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ABSTRACT. A relativistic equation for a partic!e-antipartic!e system with a Dirae oscillator intcr-
aetion was derived in prcvious publieatiolls aud sol ved by a perturbativc procedure whiel! led to
a speetrum of bOllnd states. In this papel' we derived a radial equation for the system in question
ano show that, cOlltrary to the perturbative allalysis, it gives rise to a continuous speetrum hut iu
which there are resonant states, i.e., thosc purely outgoing for certain complcx cnergies, ami \Ve

derived the latter by mcans of the l/N expansion ll1ethod. The spcctrull1 of cxcitation energies, the
strong interaction radii, and the decay \vidths of tIle I'csonallt states of our model are calculated
and compared with the corrcsponding expf'rilIlcntal magnitudes for mesons with a purc quark
composition and total angular mOlllcntulll J = L. The emergillg picture of Dirac oscillator mcsons
seems to be in qualitative agreement with meson phenornenology.

RESUMEN. Una ecuación relativista para un sistema de partíeula-antipartículacon una interacción
de oscilador de Dirac fue derivada en una publicación previa y resuelta por un método perturbativo
que lleva a un espectro de estados ligados. En este artículo derivamos la ecuación radial del sistema
en cuestión y mostramos que, en contradicción con el análisis perturbativo, da lugar a un espectro
contínuo en el cual hay estados resonantes, esto es, aquellos puramente salientes para algunas
energías complejas, y derivamos estos tiltimos por el método de expansión l/N. El espectro
de energías de excitación, los radios de interacción fuerte y las anchuras de decaimiento fueron
calculados y comparados con las magnitudes experimentales correspondientes para mesones dc
una composición pura de quarks y de mOlllento angular J = L. La impresión que emerge es que
los mesones basados en el oscilador de Dimc tieuen un acuerdo cua.litativo con la fenomenología
mesónica.

PACS: IJ.lO.Qr; 12.70.+'1

l. !"TllODUCTI01\ Al':[) SUMMAllY

At the present time \Veexpect hadrons to be the asymptotic scattering state of <¡nantnm
chromodynamicsl tIle field theory of strong interaction. However, we are not able to com-
pute the S-matrix of QCD. As a CO!l:'wqllcllce, the existing approaches to obtain hadron
properties are either very '1ua!itative (for example, the I/Nc-expansion in QCD [1,2]), or

.Permanent address: Instituto de Cibemética, ~1atemática y Física, Calle E 309, Vedado, La
Habana, Cuba.
"~lell1ber of El Colegio i\acioual.



RADIAL EQUATION FOR TIIE PARTICLE-ANTIPARTICLE SYSTEM. . . 13

approximate numerical (lattice calculation [3), for instance), or phenomenological QCD-
based approaches. The latter constitute in fact the basis for the current classification
of hadron resonances and computation of static properties of hadrons (see, for example,
Re£. [4]).
In the present paper, we study a relativistic model in which the properties of mesons

may be explicitly computed. The aim is not to describe real mesons, but to gain in the
qualitative understanding of mesons properties. In fact, sorne aspects of the model are
very unrealistic: the interaction is local and not field-mediated, the spin-orbit coupling is
excessively strong, and there is no mixing between mesons with different quark composi-
tion.
Gur starting point is a Poincaré invariant two-particle equation obtained previously

in Refs. [5,6] for the particle-antiparticle system with a Dirac-oscillator interaction. The
conserved quantum numbers in the theory are J -the total angular momentum-, and
the parity. Ilesides, there is only one free parameter in the model, the oscillator frequency,
w (in units of the quark mass). For states with parity (_l)L = (_l)J the aboye mentioned
equation is reduced to one radial Schriidinger-like equation with an eigenvalue-dependent
potentia1.
The solutions of this radial equation exhibit many of the properties of real mesons.

Indeed, all states are shown to be reSOllances, with decay widths that decrease with the
increasing of the quark mass, stl'Ollg interaction radii for light mesons are proportional to
the inverse quark mass and show a very soft dependence on the interaction potential, etc.
Few-particle systems with a Dirac-oscillator interaction were considered previously in

