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ABSTRACT. We show the existence of soliton solutions in the frame of the Hall-MHD description.
The system under study consists in a nondissipative incompressible plasma column confined into a
cylindrical perfectly conducting vessel. The plasma is separated from the wall by a vacuum region.
The Korteweg-de Vries equation is obtained by performing an expansion in power series, up to
second order, of a small positive parameter of every physical variable and governing equations after
stretching some variables and assuming axisymmetry. The soliton solution is shown explicitly and
its stability conditions are briefly discussed. Likewise, the relevance of this result for astrophysical
plasmas is also commented.

RESUMEN. Se muestra que existen soluciones tipo solitén en el marco de la descripcién Hall-MHD.
Aqui se estudia el caso de una columna cilindrica de plasma incomprensible y no disipativo que est4
confinada dentro de un depésito cilindrico perfectamente conductor. Entre el plasma y el depdsito
media una regién de vacio. La ecuacién de Korteweg-de Vries se obtiene efectuando un desarrollo
en serie de potencias, hasta segundo orden, en un pardmetro positivo pequefio de las variables
fisicas y las ecuaciones dindmicas previo reescalamiento de algunas de las variables, suponiendo
axisimetria. La solucién tipo onda solitaria es obtenida explicitamente y se discuten brevemente
sus condiciones de estabilidad. Asimismo, la relevancia de este resultado para plasmas astrofisicos
es también comentada.

PACS: 52.35.Bj; 52.35.5b; 52.55.Ez

1. INTRODUCTION

The study of nonlinear plasma waves is one of the most relevant and interesting problems
from both physical and mathematical points of view. The case of solitary waves is a
beautiful example. Regarding the propagation of weakly nonlinear, long wavelength waves,
there are many experimental observations ranging from the hydrodynamics to mechanical
and electric models; of course, they include plasma physics, solid state physics, magnetic
systems, nonlinear optics, and so on [1].

The nonlinear effects play a very important role in the plasma theory, in fact they
are present in both laboratory [2] and astrophysical plasmas. Broadly speaking, they
are linked to turbulent dynamics [3-5] and solar plasmas [6]; also they are particularly
interesting in relation with the study of Jupiter's Great Red Spot [7-10].

In the 70’s the studies of solitary waves in nonconducting fluids constituted an impor-
tant subject of mathematical physics [11] because they can provide useful information
respect to the properties of nonlinear dispersive media [12-14]. Subsequently, solutions of
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soliton type were obtained for plasmas confined into cylindrical devices in the frame of
the magnetohydrodynamic (MHD) model [15-18].

The aim of this paper is to study surface waves propagating at the interface of a plasma.
The plasma column is contained into a cylindrical perfectly conducting vessel and is
separated from the cylindrical wall by a vacuum region. Unlike the usual treatments we use
the ideal magnetohydrodynamics (MHD) with a Ohm’s law modified by including the Hall
term. This ideal Hall- MHD description is relevant to astrophysical and laboratory plasmas
because of the Hall mechanism for preferential acceleration of ions in the presence of an
electron background [19] and other related phenomena [20,21]. Regarding the dispersion
relations in the framework of the Hall- MHD description for the linear case, it is known
that the presence of the Hall-current yields a dispersive behavior of the corresponding
waves [22,23]. Here we will show that the total (thermodynamic plus magnetic) pressure,
to first-order in € (a small parameter that measures the importance of the dispersive
terms), satisfies the Korteweg-de Vries (KdV) equation which has a soliton-type solution.

An indicative feature of the possible existence of solitary waves, which provided the
motivation for the present work, arises when one looks at the limiting value, in the long
wavelength approximation, of the dispersion relations resulting from the linear analysis
for both z-pinch and slab configurations in the frame of the nondissipative MHD with
and without Hall effect in the Ohm’s law. In order to clarify this point, let us examine in
some detail the corresponding dispersion relations [23-25]. Firstly, we have
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for a cylindrical plasma. Here w is the oscillation frequency of the linear perturbations;
w, is the Alfvén frequency; and b; and b, are the normalized (to the equilibrium magnetic
field Bg) values of the magnetic field inside and outside the plasma column, respectively;
Ry is the radius of the perfectly conducting cylindrical vessel and rg is the initial radius of
the plasma column; k and m denote, respectively, the axial and azimuthal wave numbers;
I,, and K,, are the modified Bessel functions. The prime stands for the first derivative
with respect to the corresponding argument. The dispersion relation (1) is valid for in-
compressible plasmas with homogeneous equilibrium in the frame of both ideal MHD and
ideal Hall-MHD; it has already been elsewhere [23].

