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ABSTRACT. A relativistic equation for a particle-antiparticle system with a Dirac oscillator inter-
action was derived in previous publications and solved by a perturbative procedure which led to
a spectrum of bound states. In this paper we derived a radial equation for the system in question
and show that, contrary to the perturbative analysis, it gives rise to a continuous spectrum but in
which there are resonant states, i.e., those purely outgoing for certain complex energies, and we
derived the latter by means of the 1/N expansion method. The spectrum of excitation energies, the
strong interaction radii, and the decay widths of the resonant states of our model are calculated
and compared with the corresponding experimental magnitudes for mesons with a pure quark
composition and total angular momentum J = L. The emerging picture of Dirac oscillator mesons
seems to be in qualitative agreement with meson phenomenology.

RESUMEN. Una ecuacidn relativista para un sistema de particula-antiparticula con una interaccién
de oscilador de Dirac fue derivada en una publicacién previa y resuelta por un método perturbativo
que lleva a un espectro de estados ligados. En este articulo derivamos la ecuacién radial del sistema
en cuestién y mostramos que, en contradiccién con el andlisis perturbativo, da lugar a un espectro
continuo en el cual hay estados resonantes, esto es, aquellos puramente salientes para algunas
energias complejas, y derivamos estos ultimos por el método de expansiéon 1/N. El espectro
de energias de excitacién, los radios de interaccién fuerte y las anchuras de decaimiento fueron
calculados y comparados con las magnitudes experimentales correspondientes para mesones de
una composicién pura de quarks y de momento angular J = L. La impresion que emerge es que
los mesones basados en el oscilador de Dirac tienen un acuerdo cualitativo con la fenomenologia
mesonica.

PACS: 11.10.Qr; 12.70.4+q

1. INTRODUCTION AND SUMMARY

At the present time we expect hadrons to be the asymptotic scattering state of quantum
chromodynamics, the field theory of strong interaction. However, we are not able to com-
pute the S—matrix of QCD. As a consequence, the existing approaches to obtain hadron
properties are either very qualitative (for example, the 1/N.~expansion in QCD [1,2]), or
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approximate numerical (lattice calculation [3], for instance), or phenomenological QCD-
based approaches. The latter constitute in fact the basis for the current classification
of hadron resonances and computation of static properties of hadrons (see, for example,
Ref. [4]).

In the present paper, we study a relativistic model in which the properties of mesons
may be explicitly computed. The aim is not to describe real mesons, but to gain in the
qualitative understanding of mesons properties. In fact, some aspects of the model are
very unrealistic: the interaction is local and not field-mediated, the spin-orbit coupling is
excessively strong, and there is no mixing between mesons with different quark composi-
tion.

Our starting point is a Poincaré invariant two-particle equation obtained previously
in Refs. [5,6] for the particle-antiparticle system with a Dirac-oscillator interaction. The
conserved quantum numbers in the theory are J —the total angular momentum—, and
the parity. Besides, there is only one free parameter in the model, the oscillator frequency,
w (in units of the quark mass). For states with parity (—1)% = (=1)’ the above mentioned
equation is reduced to one radial Schriodinger-like equation with an eigenvalue-dependent
potential.

The solutions of this radial equation exhibit many of the properties of real mesons.
Indeed, all states are shown to be resonances, with decay widths that decrease with the
increasing of the quark mass, strong interaction radii for light mesons are proportional to
the inverse quark mass and show a very soft dependence on the interaction potential, etc.

Few-particle systems with a Dirac-oscillator interaction were considered previously in
Refs. [7-9,5,6]. The first example in which the Dirac oscillator was used was the case of
three quarks, i.e. the mass spectra of baryons [7,8]. In Ref. [9] the two-body problem
was introduced as an example for anomalous representation of the Poincaré group. The
particle-antiparticle system was studied in [5,6] by means of a perturbative (in w) pro-
cedure. As will be seen below, the small-w region corresponds to heavy mesons for which
relativistic effects are not so important. In the present paper we extend the analysis of
Refs. [5,6] to the whole range of variation of w by means of a nonperturbative method,
the 1/N-expansion, which was previously applied to other few-body problems [10].

