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ABSTRACT. We discuss the method to construct finite-time thermodynamic potentials proposed
by Salamon, Andresen and Berry. We find that this method does not lead to suitable potentials
for endoreversible thermal cycles. We propose an alternative manner to define an endoreversible
thermodynamic potential that permits to recover the appropriate endoreversible (finite-time)
efficiency for a Curzon and Ahlborn cycle. The proposed endoreversible potential also allows us
to obtain a generalized Clausius-Clapeyron equation for a finite time liquid-vapor transition. This
procedure is equivalent to those consisting in getting a finite-time Clausius-Clapeyron equation by
means of a generalized thermodynamic graphic method.

RESUMEN. Discutimos el método propuesto por Salamon, Andresen y Berry para construir
potenciales termodindmicos a tiempo finito. Encontramos que este método no conduce a potenciales
adecuados para ciclos térmicos endorreversibles. Proponemos una manera alternativa para definir
un potencial termodindmico endorreversible que permite recuperar apropiadamente la eficiencia
endorreversible (a tiempo finito) de un ciclo de Curzon y Ahlborn. El potencial endorreversible
propuesto permite obtener una ecuacién generalizada de Clausius-Clapeyron para una transicion
liquido-vapor a tiempo finito. Este procedimiento es equivalente a aquel que consiste en la obtencién
de una ecuacién de Clausius-Clapeyron mediante un método grafico generalizado.

PACS: 44.60.+k; 44.90.+c¢

1. INTRODUCTION

In the last two decades a finite-time thermodynamics (FTT) has been developed [1,7].
FTT has been conceived as an extension of classical equilibrium thermodynamics (CET)
for processes which occur endoreversibly; i.e., processes where the system undergoes in-
ternally reversible transformations, but it is irreversibly coupled with its surroundings.
One example of this situation is attained by thermal engines exchanging heat with suit-
able heat reservoirs [1-5]. The use of the endoreversibility condition requires that the
internal relaxation times of the working substance be negligibly short compared to the
time scale of the process to be considered. The FTT formalism has been very useful for
modeling thermal engines in a more realistic context that those models obtained from
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CET [6-10]. The FTT models have also permitted to obtain optimized configurations
of several macroscopic systems by considering finite irreversible rate processes in the
couplings between the system and its surroundings [11-15]. One of the main goals of the
FTT formalism namely to construct a theoretical framework for macroscopic processes
which occur in finite-time, producing entropy due at least to certain kind of irreversibilities
has been achieved only in part. In the spirit of this objective, Salamon, Andresen and
Berry (SAB) published an interesting paper [16] where they present a generalization of the
thermodynamic potential concept for finite-time processes. They illustrated the proposed
method by the construction of the finite-time potential for a process consisting in the
expansion of a gas in a piston while it is receiving heat from a thermal reservoir according
to the Newton’s law of heat conduction. The considered system undergoes a quasiestatic
process with entropy production due to two irreversible phenomena: finite heat exchange
and irreversible expansion with friction. According to SAB, the potential function, P,
obtained for this process, has the property that Wi, = AP = P — P, i.e., AP gives the
value of the useful work delivered in that irreversible quasiestatic process. SAB use the
word “potential” to mean a function of state whose changes give (or bound) the value of
a process variable such as heat or work.

In this paper, in Sect. 2, we present a brief review of the SAB-method for constructing
finite-time potentials. In Sect. 3 we analyze the properties of the finite-time potential, P,
constructed by SAB for the quasiestatic irreversible expansion of an ideal gas. We show
that the function P, reproduces well the maximum work obtained in the reversible limit,
but it has not the ability to lead to the endoreversible efficiency of a typical finite-time
thermal cycle like the Curzon and Ahlborn cycle. In Sect. 4, we propose an alternative
way for defining endoreversible finite-time potentials and we show that these functions
have the same properties of equilibrium potentials as the Gibbs free energy. We use the
endoreversible Gibbs potentials to obtain a Clausius-Clapeyron equation compatible with
those obtained recently by a generalized method of the Carnot cycles (17].