Secondly, for a nondissipative plasma slab the following dispersion relations [22] are
obtained:
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where vs the sound speed, v, the Alfvén speed, and Ay = Cy/apg, with Cy denoting
the Hall scaling parameter, a is the ion charge-to-mass ratio, and pp is the constant
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equilibrium mass density. Expression (2) is valid for parallel (respect to the equilibrium
magnetic field) modes, while (3) is valid for perpendicular modes. It may be noted that
the Hall-current only affects the parallel modes, at least in the case of uniform plasmas.
Equations (2) and (3) were obtained using the ideal Hall-MHD description. It is worth to
mention that for a slab plasma, when one uses the ideal MHD description, a dispersion
relation is obtained of magneto-acoustic type.

It is clear from Egs. (1)-(3) that the dispersive term is basically due to a couple
of effects. On one side there is the finite frequency effect, on the other there are the
geometric effects. The finite frequency effect means that the frequency of the linear wave
is not vanishingly small compared with the ion cyclotron frequency, therefore it arises
from the Hall term in the generalized Ohm’s law. The balancing of the dispersive terms
by nonlinearities can, at least in principle, lead to soliton-type solutions of the nonlinear
equation.

As mentioned above there is another way to introduce dispersion, through geometric
effects. That is the case for a cylindrical plasma which is surrounded by a vacuum when
described by the ideal MHD model, a surface wave can propagate at the interface plasma-
vacuum. Thus the dispersive term, in this case, is connected to the finite width of the
cylinder.

Expressions (1) and (2) exhibit similar behavior as we discuss below but it is due to
different reasons. Specifically, Eq. (1) exhibits a dispersive term due to a geometric effect,
whereas Eq. (2) owes its dispersive term to a dynamic effect, the presence of the Hall effect.
In the present paper we combine both of them: a perfectly conducting cylinder containing
a plasma with Hall current and separated from the plasma column by a vacuum region.
On the other hand, it is known [17] that for waves that are symmetric about the axis of
the cylinder, the nonlinear wave that arises is described by the Benjamin-Ono or the KdV
equation.

The precedent dispersion relations, Egs. (1)-(2), in the long wavelength approximation,
reduce to

c(k) = av, — Bk?, (4)

where c(k) is the phase speed, and @ and 3 are constants. For the cylindrical geometry,
relation (4) is valid when m = 0. In the particular case of the plasma slab a = 1 and 8
is a constant which depends on the parameter \y. Equation (4) is similar to the familiar
dispersion relation for shallow water in the linearized case [26-28]. With the substitutions
w — i0/0t, k — —i9/dz (i.e., by using the Fourier’s theorem), Eq. (4) yields

3
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where 1 is the corresponding amplitude. Equation (5) can be obtained from the integro-
differential equation due to Whitham [29],

(2)—1: i w— +/ &(z - Oy(:c t) =0, (6)
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where & denotes the Fourier transform of the phase speed c(k) given by Eq. (4). In the
case under consideration p = 0; that is, it corresponds to the linear case. Thus we expect
the governing equations at second order in € yield the KdV equation with a soliton like
solution.

This paper is organized as follows. In Sect. 2 we present the basic equations of the ideal
Hall-MHD model for incompressible plasmas and suitable boundary conditions assuming
a homogeneous equilibrium state. An ordering for some involved variables is proposed in
Sect. 3 and all physical variables are expanded in powers of e. Next the governing equa-
tions, to first-order in ¢, are obtained and the related eigenvalue problem is established.
Sect. 4 deals with the governing equations to second-order which, with the help of the
first-order solutions, yield the KdV equation and then the soliton solution is obtained.
Finally, in Sect. 5 we give a brief summary and a discussion of the results.

