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ABSTRACT, The magnetic field line equations for an axisymmetric plasma confining system can be
cast in a hamiltonian faroL \Ve apply a general procedure for this analogy in the case of cylindrical
symmetry and use the result in arder to describe two typical MHD equilibria, The case of a general,
non integrable perturbation is considered, resonances being treated with use of secular perturbation
theory, \Ve study the magnetic island formation near these resonances,

RESUMEN. Las ecuaciones de las líneas de campo magnético para un sistema axisimétrico de
confinamiento de plasmas se pueden poner en una forma hamiltoniana. Aplicamos un proc('dimiento
general para esta analogía en el caso de geometría cilíndrica y utilizamos el resultado para describir
dos equilibrios MHD típicos. El caso de una perturbación general no-integrable es considerado, y
tratamos las resonancias con el uso de la teoría secular de perturbaciones. Estudiamos la formación
de islas magnéticas vecinas a las resonancias.

PAes: 52,55,-s; 52,90,+z

1, INTIlODUCTION

One of the necessary conditions for plasma confinement in the commonly operating
schemes like Tokamaks amI Stellarators in the existence of nested magnetic surfaces [1];
on which the magnetic field lines twist around the magnetic axis, in an equilibrium config-
uration, Although the topology of these surfaces must be toroidal, if the torus aspect ratio
is large enough, one can use a (periodic) cylindrical approximation, and treal toroidicity
effects as a first order correction,

The relationship between magnetic field line equation and Hamiltonian equations of
motion is well known for a long time, since I\erst [2] as early as in 19G2, applied this
similarity to treat a simple situation, in which a quadrupole error field was superposed to
a uniform plasma containing magnetic field, Over the subsequent years the subject has
received few, although important, contributions [3], \Vhiteman [4] has suggested a fairly
general formulation for the problem, by using a contravariant curvilinear coordinate sys-
tem; but no applications are found in his paper. This formulation was revisited. some years
later, by Bernardin ami Tataronis [5J. which have used it to deal with ~Iercier coordinates,
in order to study expantions !lear the magnetic axis of an equilibrium configuration,

In this note, \vhiteman's method is applied for cylindrical coordinates. and the results
resemble those oblained by Lichtenberg IG], who have derived a field line hamiltonian
through a more direct approach, This hamiltonian is developed for two examples found
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in the plasma literature [7], introduced by means of its plasma current density profiles.
The expressions so obtained turn to be of practical interest when combined with error
fields or internal disturbing fields caused by plasma instabilities, since these effects can
be successfully described by hamiltonian perturbation theory [11].

The paper is organized as follows: in the second section Whiteman's formulation is
outlined, according to the presentation by Bernardin and Tataronis. The cylindrical sym-
metry is considered, results being compared with Lichtenberg's expression. The third
section is devoted to the study of sorne current profiles. In the fourth section we consider
the effects of a nonsymmetrical perturbation upon the equilibrium system, in order to
investigate the motion in the neighborhood of the resonances. Section 5 develops the
framework for treatment of various possible kinds of perturbing fields using the equilibria
of Sect. 3. Our conclusions are left to the last section.

2. WIlITEMAN'S FORMULATION FOR FlELD L1NE IIAMILTONIAN

In axisymmetric equilibria, as in toroidal and cylindrical geometries, there is an ignorable
coordinate, which can play the role of a "time" variable. In fact, the resulting field line
flow is not actually dynamical in the usual sense, but rather is a kind of "streaming" along
the magnetic field lines, which is akin to the lagrangean description in fluid mechanics [8].

Adopting this description, it is a straightforward matter to put the magnetic field
line equations in a form that resembles Hamilton equations of motion, after defining a
convenient hamiltonian for field line flow. This analogy enables us to handle the powerful
techniques developed over the past decades to deal with classical hamiltonian systems,
like canonical perturbation theory, adiabatic invariance, the KAM theorem and so on.

In the following, we shall take the problem as proposed by Whiteman [4]. Let the
magnetic field B = (BI, B2, B3), written in terms of its contravariant components, such
that B = V' x A, where A is the vector potential. Indices are raised or lowered in the
curvilinear system of coordinates by means of the metric tensor gij. \Ve may take as
canonical variables to

P =p(X
I,x2,x3),

t = x3,

(2.1)

(2.2)

(2.3)

where p is the canonically conjllgated momentum to the coordinate q; and x3 is taken to
be the ignorable coordinate.

