
Investigación Revista Mexicana de Física 39, No. 6 (1993) 870-892

Conformal curvature and spherical symmetry

ROBERT H. BOyERt
Department al Physics, University al Liverpool, England

AND

JERZY F. PLEBANSKI*
Departamento de Física, Centro de Investigación y Estudios Avanzados del IPN

Apartado postal 14-740, 07000 México, D.F. México

(August, 1966)

Recibido el 29 de abril de 1993; aceptado el 28 de mayo de 1993

Special Nole

This arlicle was wrillen logelher wilh Roberl Boyer in June of 1966. Roberl Boyer
carne to work with me during my first five years in Mexico.
After relurning lo lhe Universily of Austin, he was shol by a madman, logelher

with sorne other twenty people, close to the rectory tower. Of course, 1 don't need to
lell whal was my moral slale upon hearing lhis news and lhis paper was sel aside.
Recently 1 found it digging in my drawers and 1 decided to ask the Editors of

the Revista Mexicana de Física whether it would be possible lo publish il. They
accepted. 1 think that the arlicle deals with a basic issue. At that time, very few
people were aware of the conformal struclure of the inlerior Schwarzschild Solulion.
This arlicle is to honor the memory of my friendo

Jerzy Plebanski
May 19. 1993.

ABSTRACT. Spherical symmetric space-times are found lo have simple lype D conformal curva-
ture. \Ve classify all su eh conformally /lat spaces, showing in which cases conformal /lal spaces,
showing in which cases conformal flatness becomes strict flatness. We show how to obtain explicitly
the con formal factor of such spaces. As special cases, it appears that the interior Schwarzschild
and the Friedmann space-times are conformally /la!. These are studied in more detail. \Ve also give
results on the embedding of space-times in five and six flat dimensions.
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conforme de tales espacios. Como casos especiales, se encuentra que el interior de los espacio-
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También damos resultados sobre la inmersión de espacio-tiempos en cinco'y seis dimensiones planas.

PACS: 04.20.Jb

tDeceased .
•On leave oC absence Crom \Varsaw University, Poland.



CONFORMAL CURVATURE AND SPIIERlCAL SYMMETRY 871

1. INTRODUCTloN

In this paper, we wish to gather together sorne results on space-times in which the spherical
symmetry interacts with the curvature tensor. The most immediate result is that all such
space-times have conformal curvature of type D with one independent invariant. This
is perhaps, not too surprising, as spherical symmetry picks out unique space-like two
elements at each event, and the two null normals might be supposed to be good candidates
for double Debever vectors. What is less obvious is that the coefficient of the conformal
curvature is greatly simplified in spatially isotropic coordinates, and contains only the
spatial derivatives of oue structural function. Thus the classification of conformally f1at
spaces with spherical symmetry is easy, and we also give formulas to exhibit the conformal
f1at mess explicitly.

Our experience has been that to study the Einstein curvature of spherically symmetric
space it is better to use standard coordinates. If we use the field equations and suppose
the material sources to be hydrodynamical, we find curious relations between the fluid
variables and the single conformal invariant which are reminiscent of thermodynamics,
and which may be useful in non-static collapse problems. But the most direct outcome of
our study of the connection between the fluid variables and the conformal invariant is the
recognition that the familiar interior Schwarzschild metric is conformally f1at, a fact which
certainly cannot be well known. Another by-product is the better-known result that all
the Friedmann universes are conformally f1at. We display explicitly the con formal f1atness
in all these cases.

Finally, we give sorne results on embedding space times in f1at spaces of higher di-
mension. It is easy to see that all spaces of spherical symmetry can be embedded in six
f1at dimensions. One of us has already worked out the details of the embedding of all
conformally f1at spaces in six f1at dimensions. And we conjecture that all conformally f1at
spaces of spherical symmetry can be embedded in five f1at dimensions.

2. THE CONFORMAL CURVATURE OF SPlIERICALLY SYMMETIUC SPACES

In this section we examine the curvature of a normal V. the riemannian space-time of
signature (+---) which conlains 0(3) as the sub-group of ils (possibly larger) group of
symmetries.

