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ABSTRACT. Within the framework of the nonrelativistic quark model and with the help of the
leading term of the 1/d-expansion we obtain analytical expressions for the quotients of baryon-
to-meson strong interaction radii. Phenomenological relativistic corrections d la Povh and Hiifner
are shown to lower the non relativistic estimate. Predictions for baryon radii are given and a
comparison with experimental results (when available) is made. For some values of the quark
masses, our estimate differs from the naive parton result in more than 20%.

RESUMEN. Se obtienen expresiones analiticas para el cociente entre radios de interaccién fuerte
de bariones y mesones en el marco del modelo no relativista de quarks y con ayuda del término
principal de la solucién de la ecuacién de Schrédinger en potencias de 1/d. Se muestra que las
correcciones relativistas introducidas fenomenolégicamente a la Povh y Hiifner disminuyen la
estimacién no relativista para el cociente de radios. Se presentan predicciones para los radios
de algunos bariones y se hace una comparacién con los resultados experimentales disponibles.
Para algunos valores de las masas de los quarks, nuestra estimacién difiere del modelo partdnico
primitivo en més del 20%.

PACS: 12.40.Qq, 14.20.~c, 14.20.-n

1. INTRODUCTION

A few years ago Povh and Hiifner[1-3] found that not only elastic scattering at zero
momentum transfer, but also hadron-proton total cross sections at high energies can be
interpreted along geometrical lines. By comparing the total cross sections for hadron-
proton scattering with the corresponding slope parameters from elastic scattering (b =
a‘it(ln a‘%oelm;c)t:o, t is the Mandelstam variable) they obtained a linear relation between
these magnitudes
_1(p2 2 hp _ ~p2p2

bhp = 5(Rp + BY), oy = GRIRE, (1)
which shows that a “strong interaction radius” Ry can be assigned to each hadron ac-
cording to the equations

hp
a
R: =3b,,, RI=Rliotal (2)

total
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In this way they found [3] the following values of squared hadronic radii (in fm?):
R} =041, R:,, = 0.52, R} = +0.35, R; =0.21,
R}, =0.04 R2 = 0.67, R} 5 = 0.58, RZ =050, (3)

which exhibit the following properties:

i) the heavier the valence quark the smaller the radius, i.e. R > Rx > Ry > R;/y, and
Rp > RA,E 2% RE;

i) the ratio Rparyon/Rmeson for systems of identical quarks is roughly equal to 1/3/2, as
follows from a naive parton picture.

The importance of this method of determination of Rﬁ lies on the fact that the data on
total cross sections are abundant, while a direct test of the internal structure of hadrons is
difficult, because of their extremely short lifetimes. It is worthwhile mentioning that, when
the comparison is possible, charge radii approximately coincide with the corresponding
values of strong interaction radii given in Eq. (3).

In the present paper we aim at gaining in the qualitative understanding of the sys-
tematics of strong interaction radii presented above by stressing on the relations between
baryon and meson radii. This is a natural extension of the ideas of paper [4] where we
showed that the set of relations between baryon and meson mass spectra obtained within
the framework of the nonrelativistic quark model and with the help of the 1/d-method
are satisfied by the existing experimental data on hadron masses.

Instead of doing numerical calculations, we perform a semiquantitative analysis based
on analytic expressions for the quotients of radii. These expressions are obtained by means
of the leading term of the 1/d-expansion for the solution of the Schrédinger equation
(for an introduction and some applications see Ref. [5] and references therein). The
parameter d, which is taken as a free parameter and used for expanding the solution
of the Schriodinger equation as a power series in 1/d, arises when formally writing in d
dimensions the Laplacians entering the Schrédinger equation. The first term of this series
can be analytically computed. It reproduces qualitatively and semiquantitatively most of
the properties of bound states in few-particle systems [5,6]. In particular, it can be used for
the calculation of quotients between magnitudes corresponding to systems with different
number of particles, as it is for example the ratio Rparyon/Rmeson- A brief introduction to
the 1/d-method when applied to the calculation of radii is presented in the next section.

Phenomenological relativistic corrections @ la Povh and Hufner [3] are considered in
Sect. 3. They are shown to lower the values of the ratio Rparyon/Rmeson Obtained from the
non relativistic theory. In Sect. 4, some predictions for still unmeasured baryon radii are
given and a comparison of our results with experimental data (when available) is made.

