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ABSTRACT. \Ve show the existence of soliton solntions in the frame of the Hall-MHD description.
The system under study consists in a nondissipativc illcompressiLlc plasma colurnn confined into a
cylindrical perfectly conductil1g vesse1. The plasma is separated from the wal! by a vacuum region.
The I<ortewcg-de Vries cquatioll is obtained by perfol'millg an ('xpallsioIl in power series. up to
second onler, of a small positin' para meter of every physical variable ami go\'erning equations after
stretching some variables and assuming a..xisymmetry. The soliton solution is showll explicitly and
its stability conditions are briefiy discussed. Likewise, the relevance of this rcsult for astrophysical
plasmas is also commented.

RESUMEN. Se muestra que existen soluciones tipo so~itÓIlen el marco de la descripción Hall-MHD.
Aquí se estudia el caso de una columna cilíndrica de plasma incomprensible y no disipativo que está
confinada dentro de un depósito cilíndrico perfectamente conductor. Entre el plasma y el depósito
media una región de vacío. La ecuación de E:orteweg-de Vries se obtiene efectuando un desarrollo
en serie de potencias, hasta segundo orden, en un parámetro positivo pequerio de las variables
físicas y las ecuaciones dinámicas previo reescalamiento de algunas de las variables, suponiendo
a..xisimetría. La solución tipo onda solitaria es obtenida explícitamente y se discuten brevemente
sus condiciones de estabilidad. Asimismo, la relevnncia de este resultado para plasmas a.¡;;trofísicos
es también comentada.

rAes: 52.35.Dj; 52.35.Sh; 52.55.Ez

1. INTltODUCTION

The study of non linear plasma waves is one of the most relevant ano interesting problems
from both physical and mathematical points of view. The case of solitary wa,'es is a
beautiful example. negarding the propagation ofw<,akly nonlilll'ar. long wawlength waves,
there are many experimental observations ranging from the hydrodynamics to mechanical
and electric models; of conrse, they include plasma physics. sol id state physies, magnetic
systcms, nonliuear opt.ics, alld so 011 (1].
The non linear effects playa very important role in the plasma theory, in faet they

are present in both laboratory [2] and astrophysical plasmas. llroadly speaking, they
are linked to tnrbulent dynamics [3-5) and solar plasmas [G); also they are particularly
interesting in relation with the study of Jupiter's Great ned Spot [7-10).

In the 70's thc studics of solitary wavcs in nOllconducting fiuids constitutcc1 an impor-
tant subject of mathematical physics [11) because they can provide useful information
respect to the properties of nonlinear dispersive media 112-141. Subse"uently, solutions of
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soliton type were obtained for plasmas confined into cylindrical devices in the frame of
the magnetohydrodynamic (MHD) model [15-18).

The aim of this paper is to study surface waves propagating at the interface of a plasma.
The plasma column is contained into a cylindrical perfectly conducting vesscl and is
separated from the cylindrical wall by a vacuum region. Unlike the usual treatments we use
the ideal magnetohydrodynamics (MHD) with a Ohm's law modified by including the Hall
termo This ideal Hall-MHD description is relevant to astrophysical and laboratory plasmas
because of the Hall mechanism for preferential acceleration of ions in the presence of an
electron background [19] and other related phenomena [20,21]. Regarding the dispersion
relations in the framework of the Hall-l\lHD description for the linear case, it is known
that the presence of the Hall-current yields a dispersive behavior of the corresponding
waves [22,23]. Here we will show that the total (thermodynamic plus magnetic) pressure,
to first-order in f (a small parameter that measures the importance of the dispersive
terms), satisfies the Korteweg-de Vries (KdV) equation which has a soliton-type solution.

An indicative feature of the possible existence of solitary waves, which provided the
motivation for the present work, arises when one looks at the limiting value, in the long
wavelength approximation, of the dispersion relations resulting from the linear analysis
for both z-pinch and slab configurations in the frame of the nondissipative MHD with
and without Hall effect in the Ohm's law. In order to clarify this point, let llS examine in
some detail the corresponding dispersion relations [23-25]. Firstly, we have

for a cylindrical plasma. Here w is the oscillation frequency of the linear pertllrbations;
WA is the Alfvén freqllency; and b¡ and bo are the normalized (to the equilibrium magnetic
field Bo) values of the magnetic field inside and olltside the plasma column, respectively;
Rn is the radius of the perfectly conducting cylindrical vessel and ro is the initial radills of
the plasma column; k and m denote, respectivcly, the axial and azimuthal wave nllmbers;
1m and Km are the modified I3essel functions. The prime stands for the first derivative
with respect to the corresponding argumento The dispersion relation (1) is valid for in-
compressible plasmas with homogeneous equilibrium in the frame of both ideal MHD and
ideal Hall-MHD; it has already been elsewhere [23].

