = real, (1.33)

so that only one conformal invariant characterizes the space. It follows that C given by
(1.29) is invariantly defined, i.e., that |C| is a scalar.

A more direct interpretation of C in terms of the conformal curvature tensor can be
obtained from (1.7) specialized to the case of ¢ = 9(z°,u). We find

2
CapysC™P = (%&w*lw,w) > 0. (1.34)

Therefore

1
2

C = —ud?P ™ 9 uu = £1(3CapsC**°) (1.35)

We may justly interpret |C| as the size, or the absolute value of the conformal curvature.

A remarkable property of C is the absence of temporal derivatives when isotropic
coordinates are used. This property is not shared by other coordinate systems which are
commonly used in cases of spherical symmetry. We give below, partly for purposes of
comparison, and partly for their own sake, formulas in which standard coordinates are
used. Namely, let

Vi ds? = e¥(dz’%)? — e*dr'? — v (d9? + sin? 9 dy?), (1.36)

with  and A dependent on 20,7/ (primes to distinguish these from isotropic coordinates).
One can compute Ca,g_,6C°’37‘5 and, consequently, C to be given by*

/ '
30 _ 1 i 118 L I - A 2 =
C__EC O,r,——"s' {(U +§U —i'l}}\ — - +T72 €

9 . . :
——g= (A+3A% = 10)d) e_”] (1.37)

The notation is that COJ”'O,T, is the only independent of CaﬁTé in the 0, 7', 9, ¢ coordi-

nates. Primes denote differentiation with respect to ', dots with respect to z'°. The sign
is so chosen that if v, A are static, the simple 7' = r'(r) transformation which bring (1.36)
into (1.1) transforms (1.37) into (1.35).

Formulae (1.37) is rather complicated. However, when one expresses the components
of the Einstein tensor [2] in terms of A and v, then one can eliminate the derivatives of
these quantities, and express C in the form

3

g L &
C= 4| pr2

(e -1)+ G2 - 363] : (1.38)

*Formula (1.37) was first obtained by Mr. R. Pellicer.
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Thus, if we assume the field equations

G§ = S T5 + Ad3 (1.39)

A is the cosmological constant introduced for generality, T is the energy-momentum
g g 8 gy
tensor; in our signature T¢ > 0) we obtain

13, _,
C-:'—Z '1:!-2'(6 —1)+

8rK

e 3T2) +A|. (1.40)

It is interesting to specialize to the case of a perfect fluid:
Tg = (e + P)u®ug — P&, wuy =1, (1.41)

where P is the pressure and ¢ is the energy density in the rest frame of the fluid. Because
of spherical symmetry we assume uy = u, = 0, so that (1.41) used in (1.40) yields

1 {3, . 8t
—-e*‘—1)+7e+A ; (1.42)

Later we shall consider some applications of this hydrodynamical formula.
For the moment we should like to point out that in the static case (A = 0) with A = —v,
(1.37) takes the form

rd? e -1

C="Fam v

(1.43)

This applies, for example, to the case of a Reissner-Nordstrom space-time (with cos-
mological constant):

_ 2m e?
e AZI_?+;&—= %A'f’rz:eu’ (1.44)
and yields
_3m e? . dm\? e? \?
=3 (1) = Coma =3(F) (-7 ) - 0w

This formula is illustrated in Fig. 1.

We fell that formula (1.45) can be read in two ways. On the one hand, it shows that ' is
algebraically related to the invariant of the conformal curvature, and can be understood
to be invariantly defined. In the well-known Schwartzschild case, »' is proportional to
(C‘a,,g.,g,-C"’B""s)*”6 when e # 0 it is a many valued function of this quantity. On the
other hand, we see from (1.45) that C“'g,ré and Gj of the metric (1.44) stay continuous

when 7' approaches critical values e™* = 0. Thus these values determine only coordinate
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FIGURE 1.

singularities; this fact is responsible for the fact that analytic continuations of (1.44)
exist [3].

That the constant A does not enter in (1.45) is not too surprising: the de Sitter space
= I = g "2 = ¢¥ is, of course, conformally flat. More generally, from (1.43) we infer
that spaces with

A =1+ar' +br'* =€ (a,b= constant), (1.46)
are conformally flat. We would point out that (1.19) is a stronger result (since time-
dependence is permitted), and illustrates the superiority of spatially isotropic coordinates.