Refs. [7-9,5,6]. The first example in which the Dirac oscillator was used was the case of
three quarks, i.e. the mass spectra of baryons [7,8]. In Re£. [9] the two-body problem
was introduced as an example for anomalous representation of the Poincaré group. The
particle-antiparticle system was studied in [5,61 by means of a perturbative (in w) pro-
cedure. As will be seen below, the small-w regio n corresponds to heavy mesons for which
relativistic effects are not so important. In the present paper we extend the analysis of
Refs. [5,6] to the whole range of variation of w by means of a nonperturbative method,
the l/N-expansion, which was previously applied to other few-body problems [lO].
\Ve start in Sect. 2 by generalizillg the Poincaré illvariant equatioll for a system of

n-bodies with Dirac oscillator interactioll, alJ(1 restrict it then to a particle-antiparticle
system. In Sect. 3 we consider the equation in the frame of reference where the center of
mass is at rest and reduce it from four to a single component. In Sect. 4 we obtain the
corresponding radial equation in states with parity (_l)L = (_l)J , which is further solved
approximately by means of the l/N -method in Sect. 5. Comparison with real mesons is
presented in Sect. 6. Concluding remarks are given at the end of the papeL

2. GENERALlZATION OF TIIE POlNCARÉ INVARIANT n-BODY EQUATION WITII DIRAC
OSCILLATOR INTERACTIONS

In Re£. [9), to whose equations we shall refer with the addition of aroman 1, we followed
a reasoning developed by Ilarut et al. [11] to derive a single Poincaré invariant equation
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for n-partic1es with a Dirae oseillator interaetion of the form

which differs frolll Eq. (3.371) by the fact that we take now relativistie units in which n,
the mass of the partic1e m and velocity of light e are 1, while the frequeney of the Dirac
oscillator w appears explicitly.
As indicated in (3.281) the r" r are defined by

n

r = 11(-y~U,,),
r=l

(2.2a, b)

where "I~ (" = 0,1,2,3; s = 1,2, ... ,n), are Dirae "1 matrices assoeiated with partic1e s,
and u~ is an appropriate unit time-like four vector. Repeated l' means summation over
its values.
Furthermore

where

n

"\'"jJ = n-1¿XJJS,

s=1

/ . -1},
PJ15 = pJu - n Ji'

n

P~= ¿p,,,,
$::;::1

(2.3a,b)

(2.4a,b)

with p'" l' = 0, 1,2,3, being the total energy-molllentulll four vector, and X~ the eenter
of mass position four vector (recall that all the Illasses are assullled to be equal to one).
\Ve shall now generalize Eq. (2.1) in two ways. First we can replace the w common to

all the partic1es by w" i.e., a different frequency for each partic1e, which does not spoil
the Poincaré invariance. Furthermore, to have a single time in our final equation in the
eenter of mass frame we replaee x~, by its transverse part i~" ¡.e.,

(2.5)

so that finally we get the equation

\Ve now proceed as in (3.341) giving to u,• the dynalllical IIlcaning

(2.6)

U~ = (P,./ P), (2.7)
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which implies lhallhe unillime like four veClor u" lakes lhe form (1,0,0,0) in lhe frame
of reference where lhe cenler of mass is al reslo I3y an analysis similar lO lhe one given in
Ref. [9]' Eq. (2.6) in lhis frame lakes lhe form

{ _po +t [a,. (p~- ;w,x~B) + ,8,] } 1/1 = O, (2.8)

where we expressed lhe lime-like componenl of lhe lolal four momenla in ils conlravarianl
form using the metric

9¡w = O, /f ¥ v, 91 I = 922 = 933 = -900 = 1,

and lhe B is given by

n

r=l

(2.9)

(2.10)

The eigenvallle of pO is lhe lolal energy of lhe n-parlic!e syslem wilh Dirac oscillalor
inleraclions and we designale il by 1', as il can be interpreled as the mass associated wilh
lhe slales.

3. TIIE PAItTICLE-ANTIPARTICLE SYSTEM WITII A DIHAC OSCILLATOIt INTERACTlON

\Ve now reslricl ollrselves lo lhe lwo-body pal'lic!e-anlipal'lic!e syslem. As we show in
Refs. [5,61 lhis illlplies lhal if we take lhe fl'equency WI = w fol' lhe parlic!e we have lo
take w2 = -w for lhe anliparlic!e juSl as we have the charge e fol' the electron and -e fol'
the posill'On. Not,ing now that P = PI + P2, X = t(XI + X2) and defining

Equalion (2.8) becomes

,_ I ( )P = 7z PI - P2 , (3.1 )

where al, a2, ,81,,82 al'e lhe direct products (4.21) which can also be wrilten in lhe 4 x 4
malrix form (4.41).
The wave function 1/1 has then also four componenls as indicaled in (4.31), i.e.,

