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ABSTRACT. Within the framework of the nonrelativistic quark model and with the help of the
leading term of the l/d-€xpansion we obtain analytical expressions for the quotients of baryon-
to-meson strong interaction radii. Phenomenological relativistic corrections d la Povh and Hüfner
are shown to lower the non relativistic estimate. Predictions for baryon radii are given and a
comparison with experimental results (when available) is made. For sorne values of the quark
masses, our estimate differs from the naive partan result in more than 20%.

RESUMEN. Se obtienen expresiones analíticas para el cociente entre radios de interacción fuerte
de bariones y mesones en el marco del modelo no relativista de quarks y con ayuda del término
principal de la solución de la ecuación de Schr6dinger en potencias de l/d. Se muestra que las
correcciones relativistas introducidas fenomenológicamente d la Povh y Hüfner disminuyen la
estimación no relativista para el cociente de radios. Se presentan predicciones para los radios
de algunos bariones y se hace una comparación con los resultados experimentales disponibles.
Para algunos valores de las masas de los quarks, nuestra estimación difiere del modelo par tónico
primitivo en más del 20%.

PACS: 12.40.Qq, 14.20.-c, 14.20.-n

l. INTROOUCTlON

A few years ago Povh and Hüfner[1-3) found that not only elastic scattering at zero
momentum transfer, but also hadron-proton total cross sections at high energies can be
interpreted along geometrical lines. By comparing the total cross sections for hadron-
proton scattering with the corresponding slope parameters from elastic scattering (b =
f,(ln !taelastic)t=O, t is the Mandelstam variable) they obtained a linear relation between
these magni t udes

hp GR2 R2
(llolal = p h' (1)

which shows that a "strong interaction radius" Rh can be assigned to each hadron ac-
cording to the equations

R2 - 3bp - '2 pp'

hp
112 = R2 atotal

h p pp .
Gtotal

(2)
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In this way they found [3] the following valucs of squared hadronic radii (in fm2):

R; = 0.41,

R}¡.¡, = 0.04

R~,w= 0.52,

R~= 0.67,

Rk = +0.35,

RtE = 0.58,

R~= 0.21,

R~= 0.50, (3)

which exhibit the following properties:

i) the heavier the valence quark thc smaller the radius, i.e. R. > RK > R •• > RJ¡.¡, and
Rp > RA,E > R:=;;

ii) the ratio Rbacyon/ Rmewn for systcms of identical quarks is roughly cqual to ,j3fi, as
follows from a naive parton picturc.

The importance of this method of dctcrmination of R~ lics on the fact that the data on
total cross scctions are abundant, whilc a dircct test of the internal structurc of hadrons is
difficult, because of their extremcly short lifctimcs. It is worthwhilc mcntioning that, when
the comparison is possible, charge radii approximately coincide with the corresponding
valucs of strong interaction radii givcn in Eq. (3).

In the present paper we aim at gaining in the qualitative understanding of the sys-
tcmatics of strong interaction radii presentcd aboye by stressing on thc rclations bctwcen
baryon and meson radii. This is a natural extension of thc idcas of paper [4] where we
showed that the set of relations between baryon and meson mass spectra obtained within
the framework of the nonrelativistic quark model and with thc hclp of the 1/ d-method
are satisfied by the existing cxpcrimental data on hadron masses.

Instead of doing numerical calculations, \Veperform a semiquantitative analysis based
on analytic exprcssions for the quotients of radii. These expressions are obtained by means
of the leading term of the 1/d-expansion for the solution of the Schriidinger cquation
(for an introduction and sorne applications see Ref. [5] and references thcrein). The
parameter d, which is taken as a frec paramctcr and used for expanding the solution
of thc Schrodingcr cquation as a powcr scrics in lid, arises when formally writing in d
dimensions the Laplacians entering thc Schrodinger equation. The first term of this series
can be analytically computed. It reproduces qualitatively and scmiquantitativcly most of
the properties of bound states in few-partide systems 15,6]. In particular, it can be used for
the calculation of quotients bctwccn magnitudes corrcsponding to systcms with different
numbcr of partic!cs, as it is for example the ratio Rbacyon/ Rme,oll' A brief introduction to
the l/d-method when applicd to the calculation of radii is presented in the next section.

Phenomcnological relativistic correctious a la Povh and Hufner [3) are considered in
Sect. 3. They are shown to lower thc values of the ratio Rbacyon/ Rme,o" obtained from the
non relativistic theory. In Sec\. 4, some predictions for still unmeasured baryon radii are
given and a comparison of our results with experimental data (when available) is made.