We start in Sect. 2 by generalizing the Poincaré invariant equation for a system of
n-bodies with Dirac oscillator interaction, and restrict it then to a particle-antiparticle
system. In Sect. 3 we consider the equation in the frame of reference where the center of
mass is at rest and reduce it from four to a single component. In Sect. 4 we obtain the
corresponding radial equation in states with parity (—=1)X = (=1)7, which is further solved
approximately by means of the 1/N-method in Sect. 5. Comparison with real mesons is
presented in Sect. 6. Concluding remarks are given at the end of the paper.

2. GENERALIZATION OF THE POINCARE INVARIANT n—BODY EQUATION WITH DIRAC
OSCILLATOR INTERACTIONS

In Ref. [9], to whose equations we shall refer with the addition of a roman I, we followed
a reasoning developed by Barut et al. [11] to derive a single Poincaré invariant equation
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for n—particles with a Dirac oscillator interaction of the form

{n“ Y To(vP) + ) T (44 (B — iwz), D) + 1] } P =0, (2.1)
s=1

s=1

which differs from Eq. (3.37I) by the fact that we take now relativistic units in which &,
the mass of the particle m and velocity of light ¢ are 1, while the frequency of the Dirac

oscillator w appears explicitly.
As indicated in (3.281) the 'y, [' are defined by

n

[, =(y¥u,)"T, TI= H(vfuu), (2.2a,b)

=1

where 74 (1 =0,1,2,3; s = 1,2,...,n), are Dirac v matrices associated with particle s,
and u, is an appropriate unit time-like four vector. Repeated p means summation over
its values.

Furthermore
st =Tus — X,m PLS = Pus — n—lp““ (2.3a,b)
where
T n
X# = n_l Zx,um P,u = Z‘Dﬂs, (‘24a,b)
s=1 s=1

with P, p = 0,1,2,3, being the total energy-momentum four vector, and X, the center
of mass position four vector (recall that all the masses are assumed to be equal to one).

We shall now generalize Eq. (2.1) in two ways. First we can replace the w common to
all the particles by ws, i.e., a different frequency for each particle, which does not spoil
the Poincaré invariance. Furthermore, to have a single time in our final equation in the

center of mass frame we replace z,,, by its transverse part Biyy ey
'i',rus = 37;13 = (PUILs)Py(PTPT)_Iu (2.5)

so that finally we get the equation

n n
{n‘ > T(vpm+ N T [l — e, 1) + 1] } Y = 0. (2.6)
s=1

s=1

We now proceed as in (3.341) giving to u, the dynamical meaning

u, = (Py/P), P = (-P,PH)/? (2.7)
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which implies that the unit time like four vector u, takes the form (1,0,0,0) in the frame
of reference where the center of mass is at rest. By an analysis similar to the one given in
Ref. (9], Eq. (2.6) in this frame takes the form

{—P" + > [os (P} —iweX,B) + 8] ¥ =0, (2.8)
s=1

where we expressed the time-like component of the total four momenta in its contravariant
form using the metric

9w =0, p#v, gn=gn=gs=—g0 =1, (2.9)

and the B is given by
B=[]#8 (2.10)

The eigenvalue of P? is the total energy of the n—particle system with Dirac oscillator
interactions and we designate it by u, as it can be interpreted as the mass associated with
the states.

3. THE PARTICLE-ANTIPARTICLE SYSTEM WITH A DIRAC OSCILLATOR INTERACTION

We now restrict ourselves to the two-body particle-antiparticle system. As we show in
Refs. [5,6] this implies that if we take the frequency w; = w for the particle we have to
take wy = —w for the antiparticle just as we have the charge e for the electron and —e for
the positron. Noting now that P = p; + po, X = %(xl + x2) and defining

X %(Xl - X2), p = 7172'(131 — Pali (3.1)
Equation (2.8) becomes
{Grle ey o —iv [B@+a) ¥ Brm+ Blv=pu, (2

where ay, az, (i, #; are the direct products (4.2I) which can also be written in the 4 x 4
matrix form (4.4I).
The wave function ¢ has then also four components as indicated in (4.31), 1.e.,

Y11
_ | ¥
w - wlz L] (33)