Secondly, for a nondissipative plasma slab the following dispersion relations [22] are
obtained:

{

2
2 VS1

~2 = [(1 + !),2p k2):f:)' pl/2k(1 + !),2p k2)1/2]v22 11 o 11 o 4 11 o A'

(2)

(3)

where Vs the sound speed, VA the Alfvén speed, and ),Il = GIl/apo, with Gil denoting
the Hall scaling parameter, a is the ion charge-to-mass ratio, and Po is the constant
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equilibrium mass density. Expression (2) is valid for parallel (respect to the equilibrium
magnetic field) modes, while (3) is valid for perpendicular modes. It may be noted that
the Hall-current only affects the parallel modes, at least in the case of uniform plasmas.
Equations (2) and (3) were obtained using the ideal Hall-MHD description. It is worth to
mention that for a slab plasma, when one uses the ideal MHD description, a dispersion
relation is obtained of magneto-aconstic type.
It is clear from Eqs. (1)-(3) that the dispersive term is basically due to a couple

of effects. On one side there is the finite frequency effect, on the other there are the
geometric effects. The finite frequency effect means that the frequency of the linear wave
is not vanishingly small compared with the ion cyclotron freqnency, therefore it arises
from the Hall term in the generalized Ohm's law. The balancing of the dispersive terms
by nonlinearities can, at least in principIe, lead to soliton-type solutions of the non linear
equation.
As mentioned aboye there is another way to introduce dispersion, through geometric

effects. That is the case for a cylindrical plasma which is surrounded by a vacuum when
described by the ideal MHD model, a surface wave can propagate at the interface plasma-
vacuum. Thus the dispersive term, in this case, is connected to the finite width of the
cylinder.
Expressions (1) and (2) exhibit similar behavior as we discuss below but it is due to

different reasons. Specifically, Eq. (1) exhibits a dispersive term due to a geometric effect,
whereas Eq. (2) owes its dispersive term to a dynamic effect, the presence of the Hall effect.
In the present paper we combine both of them: a perfectly conducting cylinder containing
a plasma with Hall current and separated from the plasma column by a vacuum region.
On the other hand, it is known [I7] that for waves that are symmetric about the axis of
the cylinder, the nonlinear wave that arises is described by the Benjamin-Ono or the KdV
equation.
The precedent dispersion relations, Eqs. (1)-(2), in the long wavelength approximation,

reduce to

(4)

where c(k) is the phase speed, and Q and 13 are constants. For the cylindrical geometry,
relation (4) is valid when 11l = O. In the particular case of the plasma slab Q = 1 amI 13
is a constant which depends on the parameter A". Equation (4) is similar to the familiar
dispersion relation for shallow water in the linearized case [26-28]. \Vith the substitutions
w ~ i8/81, k ~ -iD/8z (i.e., by using the Fourier's theorem), Eq. (4) yields

(5)

where 1/J is the corresponding amplitude. Equation (5) can be obtained from the integro-
differential equation due to Whitham 129],

D1/J D¡j; 100 _ D</l(x,l)at + ¡J.7/JDz + -00 c(z - x) Dx dx = 0, (6)
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where e denotes the Fourier transform of the phase speed c(k) given by Eq. (4). In the
case under consideration Ji = O; that is, it corresponds to the linear case. Thus we expect
the governing equations at second order in < yield the KdV equation with a soliton like
solution.

This paper is organized as follows. In Sect. 2 we present the basÍC equations of the ideal
Hall-MHD model for incompressible plasmas and suitable boundary conditions assuming
a homogeneous equilibrium state. An ordering for sorne involved variables is proposed in
Sec\. 3 and all physical variables are expanded in powers af f. Next the governing equa-
tians, to first-order in <, are obtained and the related eigenvalue problem is established.
Sec\. 4 deals with the gaverning equatians to secand-arder which, with the help af the
first-arder solutions, yield the KdV equatian and then the soliton solution is obtained.
Finally, in Sect. 5 we give a brief summary and a discussion of the results.