By an appropriale coordinate transformation the Hne element of such a space can
always be brought to the form'

(1.1)

This stalement requires sorne justification. Let lhe metric of an arbitrary spherically
symmetric space-time be written as

(1.1a)

.Latin lettcrs will run fram 1 to 3, greek from Oto 3.
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where Xl = r and A, B = 0,1. We seek a transformation to xo = g(xA) and xl = f(xA)
which will reduce hAB to say, IliiABl1 = H f-211 diag(,p2 - 1)11, so that we shall have (1.1)
with '" = fH-l/2. Since iiAB = 8i

A
8i

B hCD we must have'f' Bxc BxD ,

_f
2

_ hABf fH - ,A ,B,

° = hAB f.Ag,B,

f2 hABH,p2 = 9,A9,B.

Representing f = f(xA) as éf!(xA,f) = 0, (1.1b) is equivalent to the equation

hAB éf! éf! + f2 éf!2 = °
,A ,B H'¡ 1

(1.1b)

(Uc)

(Ud)

(Ue)

which always admits solutions locally because hAB is hyperbolic normal. Equation (1.1c)
then determine 9 as a function orthogonal to f, and (LId) serves to determine ,p.
The coordinates Xl' = (xO, xa) of (1.1) will be called spatially isotropic coordinates.

We shall see that they are very convenient in the study of conformal curvature. We shall
leave the topology of the manifold 1114 covered by V4 unspecified in this section; we assume
merely that locally 1114 is a differentiable manifold.
The space V4 is conformally equivalent to

( 1.2)

the conformal curvature tensor ca~aé being the same for both. But since Vi contains only
one arbitrary function ,p, its curvature quantities are very simple.

In fact, let us consider a space Vi slightly more general than Vi, with a more general
function ,p( xl'):

(1.3)

One easily finds that

(1.4)

while all other Christoffel symbols vanish. One then quickly finds the Riemann tensor,
and hence the Einstein and conformal curvat ure tensors:

V;': COa = O,

Vi': CObed = 0,

(1.5 )

(1.6)
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Notice the absence of temporal derivatives in all the curvature quantities of V;'. Also
observe that (1.6) imply that if V4 is understood as a space conformally equivalent to V;'
with proportionality factor <1>-2, then

(1. 7)

One easily sees that GQtJ= O in V;' implies that V;' is f1at. Indeed, from (1.5), GQtJ=
0-+ 1/1,ab- 6ab1/1~,= O -+ 1/1 = a(xO) + ka(xO)xa, with a(xO), ka(xO) arbitrary. But this 1/1

used in (1.6) yields CQtJ16 = O. Therefore RQtJ16 = O, and the space

(1.8)

is f1at:
On the other hand, V;' can be conformally f1at but not stricUy f1at. Indeed, according

to (1.6):

(1.9)

with a(xO), ka(xO), b(xO) arbitrary. \Vith this 1/;, the Einstein tensor becornes, according
to (1.5)

GOQ = O, (1.10)

Thus, if b(xO) # O, then GQtJ # O and the conformally f1at V;' with 1/1 from (1.9) is not
strictly f1at.
\Ve inelude, for completeness, a method for displaying explicitly the conformal f1atness

of such a V;' satisfying (1.9). Let f(xo) be the (uniqlle) solution of the integral equation

where

f(u) = ¡"f(x)H(s, u) ds + <I>(u),

H(s,u) = /." [4ka(s)ka(t) - 2a(s)b(t) - 2a(t)b(s)] dt

<I>(u)= ¡"[Aa(t) + 2J("ka(t) + Bb(t)] dt:!: JKaKa - AB

(1.10a)

(1.10b)

•E.g., metrics of the t¡,pe ds' = (Xo - x3)' (dxO)' - dx. dx' are simple examples of so-called
"coordinate waves".
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A, Ka, B are five arbitrary constants subject to KaKa - AB ~ O. From

(1.10c)

Then

(1.10d)

is flato The proof, which is a straightforward application of a theorem of Schouten [11will
not be given here, as the details of a more practical method for the special case ka = O
will be given in Sect. 2.

Finally, we indicate how a general V;' can always be embedded (locally) in six flat
dimensions. For constant e let

XO = N(x~),

X4 = N(x~)sinh(xo le),

XS = N(x~) cosh(xo le).