Y92
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and thus Eq. (3.2) can be written as

qp o o€ (V) _ [ (k-2)¥n
" (0'2‘5 0’1'71) (U’lz) ((#‘F?)%z)’ (3.42)
(o€ oM Y11\ _ Y21
" (0’2-7] 0'1'5) (%2)_“(1/}12)' R
where
n = %(wmx' —iw™2p"), Fe= %(wmx' +iw™2p'). (3i5a, b)

Multiplying (3.4a) by u and substituting in it (3.4b) we obtain, after some straightfor-
ward algebra that

o5 )= [ wlw]ll] oo

where
A= +1%) —L-(0y — 02), (3.7a)
D=-2S-p)2+2S-r)?+p* 1% (3.7b)

in which we use the variables
r = w2, p= w Mrp!, (3.8a,b)
while
L= p) 8 = -1:;(0'1+o'2), (3.8¢,d)
and extensive use was made of the relations between Pauli spin matrices,
0i0j = bij + 1€ijk0k- (3.9)

It is convenient, as in (4.71), to substitute 11, ¥22 by ¢4, ¢ through the relation

Y| _ 1|1 1| |4
] =2 3 [&): o
so Eq. (3.6) becomes

A-D 0 ¢ 2 _oullée
AP o) (][5 ] e
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Writing the two equations in ¢4, ¢_ explicitly and eliminating ¢_ between them, we
obtain for ¢4, which from now on we denote simply by ¢, the equation

[1* = (4 4 24w)p® + w* (A + D)(A - D)]¢ =0. (3.12)

This is the equation that we obtained in Refs. [5] and [6] and were able to solve there by
a perturbation procedure starting with Hy = (4+2Aw) whose eigenstates and eingenvalues
can be determined exactly. We got then p? as a power series in w, and we stopped at the
term with w?.

The impression we get, for w <« 1 where the perturbative analysis is valid, is that
we are dealing with bound states and, in fact, if we disregard the term w? in (3.12) the
eigenstates are those of the harmonic oscillator with spin [5,6]. We shall see though, when
discussing the radial equation in the next sections, that the spectrum is continuous but
for w <« 1 there are resonant states with very small width.

4. THE RADIAL WAVE EQUATION

From (3.7) we see that the wave Eq. (3.12) depends on the spherical coordinates 7, 8, ¢
associated with r, as well as on derivatives with respect to them and the components ;,
1 =1,2,3, of the total spin.

The solution ¢ of (3.12) will also be an eigenstate of the total angular momentum
squared J? and its projection J3, where

J=L+S§, (4.1)

as the operator in the square bracket of (3.12) commutes with J;, i = 1,2, 3. Furthermore
this operator is invariant under the reflection

r— —r, P =Py (42)

so that ¢ will also be characterized by its parity.
We denote now by the ket |(L, S)Jm) the angular and spin part of the function ¢, i.e.,

(L, 8)Tm) = 3 (L, SolJm) Y1, (6, p)xs. (43)

o

where (| ) is a Clebsch-Gordan coefficient, Yz, (with L = j £ 1 or J) is a spherical
harmonic, and xs, the spin part of the wave function where S = 0 or 1.

From the integrals of motion mentioned above, the Eq. (3.12) admits two types of
solutions, one of the form

¢ =171 fo(r)|(J,0)Im) + 7L f1(r)|(J,1)Im), (4.4)
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which has parity (—1)”, while the other is
=17 fr(M|(J+1,1)Im) + 7 f_(r)|(J - 1,1)Im), (4.5)

with parity —(=1)7. The functions fo(r), fi(r) or f+(r), f-(r), will be determined by
radial matrix equations, and we shall proceed to derive the one for fs(r), S =0,1.
We note that for our purpose we require the matrix elements

(L', 8")Im|M|(L, S)Jm), (4.6)

where M is either A, D given in (3.7). These matrix elements, besides being functions of
r, will also depend on the derivative (d/dr) as the operator p = —iV appears in A, D.
We shall proceed to give all the matrix elements we require for the case when the parity
of our state is (=1)?, i.e., when L=L'=J and S=0or 1:

((J,8")Jm|r?|(J, §)Jm) = 8ss:7?, (4.7a)

J(J +1)

= , (4.7b)

1d ,d
(0. 5ml5?| (2. 51Im) = b |~y ger? o+

((J,8)Im|L - (01 = 02)| (4, S)Im) = ~3[1 = (1] (7T + 1]"%, (@7c)