2. HADRONIC RADII IN THE 1/d-PICTURE

The starting point is the nonrelativistic model of quarks [7], in which quarks with large
effective masses interact through central forces which vary roughly as r at long distances
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and —1/r at short distances. This forces are supposed to be flavor-independent. In addi-
tion, they satisfy the requirement

12

1V,

991in a meson’

99 ]in a baryon (4)
which resembles a property of one-gluon-exchange forces, but is also satisfied by the
long-range confining forces. In this approximation, the ground state of a hadron is a
state with zero total angular momentum. We will be concerned with computations of
root-mean-square radii in the ground state.

As mentioned above, for the computation of Ryaryon/ Rmeson We make use of the 1/d-
method [5,6]. In this method every physical magnitude characterizing the hadron is ex-
pressed as a power series in 1/d, the first terms of which are easily computable. First, we
consider hadrons made up from only one type of quarks, i.e. with quark structure ¢ and
qqq, respectively. The root-mean-square separation between particles in the meson ¢q is
written as

<T2(g)>qtf =78 +0(1/d), (5)

where rg is the distance that minimizes the effective potential

d2

Ugs(9) = Sur? +gV. (6)

Let us make some comments concerning Egs. (5) and (6). The p, = mq/2 is the reduced
mass of the meson, g is the coupling constant and the system of units is such that A = 1.
The potential Ugg is the only term surviving in the meson Hamiltonian when we take the
formal limit d — oo. It means that fluctuations are suppressed and d — oo is a classical
limit. In this limit, the physical system is endowed with a rigid structure characterized
by the interparticle separation rg. Higher terms in the series (5) take into account the
contribution of fluctuations around the equilibrium distance ry.

Let us consider a baryon with three identical quarks in a state with zero total angular
momentum. The effective potential depends on the scalar combinations 2, p? and v = 7-
plrp (7= 7y — 71 and § = 73 — (7| + 72)/2, where 7; is the position of the i—th particle,
are the two Jacobi vectors of the problem):

d* 1 1 g ;
Uggq(9) = 8(1 —7) (,ur’rz + #ppg) - §(V12 + Vaz + jVa1), (7)

where p, = mq/2 and tp = 2mg/3. The minimization of Uy, leads to a system of three
equations for rZ, p2, and ’}‘0, i.e. the leading terms of the series for (r%(g))gqq, (P%(9))qqq
and (- §/7p)qqq [see Eq. (5)]. However, permutation symmetry helps to find the solution.
We shall sunp]y look for the solution in the class of configurations representing equilateral
triangles (i.e. p? = 47' ¥ = 0) in which Uy, takes the form

Uggq(g) = Qqu(%g), (8)
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i.e.,

2 e e BT
(r%(9)) 4qq = (r*(39) ), + O(1/d). (9)

Let us note that equilateral triangles are expected to be the dominant configurations
in spherically symmetric states. In states with high momentum, other configurations may
appear to be the most favored [8]. Taking into account the evident geometrical relations
between (r?) and the r.m.s radii, R?, we obtain

quq(g) 4
———— = -+ 0(1/d). 10
qu(%g) 3 + O(1/d) (10)

From Eq. (10) and the evident relation Rg(3g) > Rgg(g), we obtain the bound

Rygq(9)/Rg(g) > +/4/3, but in order to get more refined estimates, we shall pick a
particular interquark potential. As we said above, in the non relativistic model of quarks
the quark interaction through central forces varies as r at long distances and —1/r at
short distances. Thus a potential V = 7# with 8 ~ 0 should work as an average of the
real interquark potential. The property 3 =~ 0, coming from interpolation between 3 =~ 1
at long distances and 3 ~ —1 at short ones, means that the effective potential is nearly
logarithmic. In fact, the Martin’s fit [9], corresponding to 3 = 0.1, is shown to yield very
good results for meson spectra and decay rates. With the help of a power like potential,
we obtain

W
-

+
+

|

Roge9) _ ()™ +ousa), (11)

qu (9) 3

and taking into account that § is small we may write

Rygelg) 4
ﬁiﬁ_§+omey (12)

One shall note that the leading term in the right-hand side of (12) is independent
of the quark mass. Corrections to this leading term come from higher order (in 1/d)
contributions as well as from deviations of the effective interquark potential from the
B ~ 0 behavior. We expect these corrections to be only a few percents (< 10%) of the
leading term, and thus will not be computed. A similar situation takes place when we
compute the 1/d-series for the quotient of baryon to meson energies [4]. A second source of
corrections to Eq. (12), which are specially important in hadrons containing light quarks,
come from the inclusion of relativistic effects. They will be discussed in the next section.