2. SAB-POTENTIALS FOR FINITE-TIME PROCESSES

Within the context of conventional time-independent thermodynamics, SAB [16] devel-
oped an algorithm to construct potentials P that define the extremal values of work for
processes with arbitrary constraints. That algorithm is based in two theorems extending
the capability of thermodynamics from reversible processes to one class of time-dependent
processes. They also show how such potentials can be constructed for a system whose
time-dependence is of first order. As is well known [18], the change of a conventional ther-
modynamic potential, (as the Gibbs function G or the Helmholtz potential F), between
two extreme states 1 and f, is linked with the work delivered Wi, during the process, by
inequalities such as Wiy < —AGj; for isobaric-isothermic processes; and Wy < —AFy
for isochoric-isothermic processes. The equal sign is held only for the reversible case
and it represents the maximum work obtainable from the corresponding process. When
irreversible dissipation in the process is considered, then Wi, < Wy, .« is obtained, for the
same extreme states. Within the FTT context the problem was stated of how to get new
functions of state whose changes between extreme states have the capability of giving
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the irreversible work, i.e., functions that replace the CET inequalities by FTT equalities.
This was precisely the proposal of Salamon et al. and in this way, they contributed to the
construction of a FTT theory of processes. We now present the SAB-method.

In a reversible process, heat and work can be expressed as differential forms on the
space of functions of state,

dQ =TdS, dW =pdV. (1)

Now, given an integral of motion (e.g., constant pressure) one can make these differ-
ential forms exact by adding a zero. In the constant pressure case, this “zero” is the
differential form Vdp. If we add this form to dW and dQ we get

dW =pdV =pdV +Vdp =d(pV) = dP
and
dQ =TdS =dU +pdV =dU + pdV + Vdp =d(U + pV) = dP,,

where p, V, T, S, and U follow the standard thermodynamic nomenclature [20]. The func-
tions P; = pV and P, = U +pV give us a work potential and a heat potential respectively
(for p = const.). The simple construction as described above can be generalized for less
common cases. SAB [16] find potentials P for a spherical system with constant surface
tension, Py = %V(Z}p— eex) and for a cylinder with a spring loaded piston, Py = A%p? 2k,
where k is the force constant and A is the surface area of the piston. These examples
consist of complex reversible systems, i.e., in internal equilibrium. The potential function
is obtained by using the condition that equilibrium is mantained to find an integral of
motion of one of the coupled systems. This integral of motion can then be used to integrate
the inexact differential forms dW and dQ to give suitable potentials. Thus, one gets the
work extracted from a coupled system, expressed as a change in a function of state of one
of the coupled systems. The general problem implicit in the above examples is as follows:
given the integral of motion g(p,V) = const., we look for a function f(p,V) such that
pdV + fdg is an exact differential. That differential form can be written as

)
pdV + fdg=pdV + f [(%ﬁl) dp + (5%) dv]
PJyv P

a J
p+ (8—3) dv + | f (8—9) dp.
P Py
By the application of the exactness condition (equal cross derivatives) and rearrange-
ment terms, we obtain

af dg af dg \ _ B
(#),(%),- (), (), - tret = Y

pdV + fdg =
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where {...} denotes the Poisson bracket. Given a solution f, the exact differential p dV +
fdg = dP is formed. This technique is a Legendre construction. Salamon et al. (16]
formalize this results through the next theorem: “suppose we are giving a function g(p, V),
continuously differentiable on an open set D in p,V space. If the vector f’g is zero on at
most a finite number of points in D, then there exist continuously differentiable functions
f(p,V) and P(p,V) such that dP = pdV + fdg. Furthermore if f, P and f', P’ are
any two pairs of functions with the above property, then f — f' and P — P’ can be
expressed as functions of ¢”. Salamon et al. proved this theorem in Ref. [16]. As can be
seen this theorem is formulated only in the context of reversible processes. These authors
generalize the above theorem for a class of quasiestatic processes which produce entropy
by the consideration that such a process can be seen as a time-parametrized sequence
of equilibrium states. The generalized theorem is: “suppose given a system ¥, and a
quasiestatic noncyclic process 7 of X. (For cyclic processes, each branch must be treated
separately). The process 7 is given by the time-parametrized curve o(t) of states of ¥
and a function W(t) of time that specifies (say) the work output of the system during the
process. Then, there exists a function of state P[o], such that AP[o(t)] = W(t) for all t
along the process 7. P is unique up to an integral of motion”. The proof of this theorem
is also given in Ref. [16]. In order to illustrate how this theorem works, Salamon et al.
constructed the function P for an ideal gas which undergoes an expansion in a cylinder
exchanging heat with the environment according to the Newton’s cooling law. Then, the
system obeys two irreversible equations:

dS k(Tu-T)

and

dv
— =aV,
5 = (4b)
where T, is the temperature of the environment, k is the heat conductance, a is a constant
and t is time. Eq. (4b) is typical of many engines [16]. The following step is to find a “zero”.
By coupling Egs. (4a) and (4b), we obtain

k(Tex —
(TV)dS - (LG—T) dV =0 = dg. (5)
The useful work is given by
dv
dPV:pdV—a(a-) dV = (p — aaV)dV, (6)

where a is the coefficient of friction against the walls. Now, we look for a function f such
that the differential form

(p —aaV)dV + f [(TV)dS - k_(i‘“ua_—i'“_) dv] =dpP (7
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is exact. By the condition that cross-partial derivatives be equal and solving the resulting
differential equation, Salamon et al. obtain

nit

I=vE ny

(8)

When Eq. (8) is substituted into Eq. (7), and using the ideal gas law, the exact differ-
ential becomes [16]

dV
dPtAdT-?BVdV-%CV-, (9)
where
n’RCy aa TuxkA
A = B=— d C= 3
k_ nR, o an anCv

with Cy the molar heat capacity at constant volume, n the number of moles of gas and
R the universal gas constant. By integrating Eq. (9), Salamon et al. finally, obtain

P=AT< BY*4+Cha¥

or

T Ly
P:A( exh 1nV+T) - BVZ, (10)
anCly

This potential P must have the property that AP is the value of the useful work
delivered in a quasiestatic process which proceeds according to Egs. (4).
3. SOME SAB-POTENTIAL PROPERTIES
In this section we discuss the behavior of the potential P given by Eq. (10). We shall

consider that the gas expansion proceeds without friction, in order to be in the most
typical case of finite-time engines [1]. Under this assumption, Eq. (10) becomes

antCy

P=A(T‘”‘C{C 1nV+T). (11)

By substituting the constant A in Eq. (11) we obtain

RTex 2R
p= s ), TROV
1—Ek—a 'E—TLR
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Now, we calculate the work delivered by an isothermic process between the endstates
1 and 2, which proceeds according to the irreversible Eqgs. (4):

nRT, VQ
"V12=AP12=P2—P1= '].—‘ﬁlnvl. (13)
k
If we take the reversible limit of Eq. (13), i.e., when the conductance k — oo, we obtain
immediately

\%
W12 = 'I’LRTex In —2,

Vi

(14)

which is the expected result in the context of the classical equilibrium thermodynamics for
an ideal gas isothermic expansion. Thus, the SAB-potential reproduces well the reversible
limit for the treated case.

One of the first problems discussed for the FTT formalism was the so called Curzon and
Ahlborn cycle [1]. It consists in a Carnot-type cycle with heat transfer in the isothermal
branches given by the Newton's Law of cooling [Eq.(4a)]. This cycle is depicted in an
entropy-temperature diagram in the figure. The two isothermal branches (1 — 2 and
3 — 4 in the figure) fulfill the conditions given in the gas expansion which satisfy Eq. (12).
Then, one would expect that using Eq. (13) for the works Wy, and Wy, respectively, one
would obtain the endoreversible efficiency [1],

T: T:
ncazl_ﬁ=1_ -

le F], (15)

where Ty, and Ty, are the internal temperatures of the working substance in the isother-
mic expansion and compression respectively; and T} and T} are the hot and cold reservoirs
temperatures respectively. Nevertheless, that is not the case. If we use Eq. (13) for the
processes 1 — 2 and 3 — 4, we obtain

@ _
B=t |Q1]

which is the Carnot reversible efficiency, where 73 and T are the external tempera-
tures, i.e., the temperatures of hot and cold reservoirs, respectively. Thus, the function
given by Eq. (12) seems to be no suitable to calculate efficiencies of finite-time engines
like the CA-cycle. A possible reason for such a discrepance must be the fact that the
time-parametrized quasiestatic internal process used by Salamon et al. (16] can not be
considered as equivalent to an endoreversible process, since in an endoreversible machine
all irreversibilities take place in the coupling between system and reservoirs and not in
the system at work [21].