2. BASIC EQUATIONS

\Ve consider an incompressible and nondissipative plasma which is contained inside a
perfectly conducting cylindrical vessel af radius Ro. The plasma is separated from the
wall by a vacuum region. Also it is assumed that a constant magnetic field (along the
axis of the vessel) is present inside the axisymmetric and infinitely long plasma calumn,
while the vacuum carries a twisted magnetic field. The initial plasma radius is ro. \Ve will
use a cylindrical coordinates system (r, 8, z) with the z-axis coinciding with the axis of
the cylindrical vessel. Since we are interested only in axisymmetric perturbations, we set
8/88 = O.

Because the nondissipative Hall-MHD equations and the conditions under which they
are an adequate physical model were discussed elsewhere [301 we simply assume that
madel as a starting paint for this study.

The set of equatians governing the mation af the plasma with the Hall current ineluded
in Ohm's law is

ay 1 1- + Y' 'VY= --'Vp + -('V x B) x B,
8t Po Po

aE75t = 'V x (Y X E) - AII'V x (('V x E) x E),

'V. y = O,

'V. B = O,

(7)

(8)

(9)

(10)

where Y, p, and B are the fluid velacity, pressure, and magnetic field, respectively. The
remaining symbals were already defined.

The vacuum magnetic field BV satisfies

'V x EV = O,

'V. EV = O.

(ll)

(12)
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If <p(z, t) denoles lhe form of lhe free-boundary (i.e., lhe plasma-vacuum inlerface),
lhe devialions from lhe initial position "0, say ~, are given by

~= <p(z, t) - "0. (13)

As the plasma surface must move wilh lhe plasma

D~
Dt + v . V~ = Ve, (14)

with v, = v . e, denoting lhe radial component of the velocity, and e, being a unit veclor
along the radial direclion.
The plasma under consideration must evolve in such a way that the total pressure and

the normal components of the magnetic field be continuous across the free-surface. Like-
wise, the radial component of the vacuum magnetic field must vanish at the conducting
wall. Hence the appropriate boundary conditions are:
i) At the free-boundary,

n .it = O, ny . it = O,

(15 )

(16)

where 7r is the total pressure amI i, is the unit veclor along the outward normal direclion.
ii) At lhe conducting wall, l' = Ro,

nY . e, = o. (1i)

For simplicity we assume an equilibrium characterized by a constanl plasma pressure
Po and a constant mass density Po. The equilibriul11 fluid velocity is Ve = voe, with 1'0

constant and e, being the unit veclor along the z-direction. On the other hand, as initial
magnetic field we choose

O :S l' :S "0;

ro < l' :S Ro;

(18)

(19)

where Bo, bo and b¡ are constanls and eo is the unit vector along the íI-direction.

3. FmST ORDEIl ANALYSIS

As stressed in the Introduction, we need define new "stretched quantities" using a small
parameler f that measures the importante of the dispersive terms. That para meter will be
also uscd to expand aH physical variables in n'gular powcr series about thcir corrcsponding
equilibrium values. It results from (2) that a suitable parameter fOl'expand in power series
is f = >'~IPOk2= C~(wA/w,¡)2, where w,¡ is the ion-cyclotron frequency. Hence to slwak of f
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as small means we are using a long wavelength approxirnation in tcrrns of a charactcristic
length defined by AII.jPO. Note that the frequency at lowest order goes as ,3/2 ¡scc Eq. (2)1,
so that for soliton-type solutions we require nonlinear terrns to also be of order ,3/2. As
usual, the ratio of the tirne scaling and the space scaling must go as ,; this is duc, in
particular, to the frequency shift. In view of these considerations, in arder to carry out
the nonlinear expansion of Eqs. (7)-(11), let us introduce the following transformations:

U 3/2 U
ul ~, ul'

U 1/2 U
Dz ---. t Dz'

Additionally we choose for the radial components the following scaling:

1/2Vr -+ £: Vr1

B 1/2Br--+f TI

(20)

(21 )

(22)

(23)

(24)

Gn the other hand, the physical quantitics, say f, are exprcsscd as power series in , about
the equilibrium statc as

f = fe + 'h + ,2h + ... , (25 )

where fe is the corresponding equilibrium value.
Furthermarc, the governing cquations are supplemented by imposing that the pertur-

bations are localized (i.e., the plasma tends to the equilibrium state as Izl -> (0) and
bounded at r = O.

