
Investigación Revista Mexicana de Física 40, No. 1 (J994J .U-54
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AnSTRACT. \Ve discuss the methou to construct finite-time thermodynamic potentials proposed
by Salamon, Andresen and Berry. \Ve find that this method does not lead to suitable potentials
for endoreversible thermal cyeles. \Ve propase an alternative manner to define an endorcversible
thermodynamic potential that permits to recover the appropriate endoreversible (finite-time)
efficiency for a Curzon and Ahlborn cyele. Tite proposed endoreversible potential also allows us
to obtain a generalized Clausius-Clapeyron cquatioll for a finite time liquid-vapor transition. This
procedure is equivalent to those consisting in getting a finite-time Clausius-Clapeyron cquation by
means of a generalizcd thermodynamic graphic method.

RESUMEN. Discutimos el método propuesto por Salamon, Andresen y Berry para construir
potenciales termodinámicos a tiempo finito. Encontramos que este método no conduce a potenciales
adecuados para cielos térmicos endorreversibles. Proponemos una manera alternativa para definir
un potencial termodinámico endorreversible que permite recuperar apropiadamente la eficiencia
endorreversible (a tiempo finito) de un ciclo de Curzon y Ahlborn. El potencial endorreversible
propuesto permite obtener una ecuación generalizada de Clausius-Clapeyron para una transición
líquido-vapor a tiempo finito. Este procedimiento es equivalente a aquel que consiste en la obtención
de una ecuación de Clausius-Clapeyron mediante un método gráfico generalizado.

PACS: 44,GO.+k; 44,90.+c

1. INTIlODUCTION

In the last two decades a finite-time thermodynamics (FTT) has been developed [1,7).
FTT has been conceived as an extensÍon of classical equilibrium thermodynamics (CET)
for procésses which occur endoreversibly; i.e., processes where the system undergoes in-
ternally reversible transformations, but it is irrcversibly cOllplcd with its surroundings.
Qne example of this situatÍon is attained by therIllal engines exchanging heat with suit-
able heat reservoirs [1-5]. The use of the endoreversibility conclition requires that the
internal relaxation times of the wori,illg substallee be negligibly short compared to the
time scale of the process to be considered. The FTT fOrIllalislll has been very useful for
modeling thermal engilles in a more realistic cOlltext that those models obtained frolll
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CET [6-10]. The FTT 100 deis have also permitted to obtain optimized eonfigurations
of several maeroseopie systems by eonsidering finite irreversible rate proeesses in the
eouplings between the system and its surroundings [11-15]. One of the main goals of the
FTT formalism namely to eonstruet a theoretieal framework for maeroseopie proeesses
whieh oeeur in finite-time, produeing eutropy due at least to eertain kind of irreversibilities
has been aehieved only in part. In the spirit of this objeetive, Salamon, Andresen and
Berry (SAB) published an interesting paper iI6] where they present a generalization of the
thermodynamie potential eoneept for finite-time proeesses. They illustrated the proposed
method by the eonstruetion of the finite-time potential for a proeess eonsisting in the
expansion of a gas in a pisto n while it is reeeiving heat from a thermal reservoir aeeording
to the !':ewton's law of heat eonduetion. The eonsidered system ulldergoes a quasiestatie
proeess with elltropy produetion due to two irre\'ersible phenomena: finite heat exehange
and irreversible expansion with frietioll. Aceording to SAB, the potential funetion, P,
obtained for this process, has the property that !Vi" = t:,.p = Pr - Pi i.e., t:,.p gi\'es the
value of the useful work delivered iu that irreversible quasiestatic process. SAB use the
word "potelltial" to mean a function of state whose chauges give (or bound) the value of
a proccss variable such as heat 01" work.

In this paper, in Sect. 2, we present a IHief review of the SAB-method for constructing
finite-time potentials. In Sect. 3 we analyze the properties of the finite-time potential, P,
constructed by SAB for the <¡uasiestatic irreversible expansion of an ideal gas. We show
that the function P, reproduces well the maximum work obtained in the reversible limit,
but it has not the ability to lead to the endoreversible efficiency of a typical finite-time
thermal cycle like the Curzon and Ahlborn cycle. In Sect. 4, we propose an alternative
way for defining endoreversible finite-time potentials and we show that these functions
have the same properties of equilibrium potentials as the Gibbs free energy. We use the
endoreversible Gibbs potentials to obtain a Clausius-Clapeyron equation compatible with
those obtained recently by a generalized method of the Carnot cycles iI7].