(3.3)
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and thus Eq. (3.2) can be written as

where

. 1/2 (0'1 . r¡
IW

0'2.e

. 1/2 (0'1 . e-IW
0'2'1)

0'2 . 1) )

0'1 . e

(
1/121) = ((1' - 2)1/111)
1/112 (/1 + 2)1/122 '

(
1/111) = /1 (1/121),
1/122 1/112

(3.4a)

(3.4b)

(3.5a, b)

Multiplying (3.4a) by l' and substituting in it (3.4b) we obtain, after sorne straightfor-
ward algebra that

where

W [A D] [1/111] = [(1,2 - 21')
D A 1/122 O

O ] [1/111]
(1,2+ 21') W22'

(3.6)

A = (p2 +r2) - L. (0'1 - 0'2),

D = -2(5. p)2 + 2(5. rf + p2 - r2,

in which we use the variables

(3.7a)

(3. 7b)

(3.8a, b)

while

L = r x p, (3.8c, d)

and extensive use was made of the relations between rauli s"in matrices,

(3.9)

It is convenient, as in (4.71), to substitutc 1/111,1/122by <p+, <p- through the relatiol1

so Eq. (3.6) becomes

[
1/111] 1 [1
W22 = v'2 - 1

(3.10)

[
A - D

W O (3.11)



RADIAL EQUATION FOR TIIE PARTICLE-ANTIPARTICLE SYSTEM.. . 17

\Vriting the two equations in 4>+, 4>_ explicitly and eliminating 4>_ between them, we
obtain for 4>+, which from now on we denote simply by 4>, the equation

(3.12)

This is the equation that we obtained in Refs. [5] and [6] and were able to solve there by
a perturbation procedure starting with Ha '" (4+2Aw) whose eigenstates and eingenvalues
can be determined exactly. \Ve got then /12 as a power series in w, and we stopped at the
term with w2•
The impression we get, for w « 1 where the perturbative analysis is valid, is that

we are dealing with bound states and, in fact, if we disregard the term w2 in (3.12) the
eigenstates are those of the harmonic oscillator with spin [5,6]. \Ve shall see though, when
discussing the radial equation in the next sections, that the spectrum is continuous but
for w « 1 there are resonant states with very small width.

4. TIlE RADIAL WAVE EQUATION

From (3.7) we see that the wave Eq. (3.12) depends on the spherical coordinates r, IJ, I{J
associated with r, as well as on derivatives with respect to them and the components Si,
i = 1,2,3, of the total spin.
The solution 4> of (3.12) will also be an eigenstate of the total angular momentum

squared J2 and its projection h, where

J = L+S, (4.1 )

as the operator in the square bracket of (3.12) commutes with Ji, i = 1,2,3. Furthermore
this operator is invariant under the reflection

r -+ -r, p ---> -p, (4.2)

so that 4> will also be characterized by its parity.
\Ve denote now by the ket 1(£, S)Jm) the angular and spin part of the function 4>, i.e.,

(4.3)
p,U

where ( 1 ) is a Clebsch-Gordan coefficient, YLp (with £ = j :!: 1 or J) is a spherical
harmonic, and Xs. the spin part of the wave function where S = Oor 1.
From the integrals of motion mentioned above, the Eq. (3.12) admits two types of

solutions, one of the form

4> = ,.-1fa(r)I(J, O)Jm) + ,.-1f¡(r)l(J, 1)Jm), (4.4)
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which has parity (_l)J, while the other is

<p = r-1 I+(T)I(J + 1, l)Jm) + r-1 1-(r)I(J - 1, l)Jm), (4.5)

with parity _(_l)J. The functions lo(r), f¡(r) or I+(r), I-(r), will be determined by
radial matrix equations, and we shall proceed to derive the one for 15(r), S = O, l.
\Ve note that for our purpose we require the matrix elements

((L', S')JmIMI(L, S)Jm), (4.6)

where M is either A, D given in (3.7). These matrix elements, besides being functions of
r, will also depend on the derivative (d/dr) as the operator p = -i"l appears in A, D.
We shall proceed to give all the matrix elements we require for the case when the parity
of our state is (_l)J, i.e., when L = L' = J and S = Oor 1:

((J,S')Jmlr21(J,S)Jm) = 855,r2,

('121 ) [ld2d J(J+1)](J,S )Jm p (J,S)Jm = 855, - r2 drr dr + r2 '

((J, S')JmIL. (0'1 - U2*J, S)Jm) = -H1 - (_1)5+5'] [J(J + 1)r/
2
,

(
1 1 21 ) [ 1 d 2 d J(J + 1)](J, S )Jm (5. p) (J, S)Jm = 85'18S1 - r2 dr r dr + r2 '

((J,S')Jml(5. rfl(J,S)Jm) = 85'1851r2.