((J,8)Im](S - p)|(J, §)Jm) = 651651 [—:—Q%H% + i”:_—;fi)} , (4.7d)

((J,8")Jm|(S - r)?|(J, 8)Im) = ésnbs1r?. (4.7¢)

The matrix element (4.7a) is trivial, the one in (4.7b) follows from the expression of
the Laplacian in spherical coordinate and the definition (4.3) of the ket |(L,S)Jm). The
value (4.7¢) can be obtained from simple considerations of Racah algebra [5,6]. The matrix
elements (4.7d,e) can be written as

((J,8")Jm|(8 - w)?|(J, §)Im)

1
= Y {((4,8)Im|S - w|(J +7,1)Im){(J + 7,1)Jm|S - w|(J, S)Jm), (4.8)

T=-1

where w is either r or p. The intermediate states on the left hand side of (4.8) have to be
of opposite parity as w is a polar vector, and thus are restricted to |(J £1,1)Jm). The
matrix elements of (S-w) with w = r or p are discussed in the Appendix and from them
and (4.8) we get the results (4.7d,e).

Equation (3.12) becomes then a radial matrix equation of the form

{#4_(4+2Aw)“2 +w2(A+D)(A—D)} [J;TE:;] = 0, (4.9)
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where A, D are 2 x 2 matrices of the form

A w4 y {J(J +1)} , (4.10a)
{J(J +1)} 7?45
b will W
D= (r"-r%) {0 _1] , (4.10b)
where
d* J(J+1)
2
= —Eﬁ T—Q! (4113.)
as due to the factor r~! appearing in (3.4) we see that
1d ,dY\ fs(r)  1d*fs(r)
a (r_“’drr dr) ro o dr? AL

Written out explicitly, (4.9) gives rise to the two coupled equations
{(u? = 20m?) (2 — 20r%) = 4422 + LI + D]} folr)
= 2w[J(J + D]V (p? - 2wn?) fi(7), (4.12a)
{(1® = 2wr?)(u® - 2wn?) — 4p? + W2[J(J + )]} fi(r)
= 20[J(J + )]V (u? - 2wr?) fo(r). (4.12b)

We can use (4.12b) to express fo(r) in terms of fi(r), and substituting it in (4.12a) we
finally get for fi(r) the equation

{o — [2n + wI*(J + 1)”2]2} {o - [2n - wIVA(J + 1)1/2]2} filr)=0, (4.13)
where
O = (u? — 2wr?)(p? - 2wr?). (4.14)

As the operators in the two curly brackets of (4.13) commute, we see that f1(r) must
satisfy the equation

{(#2 — 2ur?) (W - 2wr?) — [2p £ wI V(T + 1)1/2]2} F(r) =0, (4.15)

where we suppressed the index 1 in f,(r) and have cither a + or — sign in the last square
bracket, and 7% is given by (4.11a). Once f(r), and in the process also u?, have been
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FIGURE 1. Effective potential entering Eq. (4.16). The Coulomb-like barrier at r = p/v2w is
penetrable. It means that for positive energies this potential supports only resonant states (the
mesons).

determined, then fo(r) can be derived from (4.12b) and thus finally ¢ in (4.4) can be
obtained explicitly.

A similar analysis can be carried out for the state (4.5) of parity —(=1)’ but the results
are more complicated and we leave them for a future analysis.

Equation (4.15) may be rewritten in the following Schrodinger-like form:

2
ﬂ_+ﬂJ+U [Mwi%JﬂJ+U] 2

S = — 4.16
dr? = u? /2w — r? v wa’ i)

where we substituted f by % and which has the interesting property that the effective
potential depends on the eigenvalue of the equation. We shall look for solutions of (4.16)
which go to zero as r — 0. Let us suppose 1?2 > 0. The effective potential entering (4.16)
is schematically drawn in Fig. 1. The regions r < i/vV2w and r > /2w are separated
by a Coulomb-like barrier which is penetrable [12]. Consequently, the spectrum of the
Hamiltonian for “positive energies”, u? > 0, is continuous. Nevertheless, as in any barrier
problem, there are solutions of (4.16) corresponding to resonant states. We shall identify
these resohant state of a quark and an antiquark with the mesons. The resonant energies
are commonly obtained from the asymptotic behaviour of the wave function at large
distances:

=~ A(k)e* + B(k)e ™, kP =, (4.17)

as the complex solutions of the equation B(k) = 0.
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The resonant states are mainly confined to the region r> < p?/2w. So, the second
interesting property of Eq. (4.16) to be stressed is that it predicts strong interaction
radii of hadrons to be of the order of }(fic/me?)u/v/2w (in ordinary units). Using that
he =~ 0.2 GeV-fm and given m in GeV we get the rough estimate for the radius

R~ —— fm. (4.18)

Let us now turn to the analysis of the spectrum of resonant states.