2. SAI3-I'OTENTIALS FOil FINITE-TIME I'HOCESSES

Within the context of convcntiona! time-independent thermodynamics, SAB [16) devel-
oped an algorithm to construct potentials P that define the extremal mlues of work for
processes with arbitrary constraints. That algorithm is based in two theorems extending
the capability of thermod)'namics from reversible processes to one class of time-dependent
processes. The)' also show how such potentials can be constructed for a s)'stem whose
time-dependence is of first order. As is well known [18]' thl' change of a cOll\'entional ther-
modynamic potential, (as the Gibbs fuuction G or the Helmholtz potential F), between
two extreme states i aud f, is linked with the work delivered !Vir, during the process, by
incqualities suc1J as ~Vif :$ -~Gif for isoharic-isothcrmic processrs; and lF¡r ::; -~Fif
for isochoric-isothermic processes. The equal sign is held onl)' for the reversible case
and it represents the maximum work obtainable from the correspouding process. When
irreversihle dissipation in the process is considcredl thcn Hfirr < H'lllax is obtaincd. for the
same extreme states. Within the FTT coutcxt the problem was stated of how to get uew
functions of state whose changes between extreme states have the capability of giving
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the irreversible work, ¡.e., functions that replace the CET inequalities by FTT equalities.
This was precisely the proposal of Salamon et al. and in this way, they contributed to the
construction of a FTT theory of processes. \Ve no\V present the SAB-method.

In a reversible process, heat and work can be expressed as differential forms on the
space of functions of state,

dQ = TdS, dW = pdV. (1)

No\V, given an integral of motion (e.g., constant pressure) one can make these differ-
ential forms exact by adding a zero. In the constant pressure case, this "zero" is the
differential form Vdp. lf \Ve add this form to dW and ,lQ \Ve get

dW = pdV = pdV + V dp = d(pV) = dP¡

and

dQ = TdS = dV + pdV = dV + pdV + V dI' = d(V + pV) = dP2,

where 1', V, T, S, and V follow the standard thermodynamic nomenclature [201. The func-
tions PI = pV and P2 = V +pV give us a work potential and a heat potential respectively
(for l' = consL). The simple construction as described above can be generalized for less
common cases. SAB [161 find potentials P for a spherical system with constant surface
tension, P3 = !V (31' - eex) and for a cylinder with a spring loaded piston, p. = A 21'2/2k,
where k is the force constant and A is the surface arca of the piston. These examples
consist of complex reversible systems, i.e., in internal equilibrillm. The potential function
is obtained by lIsing the condition that eqllilibrium is mantained to find an integral of
motion of one of the cOllpled systems. This integral of motion can then be used to integrate
the inexact differential forms dW and ,IQ to give suitable potentials. Thus, one gets the
work extracted from a coupled system, expressed as a change in a function of state of one
of the coupled systems. The general problem implicit in the above examples is as follows:
given the integral of motion g(p, V) = const., \Ve look for a fllnction 1(1', V) such that
l' dV + 1dg is an exact differential. That differential form can be written as

l' dV + 1dg = l' dV + 1 [ ( ~~t dp + (:fr )p dV]

1'dV + 1 dg = [1'+ Ufr )J dV + [1 (~~ t] d1'.

(2)

By the application of the exactness condition (equal cross derivatives) and rearrange-
ment tcnllS, we obtain

(3)
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where {... } denotes the Poisson bracket. Given a solution J, the exact differential p dll +
J dg = dP is formed. This technique is a Legendre construction. Salamon et al. [161
formalize this results through the next theorem: "suppose we are giving a function g(p, 11),
continuously differentiable on an open set D in p, 11 space. lf the vector '\79 is zero on at
most a finite number of points in D, then there exist continuously differentiable functions
J(p,lI) and P(p,lI) such that dP = p dll + J dg. Furthermore if J, P and f', P' are
any two pairs of functions with the abo\'e property, then J - f' and P - p' can be
expressed as functions of 9". Salamon el al. proved this theorem in fieL [16). As can be
seen this theorem is fornllllated only in the context of reversible processes. These authors
generalize the above theorem for a elass of quasiestatic processes which produce entropy
by tIle consideratioll that such a proccss can be secn as a t.imc-paranlCtrized scqucncc
of cquilibriulll states. Thc gl'llt'ralized thcorcm is: uSllppose given a systcm E, and él
qua.siestatic noncyelic process 'Ir of ¿. (For cyelic processes, each branel, must be treated
separately). The process 'Ir is given by the time-parallletrized curve a(l) of states of ¿
and a function 11'(1) of time that specifies (say) the work output of the system during the
process. Then, there exists a function of state P[al. such that t,PIa(t)J = 11'(1) for all t
along the process 'Ir. Pis unique up to an integral of motion". The proof of this theorem
is also gi\'en in fieL [16). In order to illustrate how this theorem works, Salamon el al.
constructed the function P for an ideal gas which undergoes an expansion in a cylinder
exchanging heat with the environment according to the 1\'ewton 's cooling law. Then, the
system obeys two irreversible equations:

dS k(Tex - T)
(4a)dt T

and

dll
-=aV (4b)dt '

where Tex is the temperature ofthe environment, k is the heat condllctance, a is a constant
and 1 is time. Eq. (4b) is typical ofmany engines [16). The following step is to find a "zero".
By coupling Eqs. (4a) and (4b), we obtain

k(Tex - T)
(TV) dS - ---- dll = O = dg.

a

The useful work is given by

dll' = p dll - o ( ~~) dV = (p - ao V) dll,

(5)

(6)

where o is the coefficient of fl'iction against the walls. Now, we look for a function J such
that the differential form

(p - aoll) dV + J [(TII) dS - k(7;'x
a
- T) dV] = dP (7)
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is exac!. By the condition that cross-partial derivatives be equal aJl(i solving the resulting
differentiai equation, Saiamon el al. obtain

f = nR
k •

V(~-nR)
(8)

\Vhen Eq. (8) is substituted into Eq. (7), and using the ideai gas law, the exact differ-
ential becomes [161

where

dV
dP = AdT-2BVdV +C-V' (a)

B _ aa
- 2 ' and C = TexkA,

anCv

with Cv the molar heat capacity at constant volume, n the number of moles of gas and
R the universal gas constan!. By integrating Eq. (a), Salamon el al. finally. obtain

P = AT - BV2 + C in V

or

(
Texk ) 2P = A --in V + T - BV .
anCv

( 10)

This potential P must have the property that 6P is the value of the useful work
delivered in a quasiestatic process which proceeds according to Eqs. (4).

3. SOME SAB-POTENTIAL Pl\OPERTIES

In this section we discuss the behavior of the potential P given by Eq. (10). \Ve shall
consider that the gas expansion proceeds without friction, in order to be in the most
typical case of finite-time engines [1]. Under t!lis assumption, Eq. (10) becomes

(
Texk )P=A -C InV+T .
an v

By substituting the constant A in Eq. (11) we obtain

P = nRTex in V _ n
k

2RCv T.
1 - nRa - - nR

k a

(11)

( 12)
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I\'ow, we calculale lhe work delivered by an isolhermic process belween lhe endslales
1 and 2, which proceeds according lo lhe irreversible Eqs. (4):

nRTex 1'2 ( )\1'12 = 6.P12 = P2 - PI = 11 In -¡/ . 13
1 - !!......l! 1

k

If we lake lhe reversible limil of Eq. (13), i.e., when lhe conduclance k ~ 00, we obtain
immedialely

\1'12 = nRTex In 1'2,
VI

(14)

(15)

which is lhe expecled resull in the conlexl of lhe classical equilibrium lherrnodynamics for
an ideal gas isolhermic expansiono Thus, the SAB-polential reproduces well lhe reversible
limit for lhe trealcd casc.

Onc of lhc first problcms diseussed for the FTT formalism was thc so callcd Curzon and
Ahlborn cyclc IIj. Jt consists in a Carnol-type cyclc with hcal transfcr in thc isothermal
branchcs gi,.cn by thc I\'cwton's Law of eooling [Eq.(4a)). This cyclc is dcpictcd in an
cnlropy-lcmpcraturc diagram in lhe figurc. The lwo isolhcrmal branchcs (1 ~ 2 and
3 ~ 4 in thc figurc) fulfill thc condilions givcn in lhc gas cxpansion which satisfy Eq. (12).
Thcn, one would expecl that using Eq. (13) for the works \1'12 and 11'34, rcspcclively, one
would oblain lhe endorcversiblc cfEciency IIj,

'lcA = 1 - T2w = 1 _ rr;,
Tlw V T;

where Tlw and T2w are lhe inlcrnal lcmpcralures of lhe working subslance in lhc isothcr-
mie cxpansion alJ(l comprcssion respeclivcly: and TI and T2 are lhc hot alJ(l cold reservoirs
lemperaturcs rcspcctivcly. Ncvcrtheless, that is not thc case. If wc use Eq. (13) for the
processes 1 ~ 2 and 3 ~ 4, wc oblain