(4.7a)

(4.7b)

(4.7c)

(4.7d)

(4.7e)

The matrix element (4.7a) is trivial, the one in (4.7b) follows from the expression of
the Laplacian in spherical coordinate and the definition (4.3) of the ket I(L, S)Jm}. The
value (4.7c) can be obtained from simple considerations ofRacah algebra [5,61. The matrix
elements (4.7d, e) can be written as

1

= 2: ((J, S')JmI5. wl(J + r, l)Jm)((J + r, 1)Jm15 . wl(J, S)Jm), (4.8)
T=-l

where w is either r or p. The intermediate states on the left hand side of (4.8) have to be
of opposite parity as w is a polar vector, and thus are restricted to I(J :l::1, l)Jm}. The
matrix elements of (5. w) with w = r or pare discussed in the Appendix and from them
and (4.8) we get the results (4.7d,e).
Equation (3.12) becomes then a radial matrix equation of the form

(4.9)
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where A, D are 2 x 2 matrices of the forl11

{1(J+I)}1/2] ,
71'2+ 1'2

where

[
71'2+ 1'2

A = {1(J + 1)}1/2

2 2 [1 O]D = (71' - 1') O -1 '

2 ¡J2 J(1+I)
71' = - -d,-.2+ --1'-2 -

(4.lOa)

(4.IOb)

(4.11a)

as due to the factor 1'-1 appearing in (3.4) we see that

\Vritten out explicitly, (4.9) gives rise to the two coup!ed equations

(4.11b)

{(,,2 _ 2W71'2)(,,2 _ 2w1'2) - 4,,2 +w2[J(J + 1)1}/o(1')

= 2w[J(J + 1)11/2(1,2 - 2w71'2)f¡(1'), (4.12a)

{(,,2 _ 2W1'2)(I,2 _ 2W71'2) - 4,,2 + w2[J(J + 1)1} f¡(1')

= 2w[J(J + 1))1/2(1,2 - 2w1'2)/0(1'). (4.12b)

\Ve can use (4.12b) to express /0(1') in terl11s of f¡(1'), and substituting it in (4.12a) we
finally get for f¡ (1') the equation

(4.13)

where

(4.14)

As the operators in the two curly brackets of (4.13) commute, we see that f¡(1') must
satisfy the equation

(4.15)

where we suppressed the index 1 in f¡ (1') and have either a + 01' - sigll in the last square
bracket, and 71'2is given by (4.lla). Qnce /(1'), and in the process also 1,2, have been
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Vtlf

FIGURE1. Effective potential entering Eg. (4.16). The Coulomb-like barrier at r = I'/'¡;¡:;; is
penetrable. It means that for positive energies this potential sllpports only resonant states (the
mesons).

determined, then fo(r) can be derived from (4.12b) ami thus finally <1> in (4.4) can be
obtained explicitly.
A similar analysis can be carried out for the state (4.5) of parity -( _1)J but the results

are more complicated and we leave them for a future analysis.
Equation (4.15) may be rewritten in the following Schrüdinger-like formo

(4.16)

where we substituted f by 1/J and which has the interesting property that the effective
potential depends on the eigenvalue of the equation. \Ve shall look for solutions of (4.16)
which go to zero as r --> O. Let us suppose /12 > O. The effective potential entering (4.16)
is schematically drawn in Fig. 1. The regions r < /1/V2W and r > /1/V2W are separated
by a Coulomb-like barrier which is penetrable [121. Consequently, the spectrum of the
Hamiltonian for "positive energies", 1,2 > O, is continuous. Nevertheless, as in any barrier
problem, there are solutions of (4.16) corresponding to resonant states. \Ve shall identify
these resollant state of a quark and an antiquark with the mesons. The resonant energies
are commonly obtained from the asymptotic behaviour of (he wave function at large
distances:

(4.17)

as the complex solutions of the equation B(k) = O.
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The resonant states are mainly eonfined to the regio n r2 < 1l2/2w. So, the seeond
interesting property of Eq. (4.16) to he stressed is that it prediets strong interaetion
radii of hadrons to he of lhe order of !(Tte/me2)I'/V2W (in ordinary units). Using thal
he", 0.2 GeV-fm and given 11lin GeV we get the rough eSlimale for lhe radius

0.1 11R", - -- fm.11lV2W

Lel us now lurn lo lhe analysis of lhe speelrum of resonant slales.