(1.11)

Then

Eliminating x~ from (1.11), one sees that V;' is the intersection of the surfaces

(1.12)

(1.13)

in the (flat) 6-dimensional space with metric (1.12).
This condudes our discussion of the more general V;'. \Ve now specialize lo Vi, where

,p(x4) = ,p(xo, u). Qne finds from (1.6)

Equivalenlly,

1
4ut/J.uu = 1/J,rr - ;:1/J,rl

(1.14)

(1.15)

which shows why we prefer to use u = r2 in (1.14).
\Vith (1.14) and (1.6) we can easily determine the algebraic type of the conformal

curvature tensor of Vi ane! hence of V4•
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Let

V'.•• ea = 1 } ( X

a
)¡P,- .

<1>-1 r
(1.16)

\Vithout the factor <1>-1 we understand these yectors in the sense of V;' They satisfy

V., V;: koko = eoeo = O, koeo = 2. (1.17)

Remembering that Ca fJ16 in V. and V; coincide, but that operations with the metric
require an additional factor in V4, we find that

e k~kV - .u,,2.I,-I.I, k k
OJ.lf3v - -3 '+' '+' 'f',uu a /3,

eOI.fJve~eV = _~u<l>2¡p-l¡p,uueoefJ,

eo~fJvkoe~ = +iu<l>2¡p-l¡p,uuk[fJevl'

(1.18)

This allows us to infer that eOfJ16 is of Petroy type 1 degenerate (type D, or (22) in the
Pemose notation) with ka, ea as double Debeyer yectors. And when

(1.19)

v. is conformally f1at. This is of course, a special case of (1.9). \Ve shall show in Sect, 2
that the important special case of (1.19) when a and b are constant is con formal to the
interior Schwarzschild metric. Eq. (1.19) seems then to be as close a conformal counterpart
as possible to the well-known I3irkhoff thearetIl, which deals with spherical syrmnetry and
Ricci-f1atness.

\Ve wish to discuss the spinorial description of tbe facts established aboye. Select as
the Pauli matrices in V.:

-1) (1
O ' O (1.20)

where spinorial indices run oyer O, 1. The yectors ka, ea in V. can be written as

(1.21)

kA = (cos{)/2ei~/2,sin{)/2e-i~/2),

eA = (-sin{)/2ei~/2,cos{)/2ei~/2).

\Ve have the angular variables v, ¡p:
Xl = r sin íJ cos <p, x2 = r sin {)sin 'P, x3 = T cos 'O;

(1.22)

(1.23)



876 ROBERT H. BOYER AND JERZY F. PLEBANSKI

kA and lA depend on!y on the angles and are normalized by

AH = ( O 1)
f -1 O (1.24)

Construct from the Pauli matrices the mixed object (spin tensor)

Then the conforma! curvature can be represented by its spin-image

Using (1.18) one finds after sorne work that

where

and

DAHCD depends on!y on the angles. In fact,

(1.25)

(1.26)

( 1.27)

(1.28)

(1.29)

1 2'DlIlI = 8(1 - cos iJ)e ''P,

DI. iJ i'P1112=-gSm el

D2222 = k(1- co~iJ)e-2i'P,

DI' iJ -i'P2221 = '8 8111 e 1 (1.30)

D1122 = H!+ cosiJ).

The conforma! curvature possesss in genera! four invariants, name!y, the real and imag-
inary parts of the two comp!ex quantities

e, eAH eCD= CD ABl
3 AH CD EFe = e CDe EFe AH' (1.31)

(Strict!y speaking, the real parts and the squares of the imaginar)' parts are sca!ars).
However, in the (2-2) and (2-1-1) cases we have the conditioll

(1.32)

,
so that e contains aH thc information about curvaturc iuvariants.
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In our spherically symmetric V4 we find from (1.27-28):

, 3 2
e= 16(e) = real, ( 1.33)

(1.34)

so that only <me conformal invariant characterizes the space. It follows that e given by
(1.29) is invariantly defined, ¡.e., that lel is a scalar.

A more direct interpretation of e in terms of the conformal curvature tensor can be
obtained from (1. 7) specialized to the case of 1/J= 1/J(xo , u). \Ve find

eQ~1.eQ~1Ó = ("li <t>21/J-lu1/J.uu) 2 2: o.