2. BAsIC EQUATIONS

We consider an incompressible and nondissipative plasma which is contained inside a
perfectly conducting cylindrical vessel of radius Rp. The plasma is separated from the
wall by a vacuum region. Also it is assumed that a constant magnetic field (along the
axis of the vessel) is present inside the axisymmetric and infinitely long plasma column,
while the vacuum carries a twisted magnetic field. The initial plasma radius is ro. We will
use a cylindrical coordinates system (r,6,z) with the z-axis coinciding with the axis of
the cylindrical vessel. Since we are interested only in axisymmetric perturbations, we set
/08 = 0.

Because the nondissipative Hall-MHD equations and the conditions under which they
are an adequate physical model were discussed elsewhere (30] we simply assume that
mode] as a starting point for this study.

The set of equations governing the motion of the plasma with the Hall current included
in Ohm’s law is

ov () 1
WY e st 20 7
T +v.-Vv Povp+f30( x B) x B, (7)
JB
E=Vx(va)—/\HVx((VxB)xB), (8)
V.v=0, (9)
v B =0, (10)

where v, p, and B are the fluid velocity, pressure, and magnetic field, respectively. The
remaining symbols were already defined.
The vacuum magnetic field BY satisfies

YxB =0, (11)

V.BY=0. (12)
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If p(z,t) denotes the form of the free-boundary (i.e., the plasma-vacuum interface),
the deviations from the initial position rg, say €, are given by

£ =(2,t) — 0. (13)
As the plasma surface must move with the plasma

%+V-V£=UT, (14)
with v, = v - é, denoting the radial component of the velocity, and €, being a unit vector
along the radial direction.

The plasma under consideration must evolve in such a way that the total pressure and
the normal components of the magnetic field be continuous across the free-surface. Like-
wise, the radial component of the vacuum magnetic field must vanish at the conducting
wall. Hence the appropriate boundary conditions are:

i) At the free-boundary,

2
T = % [BY]%, (15)

Bafi =0, BY-fi=0 (16)

where 7 is the total pressure and 7 is the unit vector along the outward normal direction.
ii) At the conducting wall, r = Ry,

BY ¢, =0. (17)

For simplicity we assume an equilibrium characterized by a constant plasma pressure
po and a constant mass density pg. The equilibrium fluid velocity is v, = vgé, with vg
constant and €, being the unit vector along the z-direction. On the other hand, as initial
magnetic field we choose

B. = Bybié., 0 <r < rg; (18)
v - To\ .
B"Y = Bgbgé. + By (?) €9, o < 1 < Ryp; (19)

where By, by and b; are constants and €y is the unit vector along the #-direction.

3. FIRST ORDER ANALYSIS

As stressed in the Introduction, we need define new “stretched quantities” using a small
parameter € that measures the importance of the dispersive terms. That parameter will be
also used to expand all physical variables in regular power series about their corresponding
equilibrium values. It results from (2) that a suitable parameter for expand in power series
is € = A pok? = C2(wa/wei)?, where wy; is the ion-cyclotron frequency. Hence to speak of €
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as small means we are using a long wavelength approximation in terms of a characteristic
length defined by Ay+/po. Note that the frequency at lowest order goes as €/? [see Eq. (2)],
so that for soliton-type solutions we require nonlinear terms to also be of order €/2. As
usual, the ratio of the time scaling and the space scaling must go as €; this is due, in
particular, to the frequency shift. In view of these considerations, in order to carry out
the nonlinear expansion of Egs. (7)—(11), let us introduce the following transformations:

= e R 20
3 ¢ & 20
— = —. 21
D~ e =1

Additionally we choose for the radial components the following scaling:

v — /%0, (22)
B, 248, (23)
BY < 2By, (24)

On the other hand, the physical quantities, say f, are expressed as power series in € about
the equilibrium state as

f=fetefitefat o, (25)

where f. is the corresponding equilibrium value.

Furthermore, the governing equations are supplemented by imposing that the pertur-
bations are localized (i.e., the plasma tends to the equilibrium state as |z|] — oo) and
bounded at r = 0.