5. APPROXIMATE SOLUTION OF THE RADIAL EQUATION BY MEANS OF THE 1/N-METHOD

As mentioned above, the spectrum of resonant levels in Eq. (4.16) could be obtained by
requiring the wave function in » > u/v/2w to be an outcoming wave and looking for solu-
tions in the complex p-plane. This is, however, a complicated procedure. We will make use
of a non- perturbative analytical method consisting in writing formally in D dimensions
the Laplacian entering this equation and using (D + 2J)~! as an expansion parameter
(see, for example, [10] and references therein for applications in non-relativistic quantum
mechanics and for the computation of energy eigenvalues from the Dirac equation in an
external potential). We shall mention that using this method we get in first approximation
a very localized wave function. It means that in fact we are neglecting the coupling to
the disintegration channel and, consequently, we will obtain a real valued i. The decay
width may be obtained by computing the probability of tunneling through the barrier at
r< p/V2w.

In the present paper, we will use a refined version of this method known as the shifted
1/N-expansion. We start from the equation

1 d? 1 a+1 a+3 b (v) I/4[
{—j—\ﬁmﬂ'-ci—x-?-(l— N ) (I_T)+m TJ’—TW, (51)

which may be taken as an extension of Eq. (4.16) to D dimensions, which coincides with
it at the physical dimensions D = 3. The notations are as follows: N = D + 2J + a;
where the magnitude a will be specified below; v is related to was p = vNwr, and
r? = (12 /2w)z?. Finally, b(v) is defined in the following way:

2v 1
b(v) = \/m:i:m\/.](‘]+1), (5.2)

where Ng =3 + 2J +a.

The solutions of Eq. (5.1) may be looked for as a power series in 1/N1/2 je v = vy +
ul/Q/Ni/Q +vi/N + - = g + 1‘[)1/2/]\’1/2 + ---. We shall note, however, that 1/N
plays in (5.1) the same role as & for the term —d?/d2?. Thus in the N — oo limit we
get a classical problem. In solving (5.1) we then follow the same steps as in a quasiclassic
calculation of energy levels. First, we minimize the effective (classical) potential to find the
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equilibrium distance between particles and the minimal energy. Then small oscillations
around the minimum are included, which lead to corrections to the ground-state energy
and a first approximation to the excited states. After that, we include anharmonicities
which lead to higher-order corrections.

Thus, in the leading approximation, N — oo, quantum fluctuations are suppressed and
v§ /4 is determined as the minimum of the effective potential

v 1 b?
-‘f:minU(:ﬁ)=min{ZE§+4(1—(_W;)T)}. (5.3)

This leads to transcendental equations for vy and the position of the minimum, zg, which

may be solved explicitly. One obtains the following positive solutions for g at the physical
dimension D = 3:

#g+) = \/1 +w {No'i‘ VI + 1)], all values of w, J; (5.4)

pg_)=l+\/l+w[N0—\/J(.]-}-l)], w<3(;%1 (5.5)

and

;10:—1+\/1+w[N0+\/J(J+1)], w>%. (5.6)

The square of the distance between a quark and an antiquark in this approximation is
obtained as

:cg = = —, (5.7)
or, in ordinary units

r (5.8)

B (0.2 GeV—fm)2 No

m 2

One shall note that 7o defined in Eq. (5.8) may be taken as an estimate of the meson
diameter only if it is of the same order of magnitude as (0.2 GeV-fm/m)u/V2w, i.e., if
Ig ~ &

The next-to-leading corrections to v are easily computed by writing z = o + y/Nl/2
and considering the small (harmonic) oscillations around the equilibrium distance zg. One
can verify that vy, = 0. The wave function, 1, and v| are determined from the equation