(16)

which is lhe Carnol reversible efEciency, where TI and T2 are the external tempera-
lures, i.e., lhe lcmperatures of hot and cold rcservoirs, respectivcly. Thus, the function
given by Eq. (12) scems to be no suitable lo calculate efEciencies of finite-time engincs
like the CA-cycle. A possible reason for such a discrcpance must be the fact that the
time-parametrized quasiestatic internal process used by Salamon el al. [16) can not be
considered as equivalent to an endoreversible process, since in an endoreversible machine
all irreversibilities take place in the coupling bctween syslem and reservoirs and nol in
the system at work [21j.

4. ON POSSIIlLE ENDOREVERSlBLE POTENTIALS

Jt is well known [18] that starting from the internal energy U, one can eonstruct di verse
thermodynamic potcntials such as the Gibbs poteutial G; the Hclmholtz potential F
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FIGURE. Temperature-entropy diagram oC the CA-cycle. x = TI - T,w and y = T2w - T2.

and the enthalpy H. That eonstructioll is obtained by using Legendre transforms. These
functions have similar properties to the meehanieal potentials in the sense that they
provide us equilibrium amI stability eriteria and they have the eapability to generate
thermodynamie forees by their first derivatives. Without 1.lentioning that the thermo-
dynamie potential U, S, F, G, and H being themselves thermodynamic variables, lead
of course to Maxwell relations via the equalities between seeond cross derivatives. The
functions of state P, obtained from inexaet diITerentials by adding a suitable zero, like
PI = pV for isobaric processes or that given by Eq. (10), lack some of the mentioned
properties of U, S, F, G and H. For example, the [unctions P can not generate either
Maxwell relations, or stability eriteria. In that sense, they are not true thermodynamie
potentials.

As it was showed in Sect. 3, the function of state P given by Eq. (12) applied to the
calculation of the efficieney of an endoreversible cycle leads us to the Carnot efficiency.
This result eonstitutes a eontradiction, because of a suitable finite-time potential would
lead us to an efficiency expression diITerent to the reversible case.

In this section we propose a manner to carry out endoreversible potentials eonstruetion
that solves the previous contradiction and permits to obtain additional resu!ts. Several
authors 122,251 have established that for Carnot-type thermal cycles with irreversibilities
in the heat reservoirs or at the couplings between the working substance and surroundings,
tlic following exprcssioll is held:

(17)

where H'rev is thc maximulll reversible \vork, U' is thc irreversible (finitc-timc) \.....ork, T2

is the cold reservoir temperature and 6Su is the change of entropy in the thermody-
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namic universe (system plus surroundings). Recently, MarceHa [221 pointed out that for
a noncyclic process,

where Qcev = 6U.y• + lV,ev is the maximum amount of heat that can be absorbed for
a given change of state, Q is the heat flowing into the system during the irreversible
change of state and IVlo.' is an additional arnount of heat that could have been extracted
from the reservo ir had the process been reversible. In the CA-cycle depicted in the figure,
x = TI - T1w and y = T2w - T2. When x = ° and y = 0, we have the reversible Carnot
limit, and for the isothermic expansion 1 - 2, \Veobtain (ideal gas as \Vorking substance)

(19)

When x '1 0, the heat flo\Ving into the system is

(20)

It is clear, that in this case Wlost can be expressed by

(21 )

From classical equilibrium thermodynamics we know that, for an isothermic expansion,

;:

2 V2
W,ev = -6C12 = V dp = nRTI In-.

1 VI

In the case of Eq. (21), we observe that

with

'P= nRx In V,

conseqllently, by llsing Eq. (18), we can write (sinee 6U12 = ° for ideal gas)
Q = 1V12= -6C12 - 6'P12

or

1VEi{ = -6(C + 'P) = -6CER,

(22)

(23)

(24)

(25 )

(2G)
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wbere ¡FER is tbe finite-time (endoreversible) work and GER is an endoreversible Gibbs
potential. From tbe definition of 'P we see tbat

V. J2II'ER = -6.(G + 1') = nRT¡", In ¡/ = V dp.
t lER

(2i)

By using Eq. (27) and tbe equivalent equation for tbe compression 3 ~ 4 (Fig. 1), we
obtain immediately