Now, let us return to (1.42) and examine the conformal curvature of space-time filled
with hydrodynamical matter. Consider first the general non-static case. Then we have
(among others) the field equations:

i Al 1 8w I{
=
e (TTz—F>_TTQ= . [(e-i-P)uuo—P]—A,

e_/\i 8‘.’7.[(

TI

gLt P)u" ug, (1.47)

where ugu® + upu” = 1. Using these in (1.42) we can show that

2nK
CH

This general relation becomes particularly interesting if specialized to the case of dif-
ferentials along the lines of current, i.e., dz* = u* ds:

2n I oK
d{ [ = ]}: ar P o (1.49)

d(+%C) = -

[r'3 de + er?(e + P)u" (ug dz° + up dr')}. (1.48)
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On the other hand, if the differentials are orthogonal to the lines of current, i.e.,
u, dzy, = 0, then

2rK

d{r'3C’} =Tl

3 de. (1.50)

It is conceivable that the relations (1.48-49-50) may be of some use in the study of the
thermodynamics of spherically symmetric collapse.

As a more modest application of (1.42) consider the case of a static fluid. We have
A =0=1u. and ugu® =1 so that using the first of (1.47) we obtain

A 8K r
A 12 r 42
€ =1- —37‘ = _1"04 /0 dr’ r'“e. (1.51)

The constant of integration has been chosen so that e is finite at r/ = 0, which is
possible if we assume that er'? = O(r'¢) with € > 0. Now (1.51) used in (1.42) yields

e
e ] edr’® —i| . (1.52)
0

But since lim(r'3¢) = 0, we can integrate (1.52) by parts:

2K
C = F

K 1 [T gde
s A S (1.53)

This simple result applies independently of the equation of state to all static, spherically
symmetric fluid configurations. It is also independent of the value of the cosmological
constant.

Consider now the special case of € constant inside a sphere of radius ' = a and vanishing
outside:

€ = e[l — 6(r' — a)]. (1.54)

This should of course, describe the well-known Schwarzschild solution (interior + ex-
terior), and in fact we find from (1.53)

0, 0<7' <a,

C= (1.55)

2 Kadeg L

it
Fol 3 a< s o

Thus the internal Schwarzschild solution with € = ey = const. is conformally flat, a fact
which does not seem to be well known. Thus in a sense the interior solution is simpler
than the exterior. Moreover, at the boundary of the fluid, the conformal and Einstein
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curvatures exchange roles: Cy5,s = 0 inside and G,3 = 0 outside. We shall examine
various aspects of the interior Schwartzschild solution in Sect. 3.

We conclude this section by deriving the Schwartzschild metric components which
follow from the choice (1.54) of e. Used in (1.51) it results in

1-@$+%)W,ogwgm
a
e = (1.56)

a<r <oo,

where m = 4w Kega®/3C*. Comparing with (1.55), we see that for ' > a, C = (3)m/r"3,
in agreement with (1.45).

The e” corresponding to this e™*

is easily seen to be

3
1+ 42 a® 3

=g 1- 145 (1.57)
gDl ] 21;1+§ #1, if0<r <a,
1+ 42 e® 3
2
_T_T:I_%T’2, if a < 7' < o0.
\

To this metric obeying the field equations (1.39) there belong the € of (1.54) and the
pressure

2 1 Ad®
@p:_m(l__/\a

4 3 3 ) .
C a a* m . Yn, N é 22 l ~ Aad . ?_TE N é le
gt " 3 3 9Im a® 3

(1.58)
when 0 < 7' < a. When r’ = a, P vanishes. When A — Q, the formulas (1.56-58) reduce to
the standard (interior + exterior) Schwartzchild formulas [4]. Their validity is, of course,
restricted to such values of the parameters m, A, a that for 0 < 7' < a the pressure is
positive and finite. This restriction will emerge more clearly in the next section.

Starting from (1.36) we studied various aspects of the conformal curvature —taking into
account the field equations— in standard spherical coordinates. On the other hand, as is
clear from (1.35), isotropic coordinates are very convenient in the study of the conformal
curvature of spherically symmetric spaces. In the next section, several problems related
to conformal curvature will be studied, making essential use of isotropic coordinates.
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2. SPHERICALLY SYMMETRIC SPACES IN ISOTROPIC COORDINATES

In the previous section [Eq. (1.19)] we obtained the result that the spherically symmetric
space

Vi: ds®= ¢_2(I0,T)[(a(:r0) + b(z%)r?)? dz%? — dz® d.r“] (2.1)

is conformally flat. We begin this section by showing the explicit coordinate transfor-
mation which displays the conformal flatness of V; and giving the conformal factor as
determined by the arbitrary functions a(z%) and b(z?).