Choosing a gauge such that A2 = O, the momentum is given by

(2.4)

where 9 = det gil and 'Y is an integration constant. If 9 i O the magnetic field line
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equations read

dxl dx2 dx3
BI = B2 = B3'

which can be cast in a hamiltonian form

dq aH
dt = ap'

dp aH
dt - - aq ,

if we define

(2.5)

(2.6)

(2.7)

(2.8)

The integration constants appearing in (2.4) and (2.8) are related by the expression

(2.9)

The axisymmetric equilibrium configurations are characterized by a x3-independent
hamiltonian, so that the problem has only one degree of freedom and is autonomous. Ac-
cording to the Liouville criterion these systems are always integrable, and one can expect
regular behaviour of the field lines [9]. If a non-axisymmetric perturbation is sllJlerimposed
to this eqllilibrium, the system tllrns to be near-integrable, if the perturbation strength is
small enough. One of the novel features to be expected in this case is chaotic behaviour in
space, since we are dealing with a lagrangean description with no real temporal variables.
It is a simple matter to write down the hamiltonian for cylindrical coordinates (Xl =

e,x2 = r,x3 = z), with metric tensor g;j = diag(r2, 1, 1) amI 9 = r2. In practice, one
do not use contravariant field components directly, but rather the so-called "physical"
components, given by (no sllm)

The canonical variables read

q = e,

p= J dl'l'B,(l',e)+-y(e,z),

t = z,

}{ = J dr Bo(r, e) + 8(e, z),

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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and (2.9) fumishes

8ó(0,z) 8~(0,z) O
80 + 8z -, (2.15)

trivially satisfied if ó and ~ vanish identically.
In the large aspect ratio approximation for Tokamak equilibria, it is customary to take

B, = O,

Bo = Bo(r),

Bz = Bo = consto

in such a way that Eqs. (2.12) and (2.14) read

Bor2P=--,
2

lp dp'
H(p) = V'Iil1JOBo(p').o 2p Bo

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

The hamiltonian above was written in terms of the momentum only, so that we may state
that p and q are actually action-angle variables for the system.
Sorne authors prefer to use the so-called "rotational transform" [1]' defined as the

O-angle covered by a given field line in a complete tum over the cylinder

,(r) = Ro dO.
211" dz

From Eqs. (2.17), (2.18) and (2.5), the hamiltonian (2.20) is simply

1 (P , ,
H(p) = 211"R,¡ Jo dp '(p),

(2.21)

(2.22)

where 211"R,¡ is the cylinder length. This result is essentially the same as that obtained by
Lichtenberg [5]' if one replaces the momentum by ( = r2/2 and tjJ = z/ Ro as the "time"
variable.

3. HAMILTONIAN FUNCTIONS FOil 50ME MHD EQUILInIlIA

Let us apply the formalism sketched in the previous section in two case examples found in
the plasma literature. The former is the one-parameter parabolic model [7). The plasma
current profile is axisymmetric, and has only one nonvanishing component:

(3.1 )
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where jo is a positive constant and a is the plasma column radius. The application of
Ampere's Law will give for the O-component of the equilibrium field (in the following
equations S.l. units are used):

(3.2)

where Bo(a) = ilo1p/27ra (Ip is the total plasma current).
The rotational transform for the magnetic surfaces related to this particular equilib-

rium is

t(p) = "RoaBo(a) [1 _ (1 _ ~)2] .
P Boa2

Putting Eq. (3.3) into (2.22) a simple integration gives

H(p) = 2Bo(a) p (1 __ p-) .
Boa 2Boa2

(3.3)

(3.4)

The second example to be considered is the "peaked model" [101, characterized by the
current density profile

( 2)-2
jz(r) = jo 1+ '\;2 ' (3.5)

where jo amI a are the same variables as in the preceding example, ,\ being an adjustable
adimensiollal parameter, in order to fit realistic current pro files. The poloidal field gener-
ated by such a current distribution is

(3.6)

where Bo(a) = ilojoa/2(1 + '\). The total current is obtained by a straightforward caleu-
lation as

. 2
1 = "loa
p 1+'\

Instead of the rotational transform, one might prefer to work with the so-called safety
factor [1]' defined as q(r) = 2"/t(r). It reads for this case

(3.7)
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after defining its value at the plasma edge: q(a) = aBo/ RoBo(a) = (1 + .\)q(O). The
hamiltonian (2.22) reads

( ) _ aBo(a) (1 + .\) 1 (1 2.\P)
H p - 2 .\ n + a2 Bo .