Therefore

(1.35 )

\Ve may justly interpret ICI as the size, or the absolute value of the conformal curvature.
A remarkable praperty of e is the absence of temporal derivatives when isotropic

coordinates are used. This property is not shared by other coordinate systems which are
commonly used in cases of spherical symmetry. \Ve give below, partly for purposes of
comparison, and partly for their own sake, formulas in whieh standard coordinates are
used. Namely, let

( 1.36)

with v and ), dependent on x,o, r' (primes to distinguish these fram isotropic coordinates).
One can compute eQ~1.eQ~1Ó and, consequently, e to be given by'

e = - ªeo'r' = - ~ [(VII + !v'2 - !v'),' - v' - ),' + ~) e-.\
4 O/r' 8 2 2 T' r'2

2 (" 1'2 .) ]-- - ),+ -), _ !,¡), e-v
r,2 2 2 ( 1.37)

The notation is that eO'r'o'r' is the only independent of eQ~1Ó in the x'o, r', {),'P coordi-
nates. Primes denote differentiation with respect to r', dots with respect to x'o. The sign
is so ehosen that if v,), are static, the simple r' = r'(r) transformation which bring (1.36)
into (1.1) transforms (1.37) into (1.35).

Formulae (1.37) is rather eomplieated. However, when one expresses the components
of the Einstein tensor [2] in terms of ), and v, then one can eliminate the derivatives of
these quantities, and express e in the form

e = -t [r~2(e-.\ -1) +G~- 3G~].
'Formula (1.37) was first obtained by ~lr. R. Pellicer.

( 1.38)
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Thus, if we assume the field equations

( 1.39)

(A is the cosmological constant introduced for generality, T3 is the energy-momentum
tensor; in our signature Tg ~ O) we obtain

1 [3 _A 87f[( ° 2 ]C=-- -(e -1)+-(T -37:2)+A4 r,2 C4 ° .

It is interesting to specialize to the case of a perfect fluid:

(1.40)

T3 = (E + P)UOup - P63, (1.41)

where P is the pressure and E is the energy density in the rest frame of the fluid. Because
of spherical symmetry we assume,,~ = "" = O, so that (1.41) used in (1.40) yields

1 [3 _A 87f[( ]C = -- -(e - 1)+ -E + A .4 ,.'2 C4 (1.42)

Later we shall consider some applications of this hydrodynamical formula.
For the moment \Veshould like to point out that in the static case (~ = O) \Vith .\ = -v,

(1.37) takes the form
r' d2 e-A - 1

C=------8 d,.,2 r'
(1.43)

This applies, for example, to the case of a Reissner-Nordstrom space-time (with cos-
mological constant):

and yields

_A 2m e2 1 \ 12 ve = 1 - -, +""12 = 3"i r = e ,,. r

( 2) 2( 2)23 m e olhó • 4m eC- -- 1- - ~ C óC - 3 - 1--- 2 r,3 m-r' o.lh - (r/3) lnr'

(1.44)

(1.45 )

This formula is illustrated in Fig. 1.
\Ve fell that formula (1.45) can be read in two ways. On the one hand, it shows that r' is

algebraically related to the invariant of the confonnal CUf\'ature, and can be understood
to be invariantly defined. In the well-known Schwartzschild case. ,.' is proportional 10

(CO~1Óca~1Ó)-1/6 when e # O it is a many valued function of this quantity. On the
other hand, we see from (1.45) that CoJ

1Ó
and G3 of the metric (1.44) stay continuous

when ,.' approaches critical values e-A = O. Thus these values determine only coordinate
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r

FIGURE 1.

singularities; this fact is responsible for the fact that analytic continuations of (1.44)
exist [3).

That the constant A does not enter in (1.45) is not too surprising: the de Sitter space
e-A = 1 - ~r'2 = e" is, of course, conformally flat. More generally, from (1.43) we infer
that spaces with

e-A = 1 + ar' + br'2 = e" (a, b = constant), ( 1.46)

are conformally flat. \Ve would point out that (1.19) is a stronger result (since time-
dependence is permitted), and illustrates the superiority of spatially isotropic coordinates.