Consider the flat space

Sy: ds? = dz" - dz' da’® = dz®” — dr' — "2 [d6? + sin® ¥ d?], (2.2)

and let a and 3 be arbitrary functions of a variable z°. Now consider the coordinate
transformation from z%,r' to variables 20,7 defined by

1 ag P r
— —r . 3
a? — Pr? + ] oA P (2:3)

| R

Alternatively,

10 b fD_I_l 1
# 0=t | S T R

Then, after an easy computation, one finds that

o =

0 .7 10 ! 10 !
Az, r') ox"or'  0z" or (a? — 2r?)? (

_ & B,
Az, r) 820 9r  Or 920 At ) (2.5)

B a

where dots denote differentiation with respect to 2.
More simply,

a

I = P af Bd

(a® = p2%) L (2.6)

Therefore, when at least one of the variables a, 3 depends on z°(&? + 3? # 0), then
the Jacobian does not vanish identically, and our coordinate transformation is legitimate.
Now, with the help of Eq. (2.4), one finds that

. : 2
dz"®* — dr'? = (@® - b ol e {("% L §r2) da’% - d’"z} : (2.7)
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Therefore, we conclude that, as a result of our coordinate transformation,

dz™? — dz'® dz'® = de% — @'? — 7 [d192 + sin® 9 dwz]

‘ ; 2
=(a® — P2 F2)2 (—3 + g-r?) de®® — dr? — r¥(d¥? + sin? § dp?)

5]
. . . "
= (c:v2 - 1'2ﬁ2)'2 (-% + grz) dz°? — dz® dm“} . (2.8)
Consequently,
& ﬁ 2 : 02 a a 2 2. In9 02 la la
——ﬁ—+—r dr”" —dz® dz® = (a° - §°r®)*(dz™" - dz"™ d2'?). (2.9)
@

2% and r appearing in the conformal factor on the right-hand side being understood as
20 = 2%z, '), r = r(z', '), (2.10)

i.e., the inversion of Eq. (2.3).

This shows that it is always possible to construct explicitly the conformally flat repre-
sentation of any metric of the form (2.1). In the first step, with a(z°), (z°) known, one
solves the differential equations which determine a(z%), 3(z°):

&=-af, f=ba (2.11)

The constants of integration can be chosen as convenient.*
In the second step, with a(z?), 3(2°) known, we seek the inverse transformation to (2.3,
i.e., (2.10). We can now apply the identity (2.9), obtaining

Vi ds? = ¢’_2(a:'0,r’)[dm'02 - dz'* dx’%], (2.12)
where
¢'(2,7') = ¢(a,7) [@¥(z°) - B2(=%)r?] ", (2.13)

with 2°, r understood according to Eq. (2.10).

This procedure is general and works for all conformally flat spherically symmetric
spaces. It is a practical method which leads to an explicit construction of a conformal
factor. It should be easier to use in practice than the method given in Egs. (1.10a—c), which

*Different choices of constants will lead to different conformal factors. This ambiguity is of course,
related to the ambiguity of the conformal factor in the representation of flat space itself, which is
governed by the 15-parameter conformal group.
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applies to the slightly more general space V,’. Indeed, as explained in Egs. (1.1a-e), every
spherically symmetric space can be brought to the form (1.1) in isotropic coordinates.
If the space is conformally flat, then necessarily ¥(z% ) = a(z°) + b(z%)r?. Then, one
can apply the procedure of this section to construct the conformal factor according to
Eq. (2.13). We should like to illustrate this with some examples.

Consider the Friedman universes given in stereographic coordinates by

X —2
ds? = dX° - R2(X9) (1 + a%) dz® dz°. (2.14)

The spatial coordinates z® are dimensionless, R(X 0) is the evolutionary radius of the

universe, and ¢ takes the values +1,0, —1 in the open, flat, and closed models, respectively.