(28)

i.e., tbe endoreversible efficiency. Eq. (28) in tbe maximum power regime becomes 'leA =

1 - JT2/T¡ [IJ.
In a recent paper [17J a generalization was proposed of tbe so called metbod of Carnot

cycles (also known as tbe grapbic metbocl). Tbis generalization eonsisted in extending
tbe grapbic metbod to endoreversible cycles. One of tbe results of sucb an extension was
getting a Clausius-Clapeyron equation for a finite-time liquid-vapor transition given by

(29)

wbere '" is a quantity larger tban unity ancl it provides us a measurement of tbe departure
of tbe finite-time process from an ideal reversible process, and ER means endoreversible.
Tbe reversible Clausius-Clapeyron equation can be obtained by two approacbes [18J:
tbe grapbic rnetbod ami tbe equality of tbe Gibbs potential in tbe pbase coexistence
region [l9J. Now, we sball obtain Eq. (29) by using tbe endoreversible Gibbs potential. In
tbe endoreversible approacb, tbe internal equilibrium is assumed ami tbe irreversibility
is considerecl only in tbe external coupling of tbe working substance. Consequently, we
propose

dGER = dGER
I • '

wbere l means liquid and g gas. Eq. (30) can be written as

_SER dT + v.ER dp = -S"" dT + VER dp.t 1 g g

From tbis equation, it follows tbat

wbere T", is tbe internal temperature and 6.V = 6. ¡'ER' From tbe figure, we see tbat

(30)

(31)

(32)
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or

This inequality means (for the complete cyele)

Q'"' QER
TOT > TOT'

Now, we look for a coefficient (3 that convert the abo\'e inequality in an equality.
quantity Á in Eq. (29) is [17)

(33)

(34)

The

Á = .!!::- = Tlw (TI - Tz)
'lER Tzw (Tlw - Tzw)

consequently

(35)

by substituting Eq. (36) in Eq. (32) we obtain

which is identical with Eq. (29) and it means that

( dP) = ~ (dP)
dT ÁdT

ER r~"

(36)

(37)

(38)

with Á > 1. Eq. (38) signifies that the slope of the liquid-vapor coexistence curve in a p-T
space is larger in the reversible case than in the endareversible (finite-time) case. In this
way, we show that Eq. (29) can be abtained by means of twa equivalent approaches: the
generalized graphic methad and the equalization of endoreversible Gibbs potentials in the
coexistence region. That is, in the endoreversible case the same two equivalent approaches
can be used as in the reversible case.

5. CONCLUSJONS

Finite-time thermodynamics is an extension of elassical equilibrium thermodynamics and
is relevant in principIe across the entire structure of the subject, from the most abstract
level to the most applied. Nowadays, the set of useful applications of FTT to thermady-
namic practical problems is very extensive. Nevertheless, there exists a lack of respect for
a theoretical apparatus giving support to FTT based in general principies. This is due in
part to the great diversity of irreversible phenomeua to be considered if a complete deserip-
tion of a real process is desired. It is pertinent to elear up that iu the FTT approach the
quantities of illtercst are global proccss variables as pO\l,:('r, work and efficiency, in cOlltrast
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to tbe local variables approaeh of irreversible therlllodyuamies. Salalllou, Andreseu and
I3erry proposed a method to eonstruet fiuite-time poteutials for quasiestatie proeesses with
entropy produetion. This method is an extension of tbat eonsisting iu adding a suitable
zero to an inexaet differential form to eonstruet au exaet differential form in tbe case of
reversible proeesses. Tbe potential eonstrueted by tbat teebnique bas not tbe eapability
to lead 10 an endoreversible efficieney expression for finite-lime tbermal eycles sueb as
the CA-eycle. I3ased in the eoueept of lost work we propose lhat il is possible 10 define a
kiud of endoreversible lherlllodynalllie potenlial that leads to tbe endoreversible efficieney
and permits 10 obtain au endoreversible Clausius-Clapeyron equatiou, for tbe case of a
finite-time liquid-vapor transitiou. That is, tbe proposed eudoreversible poteulial allows
lIS lo have two equivalcJlt procedures for obtaillillg the Clausius-Clapeyron equation: the
method of endoreversible Carnot eycles (geueralized grapbie method) amI the e<¡ualiza-
tion oC endorcvcrsible Gibbs potentials in the l'oexistcllce rcgion. This property is similar
to those of lhe reversible tbermodynall1ies eousistiug in tbe use of equivalent reversible
approaebes for getting tbe Clausius-Clapeyrou equation.
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