Now, let us return to (1.42) and examine the conformal curvature of space-time filled
with hydrodynamical matter. Consider tirst the general non-static case. Then we have
(among others) tbe tield equations:

-A (1 ),1) 1 8"/( [ ° ]e - - - - - = --- (E + P)u Uo - P - A,
1'/2 T' 1'/2 C4

-A ~ 8,,/( r'
e - = ---(E + P)u uo'

1" C4 1

where uo,uo' + ur,ur' = 1. Using these in (1.42) we can show tbat

(1.4 i)

(1.48)

This general relation becomes particularly interesting if specialized to tbe case of dif-
ferentials along the lines of current, i.e., dx~ = u~ ds:

(1.49)
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On the other hand, if the differentials are orthogonal to the lines of current, l.e.,
ul' dxl' = O, then

d{ '3C} = _ 2¡r[( '3 dr C4 r €o (1.50)

It is conceivable that the relations (1.48-49-50) may be of sorne use in the study of the
thermodynamics of spherically symmetric collapse.
As a more modest application of (1.42) consider the case of a static fluid. We have

~ = O = Ur' and uo,uo' = 1 so that using the first of (1.47) we obtain

(1.51)

The constant of integration has been chosen so that e->' is finite at r' = O, which is
possible if we assume that Er,2 = O(r") with E ~ O. Now (1.51) used in (1.42) yields

[

r' ]27r[( 1 '3
C = ~ r'3 lo E dr - E •

But since lim(r'3E) = O, we can integrate (1.52) by parts:

r'

C=-2¡r[(~1 '3~d'
C413 rd,r.

r o r

(1.52)

(1.53)

This simple result applies independently of the equation of state to all sta tic, spherically
symmetric fluid configurations. It is also independent of the value of the cosmological
constant.
Consider now the special case of E constant inside a sphere of radius r' = a and vanishing

outside:

E = Eol1 - O(r' - a)]. (1.54)

This should of course, describe the well-known Schwarzschild solution (interior + ex-
terior), and in fact we find from (1.53)

o ~ TI < a,
(1.55)

a < 1" :::; 00

Thus the internal Schwarzschild Sollltion with E = fO = cons\. is conformally fiat, a fact
which does not seem to be well known. Thus in a sense the interior solution is simpler
than the exterior. Moreover, at the boundary of the fluid, the conformal and Einstein
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curvatures exchange roles: Ca/!,. = O inside and GaP = O outside. \Ve shall examine
various aspects of the interior Schwartzschild solution in Sect. 3.

\Ve conclude this section by deriving the Schwartzschild metric components which
follow from the choice (1.54) of €. Used in (1.51) it results in

(
2m A) 121- -+- Ta3 3 '

2m A 121- - --T
T' 3 ' a :$ T' < 00,

(1.56)

where m = 4trlúoa3/3C4. Comparing with (1.55), we see that for TI ~ a, C = (~)m/TI3,
in agreement with (1.45).

The e" corresponding to this e-.\ is easily seen to be

[l+~'l~6rn
(
2m A)1- - + - a2-
a3 3

1- !~
1 3 rn
2 1 + '1 .3

6 rn
(
2m A) 1'] 2-+- T
a3 3

(1.57)

2m A 121- - - -1'
TI 3 if a ~ TI < OO.

To this metric obeying the field equations (1.39) there belong the f of (1.54) and the
pressure

1 _ (2m + ~) a2 _ (~ _ Aa
3
)

a3 339m

(
2m A)1 - - + - a2
a3 3(

2m A) 121- -+- T -
a3 a

(
2m A) l'1- -+- T
a3 3

(1.58)
when O ~ TI ~ a. \Vhen T' = a, P vanishes. \Vhen A ~ Q, the formulas (1.56-58) reduce to
the standard (interior + exterior) Schwartzchild formulas [41. Their validity is, of course,
restricted to such values of the parameters m, A, a that for O ~ TI < a the pressure is
positive and finite. This restriction will emerge more clearly in the next section.