2. HADRONIC RADlI IN TIIE l/d-I'ICTUHE

The starting point is the nonrclativistic model of quarks [7]. in which quarks with large
cffective masses interact through central forces \Vhich vary roughly as r at long distances
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and -l/r at short distances. This forces are supposed to be fiavor-independent. In addi-
tion, they satisfy the requirement

v.1 ",,1v.-1qq in a baryon 2 qq in a meson' (4)

which resembles a property of one-gluon-exchange forces, but is also satisfied by the
long-range confining forces. In this approximation, the ground state of a hadron is a
state with zero total angular momentum. We wil! be concerned with computations of
root-mean-square radii in the ground sta te.

As mentioned aboye, for the computation of Rbaryon/ Rmeson we make use of the l/d-
method [5,6]. In this method every physical magnitude characterizing the hadron is ex-
pressed as a power series in lid, the first terms of which are easily computable. First, we
consider hadrons made up from only one type of quarks, i.e. with quark structure qij and
qqq, respectively. The root-mean-square separation between particles in the meson qij is
written as

(5)

where ro is the distance that minimizes the effective potential

(6)

Let us make sorne comments concerning Eqs. (5) and (6). The J1.r = mq/2 is the reduced
mass of the meson, 9 is the coupling constant and the system of units is such that " = 1.
The potential Uqii is the only term surviving in the meson Harniltonian when we take the
formal limit d - oo. It means that fiuctuations are suppressed and d _ 00 is a classical
limito In this limit, the physical system is endowed with a rigid structure characterized
by the interparticle separation ro. Higher terms in the series (5) take into account the
contribution of fiuctuations around the equilibriurn distance ro.

Let us consider a baryon with three identical quarks in a state with zero total angular
momentum. The effective potential depends on the scalar combinations r2, p2 and "1 = T'
¡J/rp (T = Ti - Ti and ¡J = T3 - (TI + T2)/2, where 1; is the position of the i-th particle,
are the two Jacobi vectors of the problem):

(7)

where J1.r = mq/2 and J1.p = 2mq/3. The minimization of Uqqq leads to a systern of three
equations for rij, P6, and "lo, i.e. the leading terms of the series for (r2(g))qqq, (p2(g))qqq
and (T' ¡J/rp)qqq [see Eq. (5)1. However, perrnutation symmetry helps to find the solution.
We shall simply look for the solution in the class of configurations representing equilatera!
triangles (i.e. p2 = tr2,"I = O) in ",hich Uqqq takes ¡he form

(8)
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I.e.,

(9)

Let US note that equilateral triangles are expected to be the dominant configurations
in spherically symmetric states. In states with high momentum, other configurations may
appear to be the most favored [81. Taking into account the evident geometrical relations
between (r2) and the r.m.s radii, R2, we obtain

(10)

From Eq. (10) and the evident relation Rqq(tg) > Rqq(g), we obtain the bound
Rqqq(g)1 Rqq(g) > /413, but in order to get more refined estimates, we shall pick a
particular interquark potentia!. As we said aboye, in the non relativistic mode! of quarks
the quark interaction through central forces varies as r at long distances and -1Ir at
short distances. Thus a potential V = r/3 with {3 '" O should work as an average of the
real interquark potentia!. The property {3'" O, coming from interpolation between {3'" 1
at long distances and {3'" -1 at short ones, means that the effective potential is nearly
logarithmic. In fact, the Martin's fit [9]' corresponding to {3= 0.1, is shown to yield very
good results for meson spectra and decay rates. \Vith the help of a power like potential,
we obtain

and taking into account that {3is small we may write

Rqqq(g) = ~+ O({3, lid),
Rqq(g) 3

(11)

(12)

One shall note that the leading term in the right-hand side of (12) is independent
of the quark mass. Corrections to this leading term come from higher arder (in lid)
contributions as well as from deviations of the effective interquark potential from the
{3 '" O behavior. \Ve expect these rorrections to be only a few percents « 10%) of the
leading term, and thus will not be computed. A similar situation takes pIare when we
compute the lid-series for the quotient of baryon to meson energies [41. A second source of
corrections to Eq. (12), which are specially important in hadrons containing light quarks,
come fram the illclusion of relativistic cffects. They will be discussed in the ncxt section.