4. PERTURDATION TIIEORY

(3.8)

These analytically obtained hamiltonians are very useful when taking into account per-
turbation effects due to internal or external sources. The standard form of the perturbed
hamiltonian for field Hne flow is

H(p, q, t) = 27r~ 1P

dp' ,(pi) + EH¡ (p, q, t), (4.1 )

where p, q, tare the (action-angle-time) variables defined in Eqs. (2.1)-(2.3), and E is an
order parameter, such that we may set E = 1 at the end of the calculations.
As the perturbation term H¡ must be periodic in the angle variable q = O as well as in

the "time" t = z, we may Fourier expand it in order to write

(4.2)

where (i,j) E Z are the mode numbers. It is customary to write

where ajk are real Fourier coeflicients and Xjk are taken to be constants.
Let us suppose that the main harmonic excited by perturbation is labeled by mode

numbers (m, n), coprime integers. According to Poincaré Birkhoff theorem [11]' periodic
("magnetic") islands will be created around the rational magnetic surface with safety
factor q = m/n. The location (Pm/n, in the phase space) of these surfaces is obtained
through solution of

(4.3)

In order to put in evidence this fact, we rewrite (4.1) and (4.2) as

H(p,q,t) = 27r~ 1P

,(p')dp' + wmn(p)cos (mq - n ~o + Xmn)

+~ L: ajdp)expHjq-k~ +Xmn)], (4.4)
(j,k);"(olom,olon) O
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where we have used the symmetry property of Fourier coefficients, A~m -n(P) = Amn(p)
(i.e., a_m,-n = amn and X-m,-n = -Xmn) and set € -+ ~ for later conve~ience.
Now, we are interested in studying the behaviour of this hamiltonian system at the

neighborhood of the exact resonance Pm/n- Taking

P = Pm/n + tlp (4.5)

we make a TayJor expansion of (4.4) up to second order in tlp for the unperturbed part,
and evaJuate perturbation onJy at resonance. The result is

n 1 d¿ I 2H(Pm/n + tlp) = HO(Pm/n) + Rom tlp + 47rRo dp tlp
Pm/t'l

+ famn(Pm/n) cos (mq - n ~O + Xmn)

As is well-known from perturbation theory Ill], the presence of resonances leads to
small denominations in the corresponding terms of canonicaJ perturbation series. In order
to circumvent this problem, secular perturbation theory prescribes the use of a "rotat-
ing frame" for description of the system near a given resonance. Mathematically, this is
realized by a canonical transformation of variables (p, q) - (J,19), performed through a
time-dependent generating function of the second kind:

F(J,q,t) = (mq-n~o +Xmn) J.

The canonicaJ transformation equations are [12]

EJF
P = a;¡ = mJ,

EJF t
19= EJJ = mq - n Ro + Xmn.

[((J,19,t) = H(p,q,t) + ~ =}[ - ~ J.

(4.7)

(4.8)

(4.9)

(4.10)

This procedure puts in evidence two variables: a "slow" angle {) (because ¥. = m'fif -
i; = O at the exaet rcsonance, so that the phase of eosine in (4.6) is stationary) and
a "fast" variable t. Averaging over this fast variable [6], the hamiltonian in the rotating
frame variables reads

]((Jm/n + tlJ, 19,t) = [(O(Jm/n) + tl[((tlJ, 19), (4.ll )
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where

and

n
Ko(Jm/n) = Ho(Jm/n) - Rn Jm/n

m
2

2 1 d, IC,K(tJ.J,1?) = -(c,J) ----rJ:' - + famn(Jm/n) COS 1?
2 27T"{) dp

Pm/n

(4.12)

(4.13)

Qne recognizes (4.13) as the nonlinear pendulum hamiltonian, which describes the
motion near an exact resonance Jm/n in the c,J x 1? phase plane (actually is a Poincaré
surface of section). The general features of this situation are fairly well-known [UI: there
are two kinds of curves -librations (closed) and rotations (open)- and a separatrix
between them, which characterizes a magnetic island. The singular points in this case are
elliptical (locally stable) at 1?= 7Tand hyperbolical (locally unstable) at 1?= 0,27T.
Prom (4.13) it is possible to evaluate islands half-widths (c,J)m/n by imposing the

following condition:

giving the result

(4.14)