Applying (20)-(25) to the set of equations (7)-(12) we have to first order:

@ =0, m =p+ BeB;,, (26)
ar
B(POUO'Uol S BeBGI) — 0, (2?)
dz

d(povou;, + 1) 0B;,
— 28
0z Be Jy ? (28)

9(Bevr, — vpBy,) 0% By,
— = 29
9z B 922 0, 28)

a(Be‘Ugl = ’U()Bgl) (')QB;_]
ABe——— =10, 30
0z + A dzor )
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where the subscript 1 stands for first-order quantities, whereas r, 8, and z refer to the r-,
-, and z-component, respectively. B, is Bgb; for short.
In a similar way, we obtain for the free-boundary, Eqs. (14)-(16),

06, "
Ur, = ’UDE, (3r)
B2
™ = Boby By, - :—051, (38)
0
o0&, 06
By, = Be——, o = —.
) 3 B, = Bobg % (39)
For the conducting wall we have
By =0. (40)

As it is obvious from Eq. (26), the total pressure is a function of z and t only, m, =
wilzit):

Substituting Eqgs. (32)-(33) into Eq. (28) it is obtained, after integrating in 7, an ex-
pression for B, , namely

= ol . B g
Bro="p v - 355 1)
On integrating Eq. (29) in z, making use of Eq. (41), leads to

830, _ povg = Bgv vor 87r1
8z ~— ABE TY 2)0,B? 9z °
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Combining Eq. (30) together with Egs. (27), (33), (41) and (42), yields

0%(rv,,) 1 0(rvey) | (B2 =povg)®  _ (povg — BZ) Om

or? ¢ Or piNviB2 ' 2M%BZpluy 9z

1 43
- (43)
a differential equation relating the perturbed radial velocity and the total pressure. In
obtaining Eq. (43) we have assumed that Ay, vg, po, Be, and v3 — B2 /po are non-zero. We

have also supposed that d=;/9z is not identically zero.
For the vacuum region, Eqgs. (34)-(36), we obtain the following solution:

R% -2 3B}

BY =
" 2r 0z ’ (34)
B} =0, (45)
where B} is a function of z and ¢ only.
From Egs. (37), (39) and (41) one arrives at
9z 2(pov} — BZ) 9z’
and by using Eqs. (39), (44) and (46) it is obtained
BB:; . Bobgl‘g 871'1 (47)

9z (R} —r2)(povd — BY) 9z

A combination of Eqs. (46) and (47) together with Eq. (38) yields the equation that
relates the equilibrium speed, vg, with the other equilibrium quantities, namely

.82 2 2b2 2
v%:—e—ﬁg—(l— “TU). (48)

This relation imposes a restriction upon the admissible values for vg and, as we will discuss
later, is related to the stability of the soliton solution.
Returning to Eq. (43), we might rewrite it as

d (3 d (T‘)) (B2 = pood)” 6(r) _ (pov} — BY) )

" A _ r,
dr \ rdr NapiugBZ 2% piug B2

casting the perturbed radial velocity as rv,, (7, 2,t) = ¢(r)dm(2,t)/0z, where ¢(r) is a
function to be determined. The ordinary differential equation (49) together with (48)
define an eigenvalue problem for ¢(r). The suitable boundary conditions for determining
¢(r) are
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2
75U
¢(ro) = 52— (51)
2(povj — B2)
Equation (51) comes of using Eqgs. (37) and (46).
The solution to Eq. (49) is easily obtained, it is
8(r) = dordi(er) + —2— (52)
¥)-= 3
T 2 (oovE - BY)
where ¢y is a constant and
B? o 2
0= e Povy ) (53)
AIIPO’UUBQ

Equation (52) satisfies condition (50) and also satisfies Eq. (51) provided that ¢g = 0 or
¢o # 0, with grg = xn1; 2,1 denotes the n'® root of Jy, with J being the ordinary Bessel
function of first order. Here the first root, z;; = 0, is neglected because we have assumed
for previous calculations that v2 # B2/py. The case v2 = B?/pg will be discussed later.
Therefore the solution to Eq. (49) is

2
r voT
e i) 4 2 ’
o) = ourds (e ) + (54)
with z,1 # 0 and arbitrary ¢g, or
-
o(r) = s——— (55)

2p0v3 — BY)'

with ¢g = 0.