(4.18)

5. ApPIlOXI~lATE SOLUTIOl\" OF TIIE IlAIlIAL EQUATION BY ~IEANS OF TIIE I/N-METIIOD

As mentioned aho\'e, lhe speelrum of resonant levels in Eq. (4.16) eould be oblained by
rcquiring thc ",ave fUllctiou in r > Jl/.J2:J to be au ollt{'oming wave and looking for SOl11-
tions in lhe eomplex I'-plane. This is, however, a eOlllplicated proeedure. \Ve will make use
of a non- perlurhalive analylieal lIIetllOd eonsisling in \Vriling forlllally in D dimensions
lhe Lap!aeian enlering lhis e'Iualion and using (D + 2J)-1 as an expansion parameter
(see, fOl"cxample, [la] alld references thereiu fOl"applications in Iloll-rciativistic quantum
meehanies and for lhe eompulalion of energy eigenvalues from lhe Dirae equalion in an
exlernal pOlential). \Ve shall mention lhal using this method we gel in firsl approximalion
a very loealized wave funelion. 11 means lhat in fael we are negleeling the eoupling lo
lhe disintegration ehanne! amI, eonse'luently, we \ViII oblain a real valued 11. The deeay
width lIIay be ohtained by eompuling the probahility of tunneling lhrough lhe harrier al
r < 1l/V2W.
In the presenl paper, we willuse a refined \'ersion of this melhod known as lhe shifted

I/N-expansion. \Ve start from the e'Iualion

{ __1_d_
2 + _1_ (1 __a +_1) (1 __a +_3) + _b_2(_v_) _} ¡jI = v4 1/J

N2 d1..2 4l:2 N N 4(1 - x2) 4' (5.1 )

whieh may he laken as an extension of E'I. (4.16) lo D dimensions, whieh coincides with
it at the physieal dimensions D = 3. The nolations are as follows: N = D + 2J + a,
where the magnitnde a \ViII be speeified bclow; v is related lo l' as l' = VNwv, and
r2 = (1l2/2w)x2 Finally, b(v) is defined in lhe follo\Ving way:

2v 1 ----
b(v) = r,;,--::I: - V J(J + 1),

vNow No (5.2)

where No = 3 + 2J + a.
The solulions of Eq. (5.1) lIIay be looh'd for as a power series in l/N 1/2, i.e., v = Vo+

VI/2/N1/2 + vI/N + ... , 1/) = 1/Jo + >P1/2/NI/2 + .... \Ve shall note, however, that l/N
plays in (5.1) the same role as Tt for the term _d2 /d.r2. Thus in the N ~ 00 limit we
get a dassieal problem. 111solving (5.1) we then follo\V the samc stl'ps as in a 'Iuasielassie
ea1culation of encrgy levels. Firsl, we mi1limize lhe eff,'eti\'c (elassieal) pOlential to find the
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equilibrium distance between partieles and the minimal energy. Then small oscillations
around the minimum are ineluded, which lead to corrections to the ground-state energy
and a first approximation to the excited states. After that, we inelude anharmonicities
which lead to higher-order corrections.
Thus, in the leading approximation, N ~ 00, quantum fluctuations are suppressed and

v3l4 is determined as the minimum of the effective potential

v' {1 b2 (v) }
4
0 = minU(x) = min -2 + ( O2) .4x 4 1 - x

(5.3)

This leads to transcendental equations for Vo and the position of the minimum, xo, which
may be sol ved explicitly. One obtains the following positive solutions for /10 at the physical
dimension D = 3:

Il~+)= 1 + JI + w [No + J J(J + 1)], all values of w, J: (5.4)

and

Jl~-) = 1+ JI + w [No - J J(J + 1)] , w< 4No .
J(J+l)'

(5.5)

w> 4NO
J(J+l)'

(5.6)

The square of the distance between a quark and an antiquark in this approximation is
obtained as

or, in ordinary units

2ro =

2 1 Now
Xo = 2 = -2-'

vD /10

(
0.2 GeV-fm)2 No.

m 2

(5.7)

(5.8)

One shall note that ro defined in Eq. (5.8) may be taken as an estimate of the meson
diameter only if it is of the same order of magnitude as (0.2 GeV-fm/m)Jl/V2W, ¡.e., if
xo ::::1.