Next, we consider the less symmetric case in which the meson and baryon have re-
spectively the quark structure ¢@ (or Q3) and Qgq. In the meson, the effective potential
surviving in the d — oo limit is again (6), with g, = mgmg/(mg+mg). The ¢ is obtained

from the minimization of Ugs. In the baryon, we get again Eq. (7), but with u, defined as
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above and p, = 2mqgm,/(2m,+mq). Permutation symmetry leads only to one simplifica-
tion: v = 0. To obtain a relation between the meson and baryon interparticle distances we
shall pick a particular potential. We choose V = % with # ~ 0 and then obtain that the
“geometry” of the baryon ground state, i.e. the ratio = = (p?(9))Qqqe/(7%(9))Qqq» becomes
independent of the strength of the potential (the coupling constant) and is determined
by the equation:

4€x? 1-8/2
e =t G+, (13
which may be approximately rewritten as
1
_E+2 24¢ |2

where { = mgq/mg. On the other hand, by comparing the minimum equations for the
meson and baryon it follows that

1-8/2\ 752
(P4(9)) gy = (5‘(?721)” 1+ 2] ) (@) gy + O/, (15)

which in the vicinity of 8 = 0 leads to

E+2 (1+ 1

("o = 5551y (1+ 22) (@) gy + 0(B8.1/0) (16)

In order to compare with the radii found in Ref. (3] we shall construct a magnitude
with the meaning of a geometrical radius. This radius should not contain contributions

from very heavy particles and should reduce to the known answer in the equal mass case.
These requirements are fulfilled if we define the radius through the density

() = <Z miié(ﬂ-—ﬂ> (17)

1.e.

R?— fd3r rzn(r) B Z,- m% T‘f}
- [ d3rn(r) - sz% '

The above definition gives for the meson and baryon radii the values:

1

3
Rbi(0) = e (@) gp 18)

e |1/ 2 \? A
Rf?qq(g) 1 + 2¢ ':E (2 +5) 2 (5%) M ?J?jl <‘02(g)>0qq’ (19)
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respectively, and with the account of the approximate relation (16) we obtain for the
squared radii the equation:

R2 2 2 2
Qqg _ §E+2)(E+1) 1 .1_ L __5_ ._1_
RL,  2(1+260)(1+¢°%) (1+ 4:5) [5 (2+§) e (2+§) i 2;5}

+ O(6,1/d). (20)

As mentioned above, we expect - and 1/d-corrections to Eq. (20) to be only a few
percent of the leading term. A more important contribution is made by the relativistic
corrections [3], the effects of which is considered in the next section.

3. PHENOMENOLOGICAL RELATIVISTIC CORRECTIONS

So far, we compared radii of baryons and mesons, calculated within the framework of non-
relativistic quantum mechanics with effective heavy quarks thought as punctual objects.
However, it is known that for light quarks, relativistic effects lead to a smearing of quark
coordinates which adds a term to the radius of the hadron [10,11]. In Ref. [3] this effect
was taken into account by assigning to u, d and s quarks effective sizes proportional to
their inverse mass (a natural relativistic scale). The following expression was written for
the squared radius of the i-th quark [3]:

() = () + mi? (21)

where the coefficient 7 was seen to be n =~ 0.036, and the subscript wf refers to radii
calculated from the wave function of the system. From Eq. (21) and our definition of
density it follows that

B =Rt (22)
— m;
1
Thus for the quotients of radii, we have
3 . 3.4
2 —_— —_—
R2 quq"{"szﬁ/zmi
baryon _ i=] ! i=1 (23)

i=1 g

R?neson 2 2 n : 1
R2 L i
o S
1=

where the wave function radii were written as Rz'Qqq and RzQ@, like in the previous section.
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FIGURE 1. Comparison between the quotient of radii calculated from the non relativistic theory,
Eq. (20) (solid line), and the experimental values (squares). The result of the naive-parton model
(dashed line) is also given for reference.