As the values of vy depend on the particular equilibrium state through B., by, b;, po,
To, and Ry [see Eq. (48)], the condition prg = 2,; # 0 sets a restriction on the possible
values of Ay in terms of the specific equilibrium state. However, when one takes ¢g = 0,
Eq. (55) satisfies Eqs. (50) and (51) without any additional condition upon Ay.

4. SECOND ORDER ANALYSIS

In this section we present the governing equations (only those required for our purposes)
to second order and shall obtain the KdV equation for surface waves that are related
with the first order perturbed total pressure evaluated at the free-surface. The required
second-order equations are, for the plasma region:

% _ a(BeBrl - pUUOU,-]) + (po‘vgl - Bg])

ar dz r § £386)
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Odvg,  9(BeBg, — povovy,)

i T oz AoV Vit
B Br - r
+ By VB + (Bg, Br, TPoval’ul), (57)
duv B(BEBZ — Potol: )
0 3;1 = ?32 22— pov1 - Vv,
a‘.’Tg .
+B;-V.B,; — 57 (58)
1 8lee) . Bis
- s NP =
r  Or T 0z ’ (58)
18(rBy,) . @By
= = 60
r  Or 0z ’ 0
10(rBy)) 0By,
— = 1
r  or 0z 0, (61)
arBY drBY
e, g, (62)
0z ar
0By, 0B}
or 9z’ (64)
with V| = &.0/0r + €,0/0z and my = py + 3(Bj + B2, +2BoB:,).
At the free-boundary we have
081 &9 73} &
KL g TG e TEL 5 OB el 64
ot +U082+U16T+018z Vra (64)
OBY 1 _.2 3B: B?
v z1 Vv vV npVv 0 g2 0
= Lo i 65
my = B £ 5 T 2le + B} B}, + 202 € - §2, (65)
aBn 352 aél i
ey — Ba—— = By, —— =1,
& o +B,, - B e ', 0 (66)
9By, 0ty 31
LB =B B = 7
61 Ir 3 T2 BZQ 9z 21 g5 0, (6 )
whereas at the conducting wall, 7 = Rp, we have
BY, =0 (68)

Integrating Eq. (56) in r yields

Ty = /‘r P, z,t)dr' — Q(z,1), (69)
0 :
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where Q(z,t) is a function to be determined and

a(BeBﬁ = PO‘-’OUN)

#= 9z

1
T ;(PO“&, Bel)

By using Egs. (58), (60) and (69), it is obtained

T
0
Br“:r[;?e ! ' R(r', z,t) dv’

P e’z l) por 9Q(z,t)

2B, 8z °

d i d?" +

where

dv;, ; v,
at 0752

1
R(‘T",Z,t) = _Bl ' VJ_Bn -
Po

On the other hand, the solutions for the vacuum region are

8By, [Rg - (Rﬂ) R? —rz} By, " dS(z,t)
B e W

dz 2 r 0z3 8z '

R2r Ry R} —r1] &BY RI-r20S(z,t)
BY . =207 = 0 Z1 0 ’
- [ 4 o ( T ) i 167 823 * 2r gz

where S(z,t) is a function to be determined.
From Egs. (67) and (74) it is obtained

R-rjos_ .06 o6 0B
2rg Oz - L 92 or

5 [Riro " (@) " R} HTU} & BY,

To 16?‘[] 843 '

at m=u.
By using Eqs. (66) and (71) we have

d 9 [ro prf N7 ro
_Q - _2/ f T’M dr" dr' — g@ ' R, z,1) d¢
9z r5Jo Jo 0z "o Jo

2B.£) aBT1 282 06  2B.B:, 9
= _|.. —_—
ro Or ro 0Oz rg Oz

evaluating at r = rg.