Next, we consider the less symmetric case in which the meson and baryon have re-
spectively the quark structure qQ (or Qq) and Qqq. In the meson, the effective potential
surviving in the d ~ 00 limit is again (6), with /l, = rnqrnQ/(rnq+rnQ). The ro is obtained
from the minimization of UQq. In the baryon, we get again Ec¡. (7), but w¡th ¡Lr defined as
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aboye and J1p = 2mQmq/(2mq+mQ). Permutation symmetry leads only to one simplifica-
tion: "1 = O. To obtain a relation between the meson and baryon interparticle distances we
shall pick a particular potential. \Ve choose V = riJ with fJ o::O and then obtain that the
"geometry" of the baryon ground state, i.e. the ratio x = (p2(g))Qqq/(r2(g))Qqq, becomes
independent of the strength of the potential (the coupling constant) and is determined
by the equation:

4~X2 _ 1(1 [1 ]1-13/2)2+~-2 2+ .+x ,

which may be approximately rewritten as

x = ~1;/ (1+ [1+/~~2r) +O(fJ, l/d),

(13)

(14)

where ~ = mQ/mq. On the other hand, by comparing the minimum equations for the
meson and baryon it follows that

(15)

which in the vicinity of {3= O leads to

(16)

In order to compare with the radii found in Rel. [31 \Ve shall construct a magnitude
\Vith the meaning of a geometrical radius. This radius should not contain contributions
from very heavy particles and should red uce to the known ans\Ver in the equa! mass case.
These requirements are fulfilled if \Vedefine the radius through the density

( 17)

t.e.

The aboye definition gives for the meson and baryon radii the values:

(18)

(19)



898 AUGUSTO GONZÁLEZ ANO RENÉ MARTÍNEZ

respeetively, and with the aeeount of the approximate relation (16) we obtain for the
squared radii the equation:

R~qq = W + 2)(~+ 1)2
RQ¡¡ 2(1+ 20(1 + ~3)

+ O({3, lId). (20)

As mentioned aboye, we expeet {3- alld lld-eorreetiolls to Eq. (20) to be only a few
pereent of the leading termo A more importallt eontribution is made by the relativistie
eorreetions [3]' the effeets of whieh is eonsidered in the Ilext seetion.

3. PHENOMENOLOCICAL RELATIVISTlC CORRECTIONS

So far, we eompared radii of baryons alld meSOIlS,ealculated within the framework of nOIl-
relativistie qualltum meehallics with effeetive heavy quarks thought as punetual objeets.
However, it is kllown that for light quarks, relativistie effeets lead to a smearillg of quark
coordinates whieh adds a term to the radius of the hadroll [10,11]. In Reí. [31 this effeet
was taken into aeeount by assignillg to u, d and s quarks effeetive sizes proportiollal to
their inverse mass (a natural relativistie seale). The following expressioll was written for
the squared radius of the ¡-th quark [3]:

(.2) _ ( 2) r¡
1 i - Ti .•••.f + -2'

mi
(21 )

where the eoeffieiellt r¡ was seen to be r¡ ::: 0.036, and the subseript wf refers to radii
ealculated from the wave fUlletion of the system. Prom Eq. (21) and our definition of
density it follows that

Thus for the quotients of radii, we have

(22)

R~aryon-~-=
R?neson

3 3 1

R2 +" r¡ /"qqq 8;;¡8~
2 2

R2 +"3-/,,_1
Qij 8mt 81ni

(23)

where the wave funetion radii were written as Rbqq alld Rb¡¡, like in the previous seetion.
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FIGURE l. Comparison between the quotient of radii calculated from the non relativistic theory,
Eq. (20) (solid line), and the experimental values (squares). The result of the naive-parton model
(dashed line) is also given for reference.

The important point to notice in Eq. (23) is that the relativistic corrections lower the
value of the ratio of radii given by Eq. (20) This result fol1ows from the dependence of
R~f on the quark mass, R~f - m-2/(2+IJ). It may be easily verified for any particular
values of the magnitude ( = mQ/mq•

\Vhen ( ---> O Eq. (20) leads to Rbqq/ Rbii ---> 1. Relativistic corrections are the same
in both systems (r¡/mb), thus in our approximation R~acyon/R;"e,on ---> 1 when ( ---> O,
independently of the quark mass mQ.

\Vhen ( = 1 \Veobtained aboye that R~qq/R~ii::: 0)2, \VhiJe relath'istic corrections are

in both cases equal to 1]/7n~. Thus, in general, 1 < REaryoll / R;nesoll < (í) 2. Thc lowest
value is reached when mq ---> O and relativistic corrections dominate.
Final1y, when ( ---> 00, Rbqq/ R~ii::: H, \Vhile the relativistic contributions to the radii

are r¡/m~. Thus I < R~aryon/R;"e,on < ¡~.
Predictions for baryon radii based on these results and a comparison with experiment

are presented in the next section.