[Was| T,
= = . 2%

1

4. ON POSSIBLE ENDOREVERSIBLE POTENTIALS

It is well known [18] that starting from the internal energy U, one can construct diverse
thermodynamic potentials such as the Gibbs potential G; the Helmholtz potential F
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FIGURE. Temperature-entropy diagram of the CA-cycle. 2 =Ty — Ty, and y = To, — T2.

and the enthalpy H. That construction is obtained by using Legendre transforms. These
functions have similar properties to the mechanical potentials in the sense that they
provide us equilibrium and stability criteria and they have the capability to generate
thermodynamic forces by their first derivatives. Without raentioning that the thermo-
dynamic potential U, S, F, G, and H being themselves thermodynamic variables, lead
of course to Maxwell relations via the equalities between second cross derivatives. The
functions of state P, obtained from inexact differentials by adding a suitable zero, like
P, = pV for isobaric processes or that given by Eq. (10), lack some of the mentioned
properties of U, S, F, G and H. For example, the functions P can not generate either
Maxwell relations, or stability criteria. In that sense, they are not true thermodynamic
potentials.

As it was showed in Sect. 3, the function of state P given by Eq. (12) applied to the
calculation of the efficiency of an endoreversible cycle leads us to the Carnot efficiency.
This result constitutes a contradiction, because of a suitable finite-time potential would
lead us to an efficiency expression different to the reversible case.

In this section we propose a manner to carry out endoreversible potentials construction
that solves the previous contradiction and permits to obtain additional results. Several
authors [22,25] have established that for Carnot-type thermal cycles with irreversibilities
in the heat reservoirs or at the couplings between the working substance and surroundings,
the following expression is held:

W = Wiey — T2 AS,, (17)

where W,y is the maximum reversible work, W is the irreversible (finite-time) work, T3
is the cold reservoir temperature and AS, is the change of entropy in the thermody-
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namic universe (system plus surroundings). Recently, Marcella [22] pointed out that for
a noncyclic process,

Q = Qrev = LV]OSts (18)

where Qrev = AUsys + Wiey is the maximum amount of heat that can be absorbed for
a given change of state, @ is the heat flowing into the system during the irreversible
change of state and W), is an additional amount of heat that could have been extracted
from the reservoir had the process been reversible. In the CA-cycle depicted in the figure,
x =T —Ty, and y = Ty, — T». When z = 0 and y = 0, we have the reversible Carnot
limit, and for the isothermic expansion 1 — 2, we obtain (ideal gas as working substance)

1%
Qrev =nRTIn Vj (19)

When z # 0, the heat flowing into the system is

v,
Q = nRTy,In 7? (20)

It is clear, that in this case W can be expressed by

1% %
Wiest = nR(T7 — Ti,) In -2 — pREl (21)
Vi Vi

From classical equilibrium thermodynamics we know that, for an isothermic expansion,

2
Wrev = _AG12 = / Vdp - nRT]_ ln 11;—2'- (22)
1 1

In the case of Eq. (21), we observe that
Wiest = A1, (23)
with
e =nRzInV, (24)
consequently, by using Eq. (18), we can write (since AU, = 0 for ideal gas)
Q=W =-AG1 — Apra (25)
or

Wer = —A(G + ¢) = —AGgs, (26)
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where Wgy is the finite-time (endoreversible) work and Ggg is an endoreversible Gibbs
potential. From the definition of ¢ we see that

Ve 2
Wer = —A(G 4 ) = nRT), In F2 = / Vdp. (27)
1

l1Er

By using Eq. (27) and the equivalent equation for the compression 3 — 4 (Fig. 1), we
obtain immediately

Q2|
foa=1—2m=1—- —— =1- =22, 28
= |Q1] [Wia| Thiw (28)

i.e., the endoreversible efficiency. Eq. (28) in the maximum power regime becomes 7cx =
1-/T/Th [1].