Applying (20)-(25) to the set of cquations (7)-(12) we have to first order:

U1r1= O B Bur ' 1r1= PI + e '!'

u(PQVQVO! - BeBo!) _ O
uz '

u(PQVQV,! + 1r1) _ B uB,!
uz - e uz '

(26)

(27)

(28)

(29)

(30)
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= o,

~ a(rv,,) + aV'1 _ O
,. a" az - ,

1 a(]'B'I) aB'1---- +--=0,,. a,. az

~a(rB:,) + aB~, =0,
r a" az

a(rB~) a(rB~I)
Dz a,.

DB~,
-D =0,,.

= O. (31 )

(32)

(33)

(34)

(35 )

(3G)

where the sllbscript 1 stands for first-order qllantities, whereas r, O, and z refer to the r-,
0-, and z-component, respectively. Be is Bobi for short.
In a similar way, we obtain for the free-boundary, Eqs. (l4)-(IG),

(3i)

(38)

B = B a~¡
TI e OZ !

For the conducting wall we have

(39)

(40)

As it is obvious from Eq. (2G), the total pressure is a function of z and t only, 71"1 =
7I"¡(z,t).
Substituting Eqs. (32)-(33) into Eq. (28) it is obtained, after integrating in ]', an ex-

pression for Br}l narnely

B - PoVo v __ 1_' a7l"¡

,,- Be '1 2Be az

On integrating Eq. (29) in z, making use of Eq. (41), leads to

(41 )

vo]' a7l"¡

2.\IlBJ az . (42)
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Combining Eq. (30) together with Eqs. (27), (33), (41) and (42), yields

(43)

a differential equation relating the perturbed radial velocity and the total pressure. In
obtaining Eq. (43) we have assumed that ,\", vo, Po, Be, and v6 - B;/po are non-zero. \Ve
have also supposed that a1f¡ / az is not identically zero.
For the vacuum region, Eqs. (34)-(36), we obtain the following solution:

where Bi, is a function of z ami t only.
From Eqs. (37), (39) and (41) one arrives at

(44)

(45 )

a~¡
az

ro a1f¡
= 2(pov6 - Bn az '

(46)

and by using Eqs. (39), (44) and (46) it is obtained

aBi, Bobo1'6 a1f¡
---¡¡;- = (R6 - r6)(pov6 - Bn az .

(47)

A combination of Eqs. (46) and (47) together with Eq. (38) yields the equation that
relates the equilibrium speed, vo, with the other equilibrium quantities, narnely

v6 = B; _ B6 (1 _ 2b6r6 ).
Po 2po R6 - 1'6 (48)

This relation imposes a restriction upon the admissible values for Vo and, as we will discuss
later, is related to the stability of the soliton solution.
Returning to Eq. (43), we might rewrite it as

(49)

casting the perturbed radial velocity as rvr, (1', z, t) = l'(r)a1fl (z, t)/az, where 1'(1') is a
function to be determined. The ordinary differential equation (49) together with (48)
define an eigenvalue problem for 1'(1'). The suitable boundary conditions for determining
1'(1') are

1'(0) = O, (.')0)
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Equation (51) comes of using Eqs. (37) and (4G).
The solution to Eq. (49) is easily obtained, it is

where 00 is a constant and

fl; - pov5
0- ----
- - AIIPovoEe'

(52)

(53)

Equation (52) satisfies condition (50) aud abo satisfies Eq. (51) provided that </Jo= Oor
</Jo'1 O, with oro = Xnl; Xnl denotes the "tI. root of JI, with JI being the ordinary I3essel
function of first order. lIere the first root, XII = O, is neglected because we have assumed
for previous calculations that v; '1 E; / Po. The case v; = E; / Po will be discussed later.
Therefore the solntion to Eq. (49) is

(
r ) vor2</>(r) = </>0";1 Xnl-;- + 2( 2 _ E2)'

10 POVO e

with Xn! '1 O and arbitrary </>0,or

(54)

(55)

with </>0= O.
As the values of 1'0 depend on the particnlar eqnilibrium state through Be, bo, bi, Po,

ro, and Ro [see Eq. (48)], the condition oro = Xnl '1 O sets a restriction on the possible
values of AH in terms of the specific equilibrium state. However, when oue takes </Jo= O,
Eq. (55) satisfies Eqs. (50) and (51) without auy additional coudition upon A".