65

(70)

(71)

(72)
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Now, differentiating 7, as given by Eq. (65), with respect to z and using Eq. (69) at
r = rp and (76), we obtain an expression for 7; that involves only perturbed quantities of
first order except for v.,, B},, and the terms containing £. vs, can be expressed in terms
of first order quantities by using Egs. (59) and (64). Likewise, we express B}, in terms
of first order quantities by utilizing Egs. (73) and (75). The terms involving &, disappear
by virtue of Eq. (48). Hence the remaining equation involves only physical variables of
first order which can be expressed in terms of 7 (z,t) using the results of the preceding
section. After some long but straightforward algebraic work, one gets

8 3?T1 (931T1

T + Momy— 97 + M3§3— = 0, (77)

My —
where
2povo
e PR 78
povg — B’ A
_ 3B} 1‘33!)0'1"0(122 +518)
4(povg - Bz) 2(R§ — §)%(povg — B2)?

_ 2povorod’(ro) — 2p0v0é(r0) — 1§ 1
2r3(povi — B?) povas — B2

2 o 2
PO’UU B 1 2 2 o(r)
— - |2 — By —— — d
i 2A]|PGUOB4 / T l: (p[)v[] E) T Yo &

3 ¢'(n]’
) it
2
= povo f / [2 S—BZ)M—UQJ] do dr
"po'UOB To o
2p0 ¢ (r) ¢'(r)
Y, [—‘ ~sg (%2)] v
2 21,2 2 .2
f’"_o Bbr0 Ry _Ro—vo
Mo =5 3 m =) (pond - BY) [RUI“(TO) 2 }

2p2; 2 4 _ .4
(R - 7'0)2(90”0 B?) 2 o 8

It is clear from Eq. (78) that M; # 0 for any non-zero value of vg. Now, dividing
Eq. (77) by M; and making the following change of variables:

(M M\ ,
) = (E) (E) w(“'!t)! (81)
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1/3
Ms
= [ 24 82
z <Ml) n, (82)

the KdV equation is obtained,

p oy B
Bt— i+ Q)a—” ks 61’]3 = (83)
(By the way, notice that M3/M, plays in dispersive media the analogous role that the
Reynolds number in viscous media.) As we have considered the evolution of localized
initial disturbances, |7;(z,0)| — 0 as |z| — oo and m;(z,0) = m(2), then the same is valid
for ¢ [see Eq. (81)].

If we move to a frame of reference moving at speed u in the 7 direction, a suitable change
of variables is ( = n — ut, then Eq. (83) has the well known stationary solution [31,32] of
soliton-type given by

$(¢) = 3usech® (3 (), (84)

assuming that uM; /M3 > 0.

5. DISCUSSION AND CONCLUDING REMARKS

In this paper we have shown the existence of solitary waves at the plasma-vacuum interface
of a plasma column confined into a perfectly conducting vessel. These waves are in fact
related to a tendency of the plasma column to sustain the balance of the total pressure
at the free-surface against a localized disturbance, and result from the balance between
nonlinearity and dispersion. The linear previously known [22-25] dispersion relations were
the starting point for this work. From them we were able to obtain suitable ordering in
terms of a positive small parameter related with the Hall term which is the cause of
the dispersive behavior. It was also shown that the linear dispersion relations reduce, in
the long wavelength limit, to those resembling shallow water waves. This suggested the
presence of solitary waves with the ordering previously obtained. Indeed, an expansion
in power series leads to the Korteweg-de Vries equation for which a soliton is a solution.
That is, in the regime we have analyzed, the disturbance propagates along the axis of the
cylinder like an undeformable pulse (or solitary wave) and its amplitude is proportional
to the first order total pressure at the plasma-vacuum surface.

Here we have considered only MHD waves with long wavelength. In the long wavelength
limit, the charge separation between electrons and ions can be ignored, this allowed us to
assume that the plasma is quasi-neutral.