In a recent paper [17] a generalization was proposed of the so called method of Carnot
cycles (also known as the graphic method). This generalization consisted in extending
the graphic method to endoreversible cycles. One of the results of such an extension was
getting a Clausius-Clapeyron equation for a finite-time liquid-vapor transition given by

(d_P) _ Qre (29)
dr ATy AV

ER

where ) is a quantity larger than unity and it provides us a measurement of the departure
of the finite-time process from an ideal reversible process, and ER means endoreversible.
The reversible Clausius-Clapeyron equation can be obtained by two approaches [18]:
the graphic method and the equality of the Gibbs potential in the phase coexistence
region [19]. Now, we shall obtain Eq. (29) by using the endoreversible Gibbs potential. In
the endoreversible approach, the internal equilibrium is assumed and the irreversibility
is considered only in the external coupling of the working substance. Consequently, we
propose

dG* = dGE*, (30)
where | means liquid and g gas. Eq. (30) can be written as
~SFRdT + VE'dp = —-S;"dT + VR dp. (31)

From this equation, it follows that

dp ) (AS ) Qer
= = [ ~— = —— (32)
(dT o AV - Ty, AV

where T, is the internal temperature and AV = AVyg. From the figure, we see that

(T = T2) > (Thw — Tow)
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or
V. 1%
nR(T) — Ty)In 2 > nR(Tyw — Tao,) In —=. (33)
i Vi
This inequality means (for the complete cycle)
Qror > QFor (34)

Now, we look for a coefficient 3 that convert the above inequality in an equality. The
quantity A in Eq. (29) is [17]

Az_nc___z:l_h_{ (TI_T2) _leQrev_

= . 1 : 35
MEr Ly (T = Tow) Ty Qer (89
consequently
le Qrev
= — 2 36
Qen = 725 (36)

by substituting Eq. (36) in Eq. (32) we obtain

dp - Qrev -
(dT)ER T ATIAV (37)

which is identical with Eq. (29) and it means that

dp 1 (dp ;
(ﬁ)m 3 (ﬁ),; e

with A > 1. Eq. (38) signifies that the slope of the liquid-vapor coexistence curve in a p-T
space is larger in the reversible case than in the endoreversible (finite-time) case. In this
way, we show that Eq. (29) can be obtained by means of two equivalent approaches: the
generalized graphic method and the equalization of endoreversible Gibbs potentials in the
coexistence region. That is, in the endoreversible case the same two equivalent approaches
can be used as in the reversible case.

5. CONCLUSIONS

Finite-time thermodynamics is an extension of classical equilibrium thermodynamics and
is relevant in principle across the entire structure of the subject, from the most abstract
level to the most applied. Nowadays, the set of useful applications of FTT to thermody-
namic practical problems is very extensive. Nevertheless, there exists a lack of respect for
a theoretical apparatus giving support to FTT based in general principles. This is due in
part to the great diversity of irreversible phenomena to be considered if a complete descrip-
tion of a real process is desired. It is pertinent to clear up that in the FTT approach the
quantities of interest are global process variables as power, work and efficiency, in contrast
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to the local variables approach of irreversible thermodynamics. Salamon, Andresen and
Berry proposed a method to construct finite-time potentials for quasiestatic processes with
entropy production. This method is an extension of that consisting in adding a suitable
zero to an inexact differential form to construct an exact differential form in the case of
reversible processes. The potential constructed by that technique has not the capability
to lead to an endoreversible efficiency expression for finite-time thermal cycles such as
the CA-cycle. Based in the concept of lost work we propose that it is possible to define a
kind of endoreversible thermodynamic potential that leads to the endoreversible efficiency
and permits to obtain an endoreversible Clausius-Clapeyron equation, for the case of a
finite-time liquid-vapor transition. That is, the proposed endoreversible potential allows
us to have two equivalent procedures for obtaining the Clausius-Clapeyron equation: the
method of endoreversible Carnot cycles (generalized graphic method) and the equaliza-
tion of endoreversible Gibbs potentials in the coexistence region. This property is similar
to those of the reversible thermodynamics consisting in the use of equivalent reversible
approaches for getting the Clausius-Clapeyron equation.
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