In the first step we introduce instead of X° the dimensionless 20,

x = /%}:}) — X9 = X°(2"). (2.15)

The function R(z%) = R[XO(HTO)] we assume to be known. In terms of it:
X0 = /R(szo)da:o. (2.16)

Then, we represent (2.14) in our canonical form:

2y 2
di® = @V ar) E(l “+ E%) dz®% — dz° d.r“] )

= R (" i 2
o=R (:c)(1+e4). (2.17)

This is enough to see that all Friedmann universes are conformally flat [5]. The case of
e = 0 is trivial: already (2.17) gives the conformally flat representation. We assume ¢ # 0,
and the Egs. (2.11) become

£

&=-8, B= ia. (2.18)
In the case ¢ = —1 (open model) it is convenient to choose
d i
a=-23", f= et — / 0152' = je ID’ (2.19)

,r+-2 2 :L,JU_T‘I
(T—Q) 20 &
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so that these equations are easily invertible. The resulting conformal factor is

¢ = Voo? -2 R~ In4(z® - #?)1/2}. (2.21)

In the case ¢ = +1 (closed model) we take

0 0 d 0
a=23in%, ,Bz-cos%—»/ﬁz%tan%. (2.21a)

Used in Eq. (2.13), they yield, after some work, the conformal factor

¢ = R_](:""0)\/"""'02 + (297 -2 - 1), (2.21b)
where
sinz® = 2 (:,3'02 ol o 2 %)2)—1/2_

Comparing (2.21) with Eq. (2.21b) we see that the conformal factor in the former case
is a function of 2/0% — 772 only, whereas in the latter case it is a function of both z’° and
2% — 2 This is easily explained by the fact that the group of rigid motions of a 3-space
of constant negative curvature (open model) is isomorphic to the homogeneous Lorentz

roup which preserves 2/0% — /2, whereas the corresponding group in the closed model is
group g8
quite different. :

3. SOME PROPERTIES OF THE INTERNAL SCHWARTZCHILD SOLUTION

It was already observed in Sect. 1 that the interior Schwartzschild solution is conformally
flat and as such is simpler than the exterior solution. The purpose of this section is: 1) to
give the explicit conformally flat representation of this metric; and 2) to investigate some
of its peculiar features.

For simplicity, we restrict ourselves to the solution without cosmological term:

2
2m 2m /1?2
ds? = 31/1_——1‘/1——(-) dz?
2 a 2 a \a o

i
__(h._,_i.—r2[d92+5in29d¢2}r bsr=a oty
=)

a

This metric has the Einstein tensor

8k
Gop = % [(€0 + P)uqus — P, (3.2)
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]

]
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u 0/ T ' u
orcos(—€“1)

FIGURE 2.

where €p = const. is related to m by m = %’ra:*é& and

g 2711(1‘)2_ i 2m
8nK |, _ 2m a \a a

= ; (3.3)
¢ a3 \/1 B 2_m - 1 J; 2m (7.)2
a 3 a \a
The pressure is positive and finite for 0 <r < a if
a> m. (3.4)

When a = -g-m then P(0) = oo. We shall confine the present discussion to the case

a> %m and discuss the singular case a = %m separately.

We introduce for convenience the notation

. 5
g Mg by B (3.5)
a

so that
a > %me—»3>5> 1. (3.6)

In the critical case a = 2m, ¢ = 1.) Now introduce in Eq. (3.1) instead of r the new
1

variable u:
2m r ve: —1sinu (3.7)
a a  e+cosu ’

The graph of r = r(u) is given in Fig. 2.
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As the u interval corresponding to 0 < r < a we choose 0 < u < u, < cos™}(—e~1).
Notice that a > 3m — u, < 7. Thus if, in addition to Eq. (3.4), we have a > 3m, cosu
remains positive in the region of interest.

Defining
ds=\/62j ;ﬂ—lado, T=1ve -1 QTm%O (3.8)
the substitution of Eq. (3.7) into Eq. (3.1) yields the dimensionless expression
do® = (e + cosu)~%(dr? - dw?), (3.9)
where
dwi = du® + sin? u (du? + sin® 9 dp?) (3.10)

can be interpreted as the element of length in a closed 3-dimensional space of constant
positive curvature.

Equation (3.9) can be understood as the maximum analytic extension of the space (3.1);
indeed, with the obvious topology —00 <7 < +00,0<u <7, 0<d <7, 0 < p < 2w,
(3.9) gives (remembering that ¢ > 1) an expression for the metric analytic at all points. (In
a sense, it can be regarded as the “Kruskalization” of the interior Schwarzschild solution:
the lines 7 = %u, 9, ¢ = const. are null geodesics).