It may be noted that the expansion given by Eqs. (20)-(24) is a good choice for the
present analysis in the sense that the leading order terms, respectively, can be the largest
among various ways of expanding. The treatment here used is related with a method of
reduction based on a singular perturbation expansion due to Taniuti and Wei [33].
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Next, we consider the particular case when Ug = B2/po, that is, when the flow velocity
is equal to the Alfvén speed. In this case instead of Eq. (43) we get

4 [vmde ] [om] _,
dr | r dr 2B, 9z |
This expression leads to either dm/9z = 0 which is irrelevant because it implies that

m = m1(t) at most, and therefore there is no localized perturbation, so that there does
not exist a soliton, or, with d7;/3z undetermined but non-zero, we hold

[2e-2]-

dr | r dr 2B.

and might recover the solitary solution. This twofold implication is not surprising; it has
a simple explanation on physical backgrounds. The nondissipative MHD description of
an axisymmetric plasma possesses, in general, three singular points [34,35] corresponding,
respectively, to magnetoacoustic waves, and slow and fast MHD waves. Here, by singular
points we mean that such values correspond to values of the Alfvén Mach number Q at
which the governing system of equations changes from elliptic to hyperbolic and viceversa.
Thus, ellipticity holds over the intervals 0 < Q% < 3, @? < Feladl =@ < Q?.
Here Q, and @ denote, respectively, the dimensionless slow and fast waves in MHD,
and 8 = v2/(v2 + v2). Consequently, in such regions there are neither hyperbolic nor
dispersive wave equations. On the other hand, the point v = v, seems to be a point of
transition but this is not the case; in fact, a close examination reveals that it corresponds
to an undetermined situation in the following sense. If D(Q) denotes the determinant
characterizing the type of equation, then D(Q) < 0 defines an elliptic system, whereas
D(Q) > 0 defines a hyperbolic system, and P(Q) = 0 remains undetermined. In the above
mentioned case, when Q = 1 (viz., vg = v, ), we have D(1) = 0, the undetermined case,
which gives rise to the twofold implication.

It is important to mention that the soliton solutions for the parallel case have been
used as a basis for the description of MHD turbulence in the solar wind by several
authors [36-38]. But, as was pointed out by Campos and Isaeva [39], the Hall effect
on Alfvén waves in the solar wind is significant beyond the 1AU. The solar wind is an
abundant source of finite amplitude hydromagnetic turbulence and so it can be regarded
as a natural plasma laboratory where nonlinear theories of finite amplitude waves can be
tested. On the other hand, large-amplitude hydromagnetic waves are present with a variety
of waveforms in association with interplanetary shocks [40] and in the environment of
comets. Also it should be noted that MHD fluctuations have been observed in the Earth’s
magnetosphere (specifically, at the magnetotail) with a period comparable to the local
proton gyroperiod (about 5 ~ 12 s), and it has also been observed that such fluctuations
have large amplitude. Therefore, the approximation and the model here considered are
applicable. In addition, as Roberts [41] has pointed out, the solar magnetic flux tubes
can support solitary waves. Consequently, the present treatment may be relevant to such
phenomena.
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One last point to be discussed is the stability of the obtained solution. The correspond-
ing stability condition, of course, is related with the sign of vy, Eq. (48). As mentioned
in the Introduction, when the nondissipative plasma column is incompressible and the
equilibrium current density is zero [23-25] the dispersion relation is the same for both the
MHD and the HMHD model [Eq. (1)], thus one could expect that the stability criteria
be the same. In fact, when the plasma completely fills the cylindrical vessel, the criteria
for linear and nonlinear stability are analogous in both models [19,42]. Moreover, as we
have shown, the soliton solution persists in both models. Thus, it is highly plausible
that the stability criterion, in the present case, be that obtained by Tayler [43] for the

. . L e b2r2 . .
corresponding situation in the MHD description, b? > % - R—f—_% for axisymmetric per-
0 0

turbations (viz., m = 0). It is clear from Eq. (48) that in the present case such condition
is fulfilled trivially taking into account that vg is a real number. Regarding the ordering
of the physical variables, the way it is done here is usual; however a detailed discussion
of this point and its relation with the stability conditions deserves a further study.

In this paper we restrict our study to the case of incompressible plasmas but apparently
the compressibility effects only modify the value of the coefficients in the nonlinear terms
but not the dispersive term, as a consequence the resulting behavior would be similar to
that discussed here.

In concluding this section, it should be mentioned that to examine the effect of removing
the condition of axisymmetric perturbations, upon the existence of soliton solutions, is
beyond the scope of the present study, but it is undoubtedly an interesting question.
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