Starting from (1.36) we studied various aspects ofthe conformal curvature -taking into
account the field equations- in standard spherical coordinates. On the other hand, as is
clear frorn (1.35), isotropic coordinates are very convenient in the study oC the conformal
curvature of spherically symmetric spaces. In the next section, several problems related
to conformal curvature will be studied, making essential use of isotropic coordinates.
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2. SPIIERlCALLY SYMMETRIC SPACES IN ISOTROPIC COORDINATES

In the previous section [Eq. (1.19)] we obtained the result that the spherically symmetric
space

(2.1 )

is conformally flato \Ve begin this section by showing the explicit coordinate transfor-
mation which displays the conformal flatness of V; and giving the con formal factor as
determined by the arbitrary functions o(xo) and b(xO).
Consider the flat space

and let a and (3 be arbitrary functions of a variable xO. Now consider the coordinate
transformation from xO', 1" to variables xO, l' defined by

Alternatively,

(2.3)

'O , 1 1 J d{3
x +1' =/3a-1'{3+ a{32'

'O , 1 1 J d{3
x -1' = /3{3 + 1'{3+ a{32' (2.4)

Then, after an easy computatian, one finds that

o(x'O, 1") ox'o 01" OX'O 01" 2 2 2 -2 (ó ~ 2)J = --- = -- - -- = (a - (3 ,. ) -- +-1'o(xO,,.) oxO A,. A,. oxO {3 a '

where dots denote differentiation with respect to xo.
More simply,

(2.5)

(2.6)

Therefore, when at least one of the variables a, (3 depends on xO(ó2 + ~2 # O), then
the Jacobian does not vanish identically, and our coordinate transfarmation is legitimate.
Now, with the help of Eq. (2.4), ane finds that

(2.7)
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Therefore, we conclude that, as a resu]t of our coordinate transformation,

= (02 _ r2{32)-2 [( _~ + ~r2) 2 dx02 _ dr2 _r2(d192 +Sin219dcp2)]

= (0
2
- r2{32)-2 [( -* + 4r2r dx0

2
-dxadxa] .

Consequently,

xO and r appearing in the conformal factor on the right-hand side being understood as

('0 ')r=rX,T 1 (2.10)

i.e., the inversion of Eq. (2.3).
This shows that it is always possible to construct explicitly the conformal!y !lat repre-

sentation of any metric of the form (2.1). In the first step, with a(xo), b(xo) known, one
solves the differential equations which determine o(xo), {3(xo):

ó = -a{3, ~= bo. (2.11 )

The constants of integration can be chosen as convenient.'
In the second step, with o(xo), {3(xo) known, we seek the inverse transformation to (2.3),

i.e., (2.10). \Ve can now apply the identity (2.9), obtaining

(2.12)

where

(2.13)

with xO, r understood according to Eq. (2.10).
This procedure is general and works for al! conformal!y !lat spherical!y symmetric

spaces. It is a practical method whieh leads to an explieit eonstruetion of a conforma]
factor. It should be easier to use in praetiee than the method given in Eqs. (1.10a-e), whieh

. Different choices of constants will lead to different con formal {actúrs. This ambiguity is of course,
related to the ambiguity of the conformal factor in the representation of flat space itself, whieh is
governed by the 15-parameter conformal group.
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applies to the slightly more general space Vi'- Indeed, as explained in Eqs. (1.1a-e), every
spherically symmetric space can be brought to the form (1.1) in isotropic coordinates.
If the space is conformally f1at, then necessarily 1j¡(xO,r) = a(xO) + b(xO)r2. Then, one
can apply the procedure of this section to construct the conformal factor according to
Eq. (2.13). We should like to illustrate this with some examples.

Consider the Friedman universes given in stereographic coordinates by

(2.14)

The spatial coordinates xa are dimensionless, R(XO) is the evolutionary radius of the
universe, and f: takes the values +1, O,-1 in the open, f1at, and closed models, respectively.

In the first step we introduce instead of XO the dimensionless xO,

(2.15)

The function R(xO) = R[XO(xO)] we assume to be known. In terms of it:

(2.16)

Then, we represent (2.14) in our canonical fonu:

(2.17)

This is enough to see that all Friedmanu universes are conformall}" f1at [5]. The case of
f: = Ois trivial: already (2.17) gives the conformally f1at representation. \Ve assume [ i' O,
and the Eqs. (2.11) become

¿, = -/3,
• E:
/3 = -n.