From Eq. (3.9) it is only a few steps to the explicit conformally flat representation of
do. Indeed, let

T=ln::;1—+d7'=£v—v. (3.11)
Then
do? = [ch v(e + cos u)] kQ(dvz — ch? v d3w?). (3.12)
Therefore, when
w® = sinh v,
w' = cosh v sin usin ¥ sin @,
w? = cosh vsin usin¥Jsin g, (3.13)

w® = cosh vsin u cos v,

w! = cosh v cos u,
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then

-2
do? = [w4 +ey/1+ w°2] (duw® - dw'® = .. — dut?), (3.14)

with

42

—w? 4+ + o+t =1 (3.15)

As the last step we parametrize the pseudosphere (3.15) (de Sitter space) by stereo-
graphic coordinates:

" 1+ oo
z
- 4 _ i7p
wh = T w' = — (3.16)
1- 32,2 1 - 3%,

(b=0,1,2,3 and 7,z = (2/°)? — (2")% - (2'2)? - (z'®)?).
This used in Eq. (3.14) yields

-2
dx, dz'™ (3.17)

i = [1 + 12l a7 + f\/x’°2 +(1- i—x’ar"’)Q

(only in the region where 1 — }z,z'” > 0; where this is negative we must replace in
Eq. (3.17) € by —e).

This is the explicit conformally flat representation of (3.1). the region 0 < r < a
corresponds to 1 > cosu > u,; but :

w! ; 1+ 1ala

cosu = ———— = sign (1 — jz,2'%) :
\/$102 o (1 Y I.;a)2
1to

(3.18)

o

V1 + w'?

When a > 3m, which we now in fact assume for simplicity, cosug 2 0 — 1 2 %|:r’a;r:"’|,
according to Eq. (3.18), and cosu > cos u,; hence the choice of sign in Eq. (3.17) is correct.
Now, according to Eq. (3.18) the inequalities 1 > cosu > cos u, are equivalent to

) 1 kgt @
> 42 = 2 0 Us. (3.19)
Tt - 1)
Noticing that £/ + (1 — Lot 2oy = (1 +-gala'?)? +7° ¢ = V22", we easily see that

(1) holds automatically, becoming equality only when r' = 0. Thus 7 =0 < v’ = 0. The
inequality (2) is equivalent to (1 + §2,2'7)sinu, > cosuar’, which is in turn equivalent

to
1 IIG 2 T" 2
— | > =+4ctgus, | . 3:
sinQua+(2) _(2+cgu (3.20)
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e = = e m— o —

T
2 Pa=2 2 P
FIGURE 3.

Therefore, the events which in Eq. (3.1) are defined by 0 < r < a correspond to the
events defined in the coordinates z'# by the condition

! 202 1
- < — | + —ctgu 321
2_\/(2) sin? u, e (3.21)

(for 20 = 0, ' < 2ctg(uq/2)).

Now we consider the critical case when a = g-m, so that ¢ =1 in Eq. (3.5). In Eq. (3.1)

we introduce instead of r the dimensionless variables p:

s ¥ (3.22)
a a 14 1p? '

The graph of r = r(p) is given in Fig. 3. As the interval corresponding to 0 < r < a we
choose 00 > p > p, = 2V/2.

Defining
1
ds = a %n‘da, To = ay/ —2-%3:6, (3.23)

the substitution of Eq. (3.22) into Eq. (3.1) yields the dimensionless expression

B

do® = [1+1p%] " (d2 - dp? - g du?). 8:24)

Thus, in coordinates z'!

= psindcos p, etc., Eq. (3.24) gives the explicit conformally
flat representation:

do* = [1 + %I“Iﬂ_z d 1P, (3.25)
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The conformal factor is considerably simpler than that of the general case (3.17). The
region 0 < r < a corresponds in z'# coordinates to the set of points

oo > x'"z" > 8. ' (3.26)

Now we shall show that the spaces (3.1) is of class one, that is, it can be embedded in
a 5-dimensional flat space without restrictions on the parameters. Indeed, (3.1) can be
rewritten in the form

ds? = du® — dv? — dz® dz°, (3.27)

:
2m 2m fr\?2 2a3 m
“=[%\/1'T‘%\/1‘T(a) \/_Sh\/z—as‘x"'
ge By BB a jy S LE ] g_‘fch 20 (3.28)
2 a 2 a \a ’

r! =rsindcosp, z?=rsindsing , 23 = cos V.

where

Thus, the equation of the 4-dimensional surface in the 5-dimensional flat space of
signature (+——~—) is

2
243 2 2
2oy 2 [\ﬂ e _"2} | 329)
m a a

The physical region consists of the points where 0 < z°z® < a?

This 5-dimensional embedding of the interior Schwartzschlld solution can easily be
reconciled with known 6-dimensional embedding of the exterior solution [6]. This can be
done in the form

ds? = du® — dv? - dw? — dz°® dz°, (3.30)

where z!, 22, 2% are parametrically given by the same formulas as (3.28), whereas

(3.31)