2a + 4 + b(vp)y
4x3 VvV Now (1 — z3)

}1.1)0 = v, (5.9)

d2 1yt 2
—@2"*' U (zo)y” —
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leading to
2a + 4 b(vo )i 3
‘l A A = 1y, 5.10)
(n+3) dzg  VNow(1 -z} R (
where A is defined by
2
— JSormn e T 9.11

The parameter a so far has not been determined. It is fixed by the requirement that the
next-to-leading corrections give no contribution to the energy. In other words, Eqs. (5.4)-
(5.6) are required to be exact up to corrections of order 1/N2,

If we require v; = 0, then after some simple algebraic manipulations we are led to the
following equation for a

5 =L
2+a 24a 1o

-1 = — % 5.12
e+ ) (4(“%)) 0T Ve o

and the energy of the level, j,;, with n radial quanta and angular momentum J is
obtained up to terms of order 1/N? from one of the Egs. (5.4)-(5.6), with a determined
from Eq. (5.12).

Once obtained the energy (1), we may estimate the level width in the quasiclassical
(in 1/N) approximation [13]

I' =mQT. (5.13)

In this latter formula the quark mass has been explicitly written to express I' in GeV.
The transmission coefficient, T, is given by

1
T =wip [—QN/ dr \/U(:L‘)—Vg/‘lJ ; (5.14)

where U(z) is the potential defined in Eq. (5.3). Finally, Q is the frequency of periodic
motion around the minimum of U. It differs from A in a coefficient which can be easily
found with the help of Eq. (5.10) and the relation between fo and v. Indeed, the 1/N
series for u is written as

b - 2a +4
u=\/N_w+\/%[ug—~*——ma((?)_Ig)J {(n+%))~—%}+--- (5.15)

leading to

_Je s bw) 17
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After a bit of algebra we obtain

2
(= 20 N (5.17)
po — 1 ],Lg — Now
Putting together (5.13), (5.14) and (5.17), we get
P b ad [ 2N/1 dz \/U(z) 4/4} (5.18)
= exp |- 5 z)— vy . .
#O“I\f,u.g—-Ngw o 0

Let us note that for Eq. (5.18) to hold we shall obtain ' « 1. The integral in (5.18)
may be explicitly evaluated out to give
2pom ++/pd — N
r= Ho = exp { — @\/,u% — Now — Ngln He o = . [(5.19)
Ho =1 \/u — Now w Now
We shall discuss below the meaning of the widths of the levels computed from (5.17). An
alternative estimation of the width of states with J = 0 may be obtained by computing

the transmission probability of the effective Coulomb barrier at r = p/v2w. This has
been done in Ref. [12].

6. COMPARISON WITH REAL MESONS

Let us briefly describe the properties of mesons which follow from Eqs. (5.4)-(5.7), (5.12)
and (5.19), and compare them with the properties of real mesons. Before doing this we wish
to stress that we are dealing with a one parameter (the frequency w) model theory, and
so we are concerned only with the part of the wave function dependent on the coordinates
and ordinary spins. No mention is then made of the dominant color interaction, as was
done in the work of Godfrey and Isgur in Ref. [4], because their model is more complex
and has many parameters. Furthermore we shall mention some of their results (4], only
because the experimental information is frequently too small for meaningful comparisons.

The first point to notice is that in our model there is no mixing between quarks. A
flavour is defined by a value, g, of the quark mass, (in GeV) and a value of the frequency,
wg. This may be taken as an approximate description of bb, c¢ and light isovector mesons
in states with J = L.

So, we will consider the analogues of these mesons in our model. Let us start with the
bb. There is almost no uncertainty in the value of mass one may assign to the b quark. We
take it from Ref. [4], mp ~ 4.977 GeV. The frequency may be chosen to fit the value of a
physical magnitude, for example, the energy gap to the first excited state in the subsector
with J = 0. This gap is expected to be 0.58 GeV [4]. So, from

QE(TL, J) = mb{un.](wb) - #00(‘-‘*’1})}1 (61)
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FIGURE 2. Excitation energies of ¢¢ mesons. The bold lines are experimentally observed levels,
dotted lines correspond to calculations by Godfrey and Isgur [4], while our model levels (the u(+)
branch) are represented by dashed lines.