4
(2.18)

In the case f: = -1 (open model) it is convenient to choose

1 xO /3 _ !xO J d/3 _ 1 --xO
Q' = -2e'2 1 - e2 - a{32 - ¡e 1

which, used in Eq. (2.4), yield

(2.19)

(
T + 2 ) 2 = x/o - 1" 1

7'-2 x,o+r'
(2.20)
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so that these equations are easily invertible. The resulting con formal factor is

In the case é = +1 (closed model) we take

(2.21)

X
O J d(3 xO(3= - cos - --+ - = 1 tan -2 d(32 2 2 . (2.21a)

Used in Eq. (2.13), they yield, after some work, the con formal factor

where

. o 10( 102+ ('02 '2 1 )2)-1/2Sl1l X = X X X - r -;¡ .

(2.21b)

Comparing (2.21) with Eq. (2.21b) we see that the conformal factor in the former case
is a function of X'02 - r'2 only, whereas in the latter case it is a function of both x'O and
X'02 - r'2. This is easily explained by the faet that the graup of rigid motions of a 3-space
of constant negative curvature (open model) is isomorphic to the homogeneous Lorentz
group which preserves X'02 - ,,12, whereas the corresponding group in the closed model is
quite different.

3. SO~IE PROPEIlTIES OF TIIE It\TEIl"iAL SCIIIVAH'I'ZCIIILD SOLUTION

It was aIread y observed in Sect. 1 that the interior Schwartzschild solution is conformally
!lat and as such is simpler than the exterior solution. The purpose of this section is: 1) to
give the explicit conformally !lat representation of this metric; and 2) to investigate some
of its peculiar features.

For simplicity, we restrict ourselves to the solution w¡thout eosmological term:

2m (1') 2] 2 1 21 - - - (.TO
a a

This metric has the Einstein tensor

O:SI':Sa. (3.1)

(3.2)
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~2m'1:.
o o

FIGURE 2.

u 7T t 7T

or cos (-e-1)

u

where 'o = consto is related to m by m = 4; a3 t!l and

I 2m (1')2 ~
8"" J( 2m V I - ---;; ~ - V I - ---;;

(j4P = -;;J JI _ 2:1- ~JI - 2: G(
The pressure is positive and finite for O ~ l' < a if

9a > ;¡-m.

When a = ~m then P(O) = oo. We shall confine the present discussion
a > ~m and discuss the singular case a = ~m separately.

\Ve introduce for convenience the notation

d.! Hmf" = 3 1--,
a

so that

a > ~m ~ 3 > f" > 1.

(3.3)

(3.4)

to the case

(3.5)

(3.6)

(In the critical case a = ~m, f" = 1.) Now introduce in Eq. (3.1) instead of l' the new
variable u:

rz;;; !- =
V~a

The graph of l' = 1'(u) is given in Fig. 2.

J<T=lsinu
f+COSll

(3. i)
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As the u interval corresponding to O $ r $ a we choose O $ u $ Ua < cos-1 (_el).
Notice that a ~ 3m -; Ua $ ~.Thus iI, in addition to Eq. (3.4), we have a > 3m, cosu
remains positive in the regio n 01 interest.
Defining

ds=~ ~ada,V;¡;;, (3.8)

the substitution 01 Eq. (3.7) into Eq. (3.1) yields the dimensionless expression

where

(3.9)

(3.10)

can be interpreted as the element 01 length in a closed 3-dimensiona! space 01 constant
positive curvature.
Equation (3.9) can be understood as the maximnm analytic extension oIthe space (3.1);

indeed, with the obvious topology -00 $ r < +00, O $ u $ 7T, O $ {j < 7T, O < 'P < 2JT,

(3.9) gives (remembering that f: > 1) an expression Ior the metric analytic at all points. (In
a sense, it can be regarded as the "Kruskalization" 01 the interior Schwarzschild solution:
the lines r = :!:u, {j, 'P = const. are null geodesics).
From Eq. (3.9) it is only a IelV steps to the explicit conlormally flat representation 01

da. Indeed, let

Then

Therefore, when

eV - 1 dv
r = In -- -; dr = -.

eV + 1 ch v

wO = sinh v,

wl = cosh V siu u sin iJ sin <P1

w3 = cosh V sin u cos iJ,

w4 = c05h v COSU1

(3.11)

(3.12)

(3.13)
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then

with

02 12 42-w + w + ... + w = 1.