Thc ncxt-to-leading corrcctions to va ar(' casily computccl by writing x = IO + Y/IV1/2
and considering the small (harmonic) oscillations around the equilibrium distance xo. One
can verify that v¡/2 = O. The wave function, 1/Jo, ami V¡ are determined from the equation

{
d2 1 11 2 2a + 4 b( vo) VI} 3

--[ 2 + 'iU (xo)y - -4-2- + y'NQW (1 2) 1/Jo = VOV¡1/Jo,(y :ro OW - IO
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leading to

where ,\ is defined by

( 1) \ 2" + 4 b(vo)vl _ 3n + - ;\ - -- + ------ - VOVIl
2 4xl v'Now (1 - Xl) (5.10)

(5.11 )
2

,\ = J2U"(xo) = 2( 2)1/2.
Xo 1 - Xo

The parameter a so far has not been determined. It is fixed by the requirement that the
next-to-leading eorreetions give no eontributioll to the energy. In other words, Eqs. (5.4)-
(5.6) are re'luired to be exaet up to eorrections of order I/N2.

If we re'luire VI = O, then after some simple algebraic manipulations we are led to the
following equation for a

2+a
4(n+!) (5.12)

and the energy of the level, 1',,), with n radial 'luanta and angular momentum J is
obtained up to terms of order I/N2 from one of the E'ls. (5.4)-(5.6), with a determined
from E'l. (5.12).

Once obtained the energy (vo), we may estimate the level width in the 'luasiclassieal
(in l/N) approximation [13]

r = mOTo (5.13)

In this latter formula the 'luark mass has been explieitly written to express r in GeV.
The transmission eoefficient, T, is given by

T = exp [-2N 1:dx JU(x) - V~/4] , (5.14)

where U(x) is the potential defined in E'l. (5.3). Finally, O is the fre'lueney of periodic
motion around the minimum of U. It differs from ,\ iJl a coeffieient whieh can be easily
found with the help of E'l. (5.10) and the relation between l' and v. Indeed, the l/N
series for Ji is wriUcn as

~ (i[3 b(vo) ]-l{( 1) 2a+4}l' = v Nw + N Vo - .,fNOW 2 71+ 2 ,\ - --2- + ...
J\ow (1 - xo) 4xo

leading to

(i [ ]-1O = W v3 _ b(vo) ,\
N o v'Now(l-l.l) .

(5.15)

(5.16)
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After a bit of algebra we obtain

Putting together (5.13), (5.14) aud (5.17), we get

r = _2/l_0_lIJ__ -=;=W==exp [-2N t dx VU(x) - V~/4] .
/lo - 1 V/l5 - Now Jxo

(5.17)

(5.18)

Let us note that for Ec¡. (5.18) to hold we shall obtaiu r « 1. The integral in (5.18)
may be explicitly evaluated out to give

r _ 2110lIJ _-==w== {[llO . / 2 \' \' 1 /l_0_+_J_ll_5_-_J_'V_ow_]}- -- exp - - ViLO - J OW - J o U .
/lo - 1 V/l5 - Now W JNow

(5.19)

\Ve shall discuss below the meaning of the widths of the levels computed from (5.17). An
alternative estimation of the width of states with J = O may be obtained by computing
the transmission probability of the effective Coulomb barrier at r = /l/V2W. This has
been done iu Ref. [121.

6. COMPARISON WITII REAL MESOr-;S

Let us briefly describe tbe properties of mesons wbich follow from Eqs. (5.4)-(5.7), (5.12)
and (5.19), and compare them witb the properties ofreal mesous. I3efore doing this we wish
to stress tbat we are dealing with a one parameter (the frequency w) model tbeory, aud
so we are concerned only with the part of tbe wave fuuction dependent ou the coordinates
and ordinary spins. No mention is then made of the dominanl color inleraction, as was
done in lhe work of Codfrey and Isgur iu ReL [4]' because their model is more complex
and has mauy parameters. Furtbermore we ,hall mention some of their results [4], only
because tbe experimental iuformatiou is freC¡lleutly too small for meaningful comparisous.
The first point lo uotice is lhat in our model there is no mixing between quarks. A

flavour is <lefined by a value, lIJq, of tbe quark mass, (in CeY) and a value of tbe frequeucy,
wq• Tbis may be takeu as an approximate description of bIJ, ce and ligbt isovector mesons
in states with J = L.
So, we will consider the analogues of tbese mesons in our mode!. Let us start wilh tbe

bb. There is almost no uncertainty in the value oí mass one may assign to the b qllark. \Ve
take it from Ref. [4]' lIJb "" 4.977 CeY. Tbe frequency may be chosen to fit tbe value of a
pbysical magnitude, for example, the energy gap to tbe first excited state in tbe subsector
witb J = o. Tbis gap is expected lo be 0.58 CeY [41. So, from