and particularizing to n = 1, J = 0, one obtains wy = 0.062. It means that the bb system
is contained in the frequency region w < 1 (perturbative). In this region, a may be looked
for as a power series in w. One obtains

a=4n+ O(w), (6.2)

where O(w) means a correction or order w, and the mass spectrum coincides with the
perturbative result found in Refs. [5,6]

W =242 [3+2J+4n:t \/J(J+1)] + O@Wh). (6.3)

Energy differences computed from (6.1) and the u(*) branch of (6.3) reproduce qual-
itatively the first two expected [4] (and partially observed [14]) Regge trajectories in
bottonium in the sector with J = L, i.e., those corresponding to n = 0 and n = 1. The
splitting of the two levels corresponding to a definite J is not, however, given by the
difference u(*) — (=), In our model, this is a very strong splitting caused by a strong
L — S coupling, while in bottonium the splitting is supposed to be insignificant [4].

The experimental data available for ¢ mesons in states with J = 0 are the following.
Three lines with their corresponding widths have been reported [4]: 7,(2980), I’ = 10 MeV:
17:(3950), T' = 8 MeV; x1(3510), I' = 1.3 MeV. On the other hand, one can get an idea
of the expected radii of these mesons from the measured strong interaction radius of the
J/¢, R?* = 0.04 fm? [15]. One shall note, however, that the J/v is not a state with J = L.

In Fig. 2, excitation energies computed from Eqs. (5.4) and (5.12) are compared with
the observed [14] (expected [4]) values for cC states with J = L. The mass m, = 1.628 GeV
has been taken from Ref. [4], while the frequency w, has again been chosen to fit the energy
gap in the subsector with J = 0 (0.61 GeV). We obtained w, = 0.235.
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FIGURE 3. The same as Fig. 2 for isovector mesons, but in this case dashed lines represent levels
calculated from the u(=) branch, except that the two terms of then =0, J =1 doublet are drawn.

The radius of the 7.(2980) computed from Eq. (4.18) is shown to be Ry, = 0.21 fm, a
very reasonable value. One shall note that for charmonium (and also for bottonium), the
2o defined in Eq. (5.7) is a very small magnitude as compared with the diameter of the
region where the meson lives until it decays, t.e., To < 1, and thus this value can not be
used to estimate the meson diameter.

The experimental excitation energies of J = L isovector resonances are represented
in Fig. 3 [14]. Missing states (dotted lines) are taken from Ref. [4]. Dashed lines are the
results of our calculations.

In the present case, the uncertainty in the mass of the u quark is very high, and we take
it as a free parameter together with the frequency wy to fit two experimentally observed
magnitudes: the energy gap (1.162 GeV) in the subsector with J =0, and the pion radius
R, = 0.64 fm. We estimated the radius as half the ro given in Eq. (5.8). One obtains

m, = 0.242 GeV, (6.4)
wy = T.48. (6.5)

As may be seen, light mesons are contained in the highly non perturbative region
w > 1. In this frequency range some interesting phenomena take place. For example, the
branches u(*) and (=) change their relative position, t.e., p{=) is higher in energy than
p{+). Something analogous to this is experimentally observed at least in J = 1 states, in
which JPC = 1+ states are lower in energy than 1%+ contrary to what is expected in
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charmonium: 1*~ > 1** [4]. So, in Fig. 3 we drew the x(~) branch except for the doublet
in J = 1,n = 0 for which both branches are represented.

Concerning the radii of light mesons, we shall make a remark. We choose m, to fit R,
but Eq. (5.8) contains more information than a simple number. From Eq. (5.8) we obtain

for the radius
; 001 /3+2J «a
T 2
qu— = mﬂlg ( 5 == 5) fin®. (6.6)

Equation (6.6) reproduces qualitatively the known properties of strong interaction radii
of light mesons [15]. the main contribution to RZ;, i.e., the term 3 + J, is independent of
the interaction potential (of w). In non relativistic potential models, an analogous term
is usually interpreted as a relativistic smearing of quark coordinates. A soft dependence
on w comes from a and corresponds in potential models to the radius computed from the
wave function.

The law (5.19) does not give the experimentally observed widths of bb, ¢z and light
isovector mesons, but it leads to a qualitatively correct dependence of T' on the quark
flavour. Indeed, according to Eq. (5.19) we obtain that I should increase as w is increased,
becoming even greater than p for u&t mesons.