4. COMPARISO:; WITIl EXPERIMEt"TAL RESULTS At"O OISCUSSIO:;

\Ve have summarized in Fig. 1 aur results and the "experimental" paints, i. e. the qua-
tients of radii ealculated from Povh and Hüfner estimate~ Eq. (3). Unfortunatcly, the
experimental points are concentratcd in the rcgion ( :::::-1, so we can nol test the ~ _ O
and ( ---> 00 regians.
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The bold curve in Fig. 1 is drawn from Eq. (20), ¡.e. represents the non-relativistic
estimate. Relativistic corrections lower this estimate in a way which is explicitly dependent
on both mq and mQ (and not only on its combination, O. To locate the experimental
points in the figure, we used the quark masses mu.d "" 0.3 GeV, m, "" 0.5 GeV. For
comparison, the naive parton model result, in which the total cross section is simply
proportional to the number of quarks in the system, that is Rbaryon/ Rme",n "" (~) 1/2, is
also represented (dashed line).
\Ve predict values of Rbaryon/ Rmeson that differ from the naive parton result in more

than 20% in the regio n ~ ---> O. For these values of ~ the fact RQqq/ RQI¡ ---> 1 has a simple
interpretation. As the heavy quarks in the baryon beco me heavier the distance between
them reduces to zero. Consequently, the light quark is attracted with twice the strength.
When this effect is combined with the 1/2 of Eq. (4) we get the result RQqq/ RQI¡ ---> 1.
Using this result, we can obtain the following bounds:

R- R-1 < ='ob < ~.
- Ra - RD

(24)

(25)

On the other hand, in the ~ » 1 regio n the non relativistic estimate is RQqq/ RQI¡ ""

5V2/6"" 1.17, which is still lowered by relativistic corrections. It leads to the bounds

Ro. > RII<oE. > RII••E. "" 1.17.
RD. - RD - Ra

Relations (24) and (25), giving the behavior of Rbaryon/ Rme",n in the ~ ---> O and ~ ---> 00

limits, could be experimentally tested in the next future. In particular, all the resonances
mentioned in Eq. (25) have been already (although not firmly) established [121, and the
realization of the corresponding hadron-proton collision experiment is only a matter of
time.
When ~ "" 1, Rqqq/ Rql¡ is only a few percents over the naive parton result and should be

lowered by relativistic corrections. The experimental points in Fig. 1 show this regularity.
From Eq. (12) and the observed values of Rp•w, R.;, RJ/'lI we can give estimates of the
radii of the 6, 0- and 0eee baryons. They are respectively (in fm),

R{J. ~ 0.96, Ro- ~ 0.60, Row ~ 0.27. (26)

Finally, we would like to show an interesting application of Eq. (2) to the determination
of the strong interaction radius of the photon. Data on total cross sections at Eem ;:::8 GeV
may be obtained from 1121 or from the detailed compilation [131. Taking the values O'w ""

0.12 mb and O'pp "" 36 mb we obtain Ro "" 0.04 fm, a distance of the order of the limit of
applicability of QED.

ACKNOWLEDG EMENT

Augusto González thanks to Dr. M. Moshinsky, the Director, Dr. O. Novaro, and the
Physics Department for hospitality at the Instituto de Física at UNAN!, where this work
was completed. Financial support from CONACYT is gratefully acknowledged.



STRONG INTERACTION RADII. . . 901

REFERENCES

1. B. Povh, J. Hufner, Phys. Rev. Lett. 58 (1987) 1612.
2. B. Povh, J. Hufner, Nue/. Phys. A478 (1988) 365e.
3. B. Povh, J. Hufner, Phys. Lett. B245 (1990) 653.
4. A. González, Few-Body Systeros 13 (1992) 105.
5. A. González, Few-Body Systero 10 (1991) 43.
6. A. González, "1/d-approaeh to the deseription of bound states of three and more partides".

Ph.D. thesis, P.N. Lebedev Phys. Inst.: Moseow(1990) (unpublished).
7. W. Lucha, F. Shoberl, D. Gromes, Phys. Rep. 200 (1991) 127.
8. A. Martin, Zeit. Phys. C32 (1986) 359.
9. A. Martin, Phys. Lett. 8100 (1981) 511.
10. C. Hayne, N. Isgur, Phys. Rev. 025 (1982) 1944.
11. S. Godfrey, N. Isgur, Phys. Rev. 032 (1985) 189.
12. Partide data group, Phys. Lett. 8239 (1990) 1.
13. H. Sehopper (ed) Total eross-seetions o/ reaetions o/ high-energy partie/es, Vol. 12a and 12b:

Landolt-Bornstein, New Series (1987).