4. SECOND ORDER ANALYSlS

In this section we present the governing equations (only those re<¡uired for our purposes)
to second order aud shall obtain the KdV e<¡uatiou for surface waves that are relat",!
with the first arder perturbed total pressure evaluated at the free-surface. The required
second-order equations are, for the plasma region:

D7f2 a(BeEr, - povov,,) (pov~, - BJ,)
- = -------- + -----,D,. Do r (5G)
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OVo, o(B,Bo, - povovo,)
pOm = oZ POV¡ . V' .LVO,

+ DI . V' .LBO, + (Bo¡ Br, - POVO¡v,,) ,
r

OV,' o(B,B" - povov,,)
pOm = oz - POV¡ . V' .LV,¡

07f2
+ D¡ . V'.LB" - OZ '

1 o( l'Vr,) OV,'- o + -o =0,r r z

10(rBr,) oB"o +-0 =0,r r z

10(rB;',) oBi,----+--=0
l' 01' OZ '

(57)

(58)

(59)

(60)

(61 )

0(1' B~,l
oz

o(rBV)o, _ O
01' '

oB;',---¡¡;- ,

(62)

(63)

with V'.L= er%r +e,%z and 7f2 =P2 + !(B~, +B;, +2BoB,,).
At the free-boundary we have

O~l 0~2 O~l o~¡,,+ vo" +Vr," +v,'" - vr, = O,
vt vZ vr vZ

oBr¡ 0~2 o~¡
~¡-o- + Br, - Be" - B"" = O,r uZ uZ

oB;'. V V O~2 V o~¡~l----¡¡;:-+ Br, - B,o OZ - B,¡ OZ = O,

whereas at the conducting wall, l' = Ro, \Vehave

!ntegrating Eq. (56) in l' yields

7f2 =1r

P(r', z, t) dr' - Q(z, t),

(64)

(65)

(66)

(67)

(68)

(69)
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where Q(z, t) is a function to be determined and

By using Eqs. (58), (60) and (69), it is obtained

Br, =!!2..- r r'R(r',z,t)d,.'
rBe Jo

_!!2..- r r' ,.,f)P(r", z, t) d,." d,.' + por aQ(z, t),
Ber Jo Jo az 2Be az

where

( , 1 av" au"R r , z, t) = PoBl . \7 .lB" - 7it - v0ih""" - V¡ . \7 .lV".

On the other hand, the solutions for the vacuum regio n are

aB':, = [R6¡n (Ro) _ R6 - ,.2] a3B~ + aS(z,t),
az 2 ,. 4 az3 az

By _ [R61'¡ (Ro) Ró-r4] a3B':, R6-r2aS(z,t)-- - n - +~-- ---+------r, 4 r 16,. az3 2r az'

where S(z, t) is a function to be determined.
From Eqs. (67) and (74) it is obtained

[
R6"0¡ (Ro) RÓ-1'Ó]a3B':,+--n-+--~--
4 1'0 16ro az3'

at r = ro.
By using Eqs. (66) and (71) \Ve have

aQ _ 21
ro
1
r
' ,ap(,.", z, t) d'" d J 2po1ro

'R(' t) d '-a--2 T---- 1 1 --2 r T,Z, r
z ro O O az "0 O

2Be~¡ aBr, 2B; a~2 2BeB" a6- ---- + -- + -----ro ar 1'0 az "0 az '

evaluating at r = ro.

(70)

(71)

(72)

(73)

(74)

(75)

(76)
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Now, differentiating "2, as given by Eq. (65). with respeet to z and nsing Eq. (69) at
l' = ro and (76), we obtain an express ion for "¡ that involves only perturbed quantities of
first arder except for V,1:21B~'Jl and the terms cOlltaining ~2. v'::2 can be expressed in terms
of first order quantities by using Eqs. (59) and (64). Likewise, we express Bi, in terms
of first order quantities by utilizing Eqs. (73) and (75). The tenllS involving (2 disappear
by virtue of Eq. (48). Hence the remaining equation involves only physieal variables of
first arder whieh can be expressed in terms of ,,¡(z, t) using the results of the preeeding
seetion. After sorne long but straightforward algebraic work, one gets

a,,¡ a,,¡ a3,,¡
M¡ 7ft + M2"¡ az + M3 az3 = O,

where

MI= (78)