7. CONCLUDING REMARKS

The main result of the present paper is the qualitative picture of mesons following
from Eq. (4.16): mesons are resonant states mainly confined to a region of squared radius
(0.01/m?)(u?/2w) fm?.

We compared the properties of our bb, ¢z and i model mesons with the properties of
real mesons. To achieve this goal, we determined the quark parameter, wyq, as to fit the
values of an observable magnitude, for example the energy gap in the subsector J = 0. This
is, of course, a rough procedure because we are working in a zeroth order approximation,
without realistic and hyperfine and other forces.

We obtained reasonable values for the radii of the studied mesons. For light mesons,
we obtained an expression for the radius which reproduces what is known about strong
interaction radii of hadrons [15].

Excitation energies of states with J = L were calculated by using mass formulae ob-
tained by means of the 1/N-expansion. The agreement with experiment is only qualitative
due to the fact that the forces acting in the model are not realistic. In particular, the
splitting of the doublets in subsectors with J > 0 is excessive. However, some qualitative
properties are correctly reproduced. For example, the fact that the branches u{*) and
u{~) change their relative position as we go from w < 1 (heavy quarkonia) to w > 1
(light mesons) seems to have its analogue in the spectra of real mesons.

We shall note that we found no conditions under which the branch x(~) may be replaced
by ji. Even in light mesons the inequality w > 4Ny/J(J + 1) is not fulfilled.

We estimated the level width by computing the quasiclassical (in 1/N) transmission
probability of the barrier at z = 1. This leads to qualitatively correct predictions, for ex-
ample that heavy mesons have smaller widths (according to the law I' &~ 2mw exp(—4/w),
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where w decreases as m is increased). But the values we obtain for I' are far from the real
ones. This is due to the major role played by the vacuum in the decay of a meson, which
is not taken into account in the two-particle equation (4.16). In particular, we obtain that
every meson is unstable (against to its disintegration into ¢ and §), while in reality the
meson may be stabilized because of the lack of final states for its decay to proceed.

We see that further developments of the present work could go along two directions.
The first is to carry out the zeroth-order analysis for J = L £ 1 states, and the second,
to include realistic forces. Both seem to be very promising.
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APPENDIX

We shall indicate in this Appendix how to evaluate the matrix elements of w-S, w =r
or p, appearing on the right hand side of (4.8).
From Racah’s analysis [16] we have that

(L, §")Im|w - S|(L,8)Jm) = ()X 5=/ W(LL'SS 17)(L'||w|[L){S"[|S[|S), (A1)

where W is a Racah coefficient and (L'||w| L), (S'||S||S) are the reduced matrix elements
of the vector operators w, S respectively.
It is well known [16] that

(s'||8]|S) = bs:s[S(S + 1)), (A.2)

[ L+1 L
<L'HI'||L> =bp 417 m = OpiE=qT oL -1 (A.3)

On the other hand, in another publication [17] it was found that

! L+4+1 iL.,
(Flplln) = v -0 (3 - 5)
= 51 [1F(_ (dif # ) . (.,\.4)
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Combining all of these results we get the following matrix elements for r- S and p- S:

1/2
((J,I)Jmlp-S|(J+1,1)Jm>:i( 4 ) (d +J+2>, (A.5a)

27 + 1 dr ' r
1/2
((J,1)Jm|r-S|(J +1,1)Jm) = - (wi 1) T, (A.5b)
1/2 _ |
((L,1)Jm|p-S|(J = 1,1)Jm) =i (2“;111) (% = JT 1), (A.5¢)
1/2
((J,1)Im|r-S|(J - 1,1)Jm) = - (;;:11) 7, (A.5d)
J \" (4 J
((J+1,1)Jm|p-8|(J,1)Jm) =i(2J+1) (E‘F)’ (A.5e)
1/2
((J+l,l)Jm‘r-S|(J,1)Jm> = - (ZJ{{—I) T (A.5f)
1/2
((J—1,1)J7n|p-S}(J,1}Jm> =.i(2'{]:11) (dir+ J:I) ; (A.5g)
1/2
((J = 1,1)Jm|r - S|(J,1)Jm) = - (2{;:11) . (A.5h)
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