(6.1 )
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FIGURE 2. Excitatioll cllcrgies of ce lllcsons. Thc bold lilles are experilllcntally observed levels,
dotled Iines correspond lo ca1cll!atiolls by Godfrey all(llsgllr [4]' while ollr mode/leve!s (the /,(+)
branch) are represenled by dashed !ines.

and particularizing to 11 = 1, J = O, one oblains Wb = 0.062. 1t means that the bb syslem
is contained in the freqnency regio n W « 1 (perturbative). In this region, a may be looked
for as a power series in w. One obtains

a = 411 + O(w), (6.2)

where O(w) means a cOrreclion or order w, and the mass speclrum coincides with the
perturbative result found in Refs. [5,6)

(6.3)

Energy differences compnted from (6.1) and lhe /,(+) brand, of (6.3) reproduce qual-
itatively the first two expected 14) (and partially observed [141) Regge trajeclories in
bottonium in the sector with J = L, ¡.e., lhose corresponding to 11 = O and 11 = 1. The
splilting of lhe two levds corresponding to a definile J is nOl, however, given by the
difference /,(+) - /1(-). In our model, this is a very slrong splilling caused by a strong
L - S coupling, while in botlonium lhe splilling is supposed lo be insignificanl 14].
The experimental data available for ce mesons in slal"s with J = O are the following.

Three lines with their corresponding widlhs have been reporled [4]: 710(2980), r = 10 MeY;
710(3950), r = 8 MeY; Xc1(351O), r = 1.3 l\leY. On the olher hand, one can gel an idea
of lhe expecled radii of tl,,'se mesons from the measured strong inleraction radius of the
J/>iJ, H2 = 0.04 fm2115). One shall note, however, thal lhe J/1/J is nol a slate wilh J = L.
In Fig. 2, excilation energies computed from Eqs. (5.4) and (5.12) are cornpared ",ith

lhe observed [14] (expecled [4]) ,'alues for ce stales ",ilh J = L. The ma$S me = 1.628 GcV
has been laken from Hef. 14), while the frequency We has again been chosen lo fit lhe energy
gap in the subsector with J = O (0.61 GeY). \Ve oblained We = 0.235.
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FIGURE 3. The same as Fig. 2 for isovcctor mesons, out in this case dashed Hnes represent levels
calculated from the 1'(-) branci" except that the (wo terms of the n = O, J = 1 doublet are drawn.

The radius of the l1e(2980) eomputed from Eq. (4.18) is shown to be R", = 0.21 fm, a
very reasonable value. One shal! note that for charmouium (and also for bottonium), the
Xo defined in Eq. (5.7) is a very smal! magnitude as compared with the diameter of the
regio n where the meson lives unti! it decays, ¡.e., Xo « 1, and thus this value can not be
used to estimate the meso n diameter.

The experimental excitation energies of ] = L isoveetor resonanees are represented
in Fig. 3 [141. Missing states (dotted lines) are taken from Ref. [41. Dashed lines are the
results of our calculations.

In the present case, the uncertainty in the mass of the u quark is very high, and we take
it as a free parameter together with the frequeucy Wu to fit two experimental!y observed
magnitudes: the energy gap (1.162 GeV) in the subsector with ] = O, and the pion radius
R~= 0.64 fm. \Ve estimated the radius as half the ro given in Eq. (5.8). One obtains

Inu = 0.242 GeV,

Wu = 7.48.

(6.4)

(6.5)

As may be seen, light mesons are containcd in the highly non perturbative regio n
w » 1. In this frequency range sorne intcresting phenomena take place. For example, the
branches 1,(+) an<ll'(-) change their relative position, ¡.e., 1'(-) is higher in energy than
1'(+). Somcthing analogous to this is experimcntally observed at least in ] = 1 states, in
which ]PC = 1+- states are lower in energy than 1++ contrary to what is expected in



(6.6)
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charmollium: 1+- > 1++ [41. So, in Fig. 3 we drew the 1'(-) branch except for the doublet
in J = 1, n = O for which both branches are represented.