(3.14)

(3.15)

As the last step we parametrize the pseudosphere (3.15) (de Sitter space) by stereo-
graphic coordinates:

wlJ =
X'~

1 - Ix' xlel'4 u

1+ lx' x'lJ4 ~
1 - Ix' x'a4 u

(3.16)

(/1 = 0,1,2,3 and X~X'~ = (X'0)2 - (XiI f - (X'2)2 - (X'3)2).
This used in Eq. (3.14) yields

(3.17)

(only in the regio n where 1 - tx~x'U > O; where this is negative we must replace in
Eq. (3.17) E by -E).

This is the explicit conformally flat representation of (3.1). the regio n O ~ r ~ a
corresponds to 1 2: cos u 2: Ua; but

cos u = (3.18)

\Vhen a 2: 3m, which we now in fact assume fOl"simplicity, COSUa 2: O - 1 2: tlx~X'UI,
according to Eq. (3.18), and cosu 2: COSUa; hence the choice ofsign in Eq. (3.17) is correcto

Now, according to Eq. (3.18) the inequalities 1 2: cosu 2: COSUa are equivalent to

(3.19)

Noticing that x,02+(I_ tx~X,u)2 = (1+tx~xIU)2+r", r' = .jx"x", we easily see that
(1) holds automatically, becoming equality only when r' = O. Thus r = O +-+ r' = O. The
inequality (2) ls equivalent to (1 + tx~X'U) sin Ua 2: cos uar', which is in turn equivalent
to

_1_ + (xIO
) 2 2: (~2'+ ctg ua)2

sin2 Ua 2
(3.20)
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~ 2m I ...!..
o o

2 po=2 2

FIGURE 3.

p

Therefore, the events which in Eq. (3.1) are defined by O :S r :S a correspond to the
events defined in the coordinates X'~ by the condition

r'-<2 - ( 10) 2 1
x
2

+ -'-2- - ctg Ua
Sin Ua

(3.21 )

(for x'O = O, r' :S 2 ctg(ua/2)).
Now we consider the critical case when a = t"', so that £ = 1 in Er¡. (3.5). Iu Eq. (3.1)

we introduce instead of r the dimensionless variables p:

(3.22)

The graph of r = r(p) is given in Fig. 3. As the interval corresponding to O :S r :S a we
choose 00 2 p 2 Pa = 2)2.

Defining

ds = a ~ da,V-;¡;;:, ~
'Xo = a -xo,
2m (3.23)

the substitution of Eq. (3.22) into Eq. (3.1) yields the dimensionless expression

(3.24)

Thus, in coordinates xl! = p sin {)cos 'P, etc., Er¡. (3.24) gives the explicit conformally
f1at represeutation:

(3.25 )
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The conformal factor is considerably simpler than that of the general case (3.17). The
region O ::;;r ::;;a corresponds in X/~ coordinates to the set of points

(3.26)

Now we shall show that the spaces (3.1) is of class one, that is, it can be embedded in
a 5-dimensional f1at space without restrictions on the parameters. Indeed, (3.1) can be
rewritten in the form

(3.27)

where

(3.28)

(3.29)

Xl = r sin '19 cos 'P, x2 = r sin '19 sin 'P •x3 = cos '19.

Thus, the equation of the 4-dimensional surface in the 5-dimensional f1at space of
signature (+----) is

v2 _u2 = 2a
3 [.)1- 2m_ 11- 2mx'x']

2

m 2 a V a3

The physical regio n consists of the poinls wherc O ::;;x'x' ::;;a2
This 5-dimensional embedding of the inlerior Schwartzschild solution can easily be

reconciled with known 6-dimensional embedding of the exterior solution [61. This can be
done in the form

ds2 = du2 _ dv2 - dw2 - dx. dx.,

where xl, x2, x3 are pararnetrically given by the same formulas as (3.28), whereas

f4a3gm 1 H£n ou= - 1--S1 -x,
m r 2a3

(3.30)

f-fla3gm H£ Ov = - 1 - - eh - x ,
m r 2a3

(r > a)
(3.31)

2m 1 - (~r
---;:- 2m dI'.
1--

r