. 2 ~
(c,J)m/n = - V 27TRo

m

5. ANALYSIS OF SOME EXAMPLES

(4.15)

Physically speaking, Eq. (4.15) says that the magnetic island amplitudes depend on:
(i) the strength of perturbation, measured by its resonant Fourier coefficient; (ji) the
"magnetic shear" of field lines d,/ dp. Both quantities must be evaluated at resonance,
¡.e., the position of the corresponding rational magnetic surface, as given by (4.3). It is
straightforward to compute this value from the examples studied in Sect. 3.
For the one-parameter parabolic model dcfincd in (3.1), the location ofrational surfaccs

with q = m/n is given by

_ n (Bóa3)
Pm/n - m -2- (

2m 1)
nBoa - RoBe(a) , (5.1)

where we have used (3.3). Notice that this value is rclated to the actual radius of a
cylindrical magnetic surface by Eq. (2.19). The magnctic shear of ficld lines is

d,
=dp (5.2)
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Now for the peaked model (eJ. 3.5), application of (4.3) furnishes the rational surface
position in phase space as

= a
2
Bo (~) (m _M)

Pm/n 2q(a) ,l. n 1 +,l. .
(5.3)

From the rotational transform' given by Eq. (3.7) is a simple matter to write down an
analytical expression for magnetic shear

(5.4)

In order to extract information about perturbing fields it is necessary to know its
Fourier components. This can be accomplished in a quite direct way from the magnetic
field line equations. Suppose that the perturbing fields are given by

D¡ = (BI8(p, q, t), B¡r(P, q, t), Bo),

¡.c., the radial as well as angular components are superposed with the uniform (toroidal)
field. This is the case, for example, of the ergodic magnetic limiter [13]. Assuming that
these components are periodic in botb variables, we Fourier-expand tbem:

B10(p, q, t) =¿Cjk(p) exp [i (jq - k ~)] .
j.k

(5.5)

(5.6)

Substituting (5.5), (5.6) and (4.1), (4.2) into Eqs. (2.6), (2.7) and integrating (remem-
ber that '!li = Bor!fft) one obtains the following relations among the (complex) Fourier
cocfficients:

A () - .~P Bmn(p) -iP
dp' C (')

mn P - Z B - I'J?='B mn P 1o m o v •.p uo

where we have used the magnetic field line equations in cylindrical coordinates:

dr r de dz
Br = Bo = Bz

(5.7)

(5.8)

In many situations oC practical intcrest, real Fourier cocfficicnts for fields have a power-
law dependence

( )

m/2

]( E.-
Po

(5.9)
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where Po is a positive constant (e.g., equal to Bor5/2, with ro sorne geometrical parameter)
and K depends on sorne strength quantity, as an external or interna! current density, and
sometimes also on a mode number. Inserting (5.9) in sorne of the Eqs. (5.7) gives a
power-!aw dependence in Amn of the form const. x p(m+l)!2, up to a constant phase.

6. CONCLUSJONS

The magnetic field equations can be cast in a hamiltonian form, if the magnetic configu-
ration has got any spatial symmetry. There is a systematic way to do this for an arbitrary
curvilinear coordinate system. \Ve carry out this procedure for analysing magnetic con-
figurations with cylindrical symmetry, by using two given equilibrium profiles found in
Tokamak research literature. In both cases, hamiltonian functions are found in terms of
canonically conjugated variables.
These expressions are supposed to describe integrable systems, but is very important

to consider small perturbations, which can appear as a result of MHD instabilities as well
as externally applied magnetic fields. A typical feature of this situation is the presence of
resonances, that are treated with techniques borrowed from secular perturbation theory.
In the neighborhood of the exact resonances the Poincaré surface of section shows up a
structure very similar to a pendulum, characterizing a magnetic island. \Ve have obtained
an expression to calculate magnetic island widths, from parameters of equilibrium and
perturbation fields.
An important issue to be notcd hcrc is thc onsct of chaotic bchaviour of thc field

lines charactcristic of the border (near separatrix) rcgion of a magnctic island. If two
islands with differcnt mode numbers interact, the magnctic (KAM) surfaces between them
are progressively destroyed, and in the limit situation the chao tic regio n may occupy a
significant portion of the available phase space. There are several practical applications of
this idea, one of the most relevant being the ergodic magnetic limiter (EML) concept [131.
The application of the formalism presented in this paper to EML effects on field lines wil!
be the subject of a forthcoming paper.
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