Concerning the radii of light mesons, we shall make a remark. \Ve choose mu to fit R"
but E<¡. (5.8) contains more illformation than a simple number. From E<¡. (5.8) we obtain
for the radius

2 _ 0.01 (3 + 2J '=-) f 2Rqq - 2 --- + m .
mq 2 2

E<¡uation (6.6) reproduces <¡ualitatively the kllown properties of strong interaction radii
of light mesons [151. the main contribution to R~q' ¡.e., the terIn ~ + J, is independent of
the interaction potential (of w). In non relativistic potential models, an analogous term
is usually interpreted as a relativistic smearing of <¡uark coordillates. A soft dependence
on w comes from a and corresponds in potentia! models to the radius computed from the
wave function.

The law (5.19) does not gh'e the experimentally observed widlhs of bIJ, ce and light
isovector Illesons, bu! it leads to a qualitativcly eOlTt'ct depclldencc of r 011 the quark
flavour. Indeed, according lo Ec¡. (5.19) we oblain that r should increase as w is increased,
becomillg evell grealer lhan l' for uu mesons.

7. CONCLUDING HEMAHI\S

The main result of the present papel' is the <¡ualitative picture of mesons following
from E<¡. (4.16): mesons are resonallt states mainly confined to a regio n of s<¡uared radius
(0.01/m2)(I,2/2w) fm2

\Ve compared the properties of our bIJ, ce and U1l model mesons with the properties of
real mcsons. To achicvc this goal, \Ve dctcl"millcd tIte qllark paramctcr, wq1 as lo fit the
values of all observable magllitude, for eX<lmple the energy gap in the subsector J = O.This
is, of cnurse, a rough proccd urc bccausc \Ve are working in a zCl'oth arder approximatiol1,
without realistic alld hyperfine and other forces.

\Ve obtained reasonable values for the radii of the studied mesons. For light mesons,
we obtained an expression for the radius which reproduces what is known about strong
interaction radii of hadrons [15).

Excitation energies of states with J = L were calculated by using mass formulae ob-
tained by means of the I/N-expansion. The agreement with experiment is only <¡ualitative
dne to the fact that the forces acting in the model are not realistic. In particular, the
splitting of the doublets in subsectors with J > O is exccssive. However, sorne <¡ualitative
properties are correctly reproduced. For example, the fact that the branches 1'(+) and
1'(-) change their relative position as we go from w « 1 (heavy <¡uarkonia) to w » 1
(light mesons) seems to have its analogue in the spectra of real mesons.

\Ve shall note that we found no conditions under which the brandl 1'(-) may be replaced
by jI. Even in light mesons the inequality w > 4No/J(J + 1) is not fulfilled.

\Ve estimatcd the level width by computing the quasiclassical (in 1/ N) transmission
probability of the barrier at x = 1. This leads to qualitatively correct predictions, for ex-
ample that heavy mesons have smaller widths (aceording to the law r ""2mw exp( -4/w),
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where w decreases as m is increased). 13ut the mlues we obtain for r are far from the real
ones. This is due to the majar role played by the vaCuulll in the decay of a mesan, which
is not taken into account in the two-particle equation (4.16). In particular, we obtain that
every mesan is unstable (against to it, disintegration into q and ij), while in reality the
meson may be stabilized because of the lack of final states for its decay to proceed.
We see that further developments of the present work could go along two directions.

The first is to carry out the zeroth-order analysis for J = L :l: 1 states, and the second.
to include realistic forces. 130th seem to be very promising.
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ApPENDIX

We shall indicate in this Appendix ho\\' to evaluate the matrix demcnls of w . S. w = r
ar p, appearing on the right hand side of (4.8).
Frolll Racah's analysis 1161 \\'e have that

((L',S')Jmlw' SI(L,S)Jm) = (_I)L'+S-JW(LL'SS'; IJ)(L'IHIL)(S'IISIIS), (,1..1)

where W is a Racah coefficient aud (L'lIwIIL), (S'IISIIS) are thc rcduccd matrix demcnts
of the vector operators w, S respcctivdy.
It is wcll known [16] that

(S'IISIIS) = ós's[S(S + 1)]1/2,

(L'llrIIL) = Ól/¡.+l'-V:~:13 - bL'L-1rJ 2LI~ l'

011 thc other hand, in another pllblication [17] it was found that

FE .(d L+1)-61/1--1 (-1) -+--.
2L - 1 dI' r

(,1..2)

(,1..3)

(,1..4)
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Cornbining aH of these results we get the foHowing rnatrix elernents for r. S and p . S:
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