2 B2 1'0 [ ( ) ]2POVo-, 1 2 2 9 l'+ 2 2 4 - 2(povo - Bc)-- - Vol' dI'
2>'"povoB, O l' l'

2 1'0 [ 9
1
(1')] 2- -- l' 1 - POVo-- d1'1'2IJ2 l'o e O

2 B
2 1'°l' [ "'() ]2PaVO - e r 2 2 "p a

- 2 2 2 2 - 2(povo - Be) -- - voa da dI'
>'"PovoBe ro O O a a

+ 2~o ro [9"(1') _ q,(r)5!... (9'(1'))] dI',
ro Jo l' dI' l'

,2 IJ2b21'2 [( R) ¡¡2 ),2]10 o o o 2 o o - o
M3 = '8 + 2(R6 _ 1'5)(pov5 _ Bi) Ro In -;:;;- - 2

(79)

B5b6r5 [R6r51 (Ro) R~-r~]+ ---~~~--- -- n - + --~
(R6 - r5j2(pov6 - Bi) 2 ro 8'

It is clear from Eq. (78) that M¡ # O far any non-zero value of "o'
Eq. (77) by M¡ and making the following ehange of variables:

(
M¡) (M3)¡/3

"¡ = M
2

MI ¡jJ(z, t),

(80)

Now, dividing

(81 )
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::=

the KdV equation is obtained,

(
M3) 1/3 1
M¡ /, (82)

(83)

(By the \Vay, notiee that M31MI plays in dispersive media the analogous role that the
Heynolds number in viseous media.) As we have eonsidered the evolution of loealized
initial disturbanees, l"l(z,O)l ~ O as 1:1 ~ 00 and ,,¡(z,O) = "o(z), then the same is valid
for 1/1 [see Eq. (81)1.

Ir we move to a frame of referenee moving at speed 11 in the '/ direetion, a suitable ehange
of variables is ( = 1] - 11/, then Eq. (83) has the well known stationary solution [31,321 of
soliton-type given by

(84)

assuming that 1lJ\fI/M3 > O.

5. DISCUSSION AND CONCLUDlNG HEMAHI(S

In this paper \Vehave sho\Vn the existenee of solitary wa\"eS at the plasma-meuum interface
of a plasma eolnmn eonfined into a perfeetly eondueting vessel. These waves are in faet
related to a tendeney of the plasma eolumn to sustain the balance of the total pressure
at the free-surfaee against a loealized disturbanee, and result from the balance between
nonlinearity and dispersion. The linear previously known [22-251 dispersion relations were
the starting point for this \Vork. Frorn them \Ve \Vere able to obtain suitable ordering in
terms of a positive small parameter related \Vith the Hall term whieh is the cause of
the dispersive behavior. It \Vas also sho\Vn that the linear dispersion relations red uee, in
the long wavelength limit, to those resembling shallow water waves. This suggested the
presenee of solitary waves with the ordering previously obtained. Indeed, an expansion
in power series leads to the Korteweg-de Vries equation for whieh a soliton is a solution.
That is, in the regime we have analyzed, the disturbanee propaga tes along the axis of the
eylinder like an undeformable pulse (or solitary wave) and its amplitude is proportional
to the first order total pressure at the plasma-vaeuum surfaee.

Here we have eonsidered onl)" MHD waves with loug waveleugth. In the long wavclength
limit, the eharge separation between eleetrons a1l(1ions can be ignored, this allowed us to
assume that the plasma is quasi-neutral.