The important point to notice in Eq. (23) is that the relativistic corrections lower the
value of the ratio of radii given by Eq. (20) This result follows from the dependence of
Raf on the quark mass, Rfvr ~ m~2/Q2+8) ¢ may be easily verified for any particular
values of the magnitude £ = mg/m,.

When £ — 0 Eq. (20) leads to Réqq/Réé — 1. Relativistic corrections are the same

in both systems (n/mé), thus in our approximation Rgaryon/aneson — 1 when £ — 0,
independently of the quark mass my.

; 2 . 2, T, ;
When § = 1 we obtained above that R /R2. ~ (3)°, while relativistic corrections are

. . 2
in both cases equal to 7/mj. Thus, in general, 1 < R ryon/ Bineson < (3)°. The lowest
value is reached when mg — 0 and relativistic corrections dominate.
Finally, when £ — oo, Ré,qq/qu 2 %, while the relativistic contributions to the radii
2 2 2 25
are n/mg. Thus 1 < Ry sigon! onmsan <
Predictions for baryon radii based on these results and a comparison with experiment

are presented in the next section.

4. COMPARISON WITH EXPERIMENTAL RESULTS AND DISCUSSION

We have summarized in Fig. 1 our results and the “experimental” points, i.e. the quo-
tients of radii calculated from Povh and Hiifner estimates Eq. (3). Unfortunately, the
experimental points are concentrated in the region € ~ 1, so we can not test the E—0
and £ — oo regions.
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The bold curve in Fig. 1 is drawn from Eq. (20), i.e. represents the non-relativistic
estimate. Relativistic corrections lower this estimate in a way which is explicitly dependent
on both m, and mg (and not only on its combination, £). To locate the experimental
points in the figure, we used the quark masses m,q4 =~ 0.3 GeV, m, =~ 0.5 GeV. For
comparison, the naive parton model result, in which the total cross section is simply
proportional to the number of quarks in the system, that is Rparyon P Ta— (%)U 2
also represented (dashed line).

We predict values of Rbaryon/Rmeson that differ from the naive parton result in more
than 20% in the region £ — 0. For these values of £ the fact Rg.q/Rggz — 1 has a simple
interpretation. As the heavy quarks in the baryon become heavier the distance between
them reduces to zero. Consequently, the light quark is attracted with twice the strength.
When this effect is combined with the 1/2 of Eq. (4) we get the result Rgqe/Rgq — 1.
Using this result, we can obtain the following bounds:

R

= R=
1< -R;;i < 7‘;&. (24)

, is

On the other hand, in the £ 3> 1 region the non relativistic estimate is Rqqq/Rgs =
5v/2/6 =~ 1.17, which is still lowered by relativistic corrections. It leads to the bounds

RQ: = RAC;EC =5 RAvab
Rp, — Rp ~— Rp

Relations (24) and (25), giving the behavior of Rbaryon/Rmeson in the { — 0 and § — oo
limits, could be experimentally tested in the next future. In particular, all the resonances
mentioned in Eq. (25) have been already (although not firmly) established [12], and the
realization of the corresponding hadron-proton collision experiment is only a matter of
time.

When ¢ =~ 1, Ryqq/Rgq is only a few percents over the naive parton result and should be
lowered by relativistic corrections. The experimental points in Fig. 1 show this regularity.
From Eq. (12) and the observed values of R,., Rg, Rjy we can give estimates of the
radii of the A, Q= and Q.. baryons. They are respectively (in fm),

il 8 L (25)

Ra <096, Rg- <060, Rq. <0.27. (26)

€CcC

Finally, we would like to show an interesting application of Eq. (2) to the determination
of the strong interaction radius of the photon. Data on total cross sections at E.,, > 8 GeV
may be obtained from [12] or from the detailed compilation [13]. Taking the values 7., =~
0.12 mb and opp =~ 36 mb we obtain R, ~ 0.04 fm, a distance of the order of the limit of
applicability of QED.
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