It may be noted that the expansion given by Eqs. (20)-(24) is a good choice for the
prCscllt analysis iu thc sensc t}¡at the leading order tcrms, rcspectively, can be thc largcst
arnong various ways of expanding. The treatment here used is related with a method of
rcduction basrd OHa singular pcrtllrbation ('xpaIlsioll due to Taniuti and \Vci 133].
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Next, we consider the particular case when v6 = B; / Po, that is, when the f10w velocity
is equal to the Alfvén speed. In this case instead of Ec¡. (43) we get

{.!!- [,¡Po d1J _ ~] } {u,,¡ } = O.
dr r dr 2Be UZ

This express ion leads to either u,,¡fuz = O which is irrelevant because it implies that
"¡ = ,,¡(t) at mosl, and therefore there is no localized perturbation, so that there does
not exist a soliton, or, with u,,¡fuz undetermined but non-zero, we hold

.!!- [,¡Po d1J _ ~] = O
dr ,. dr 2Be

and might recover the solitary solution. This twofold implication is not surprising; it has
a simple explanation on physical backgrounds. The nondissipative MHD description of
an axisymmetric plasma possesses, in general, three singular points [34,35J corresponding,
respectively, to magnetoacoustic waves, and slow and fast MHD waves. Here, by singular
points we mean that such values correspond to values of the Alfvén Mach number Q at
which the governing system of equations changes from elliptic to hyperbolic and viceversa.
Thus, ellipticity holds over the intervals O $ Q2 < {3,Q; < Q2 < 1, and 1 < Q2 < Qf.
Here Q, and Qr denote, respectively, the dimensionless slow and fast waves in MHD,
and (3 = vU(v;. + v~). Consequently, in such regions there are neither hyperbolic nor
dispersive wave equations. On the other hand, the point Vo = v A seems to be a point of
transition but this is not the case; in fact, a close examination reveals that it corresponds
to an undetermined situation in the following sense. If V(Q) denotes the determinant
characterizing the type of ec¡uation, then V(Q) < O defines an elliptic system, whereas
V(Q) > O defines a hyperbolic system, and V(Q) = O remains undetermined. In the aboye
mentioned case, when Q = 1 (viz., Vo = VA)' we have V(l) = O, the undetermined case,
which gives rise to the twofold implication.

It is important to mention that the soliton solutions for the parallel case have been
used as a basis for the description of MHD turbulence in the solar wind by several
authors 136-38]. But, as was pointed out by Campos and Isaeva 139], the Hall efrect
on Alfvén waves in the solar wind is significant beyond the lAU. The solar wind is an
abundant source of finite amplitude hydromaglletic turbulence and so it can be regarded
as a natural plasma laboratory \vhcl'c nonlinear theories of finite amplitude waves can be
tested. On the other hand, large-amplitude hydromagnetic waves are present with a variety
of wavcforms in association with interplanetary shocks [40] and in the environment of
comets. Also it should be noted that MHD f1uctuations have been observed in the Earth's
magnetosphere (specifically, at the magnetotail) with a period comparable to the local
proton gyroperiod (about 5 ~ 12 s), and it has also been observed that su eh f1uctuations
have large amplitude. Thercfore, the approximation and the modcl here cOllsidered are
applicable. In addition, as Roberts [41] has pointed out, the solar magnetic flux tubes
can support solitary waves. Consec¡uently, the present treatment may be relevant to such
phenomena.
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One last point to be discussed is the stability of the obtained solution. The correspond-
ing stability condition, of COlme, is related with the sign of Va, Eq. (48). As mentioned
in the Introduetion, when the nondissipative plasma eolumn is incompressible and the
equilibrium current density is zero [23-25] the dispersion relation is the same far both the
MHD and the HMHD model [Eq. (1)]' thus one could expect that the stability criteria
be the same. In faet, when the plasma eompletely fills the eylindrieal vessel, the eriteria
for linear and non linear stability are analogous in both models [19,42). Moreover, as we
have shown, the soliton solution persists in both models. Thus, it is highly plausible
that the stability eriterion, in the present case, be that obtained by Tayler [43] for the

eorresponding situation in the MHD description, b; > !-R~6~5,for axisymmetric per-
o ro

turbations (viz., m = O). It is clear from Eq. (48) that in the present case sueh condition
is fulfilled trivially taking into aceount that Va is a real number. Regarding the ordering
of the physieal variables, the way it is done here is usual; however a detailed discussion
of this point and its relation with the stability eonditions deserves a further study.
In this papel' we restriet our study to the case of ineompressible plasmas but apparently

the compressibility e!fects only modify the value of the eoeffieients in the nonlinear terms
but not the dispersive term, as a consequence the resulting behavior would be similar to
that discussed here.
In eoncluding this section, it should be mentioned that to examine the e!feet of removing

the eondition ofaxisymmetric perturbations, upon the existenee of soliton solutions, is
beyond the seope of the present study, but it is undoubtedly an interesting question.
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