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The role of dissipation in quantum Hall voltage profiles
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ABSTRACT. The effects of temperature and Ohmic conduction on the field configurations in IQHE
samples are investigated. The dissipative effects are identified as the cause of the Hall currents
to flow through the bulk of the samples in the experiments. Two regimes for the Hall effect
observation are traced out: the first one works at time intervals shorter than the relaxation time
and is characterized by Hall currents circulating near the boundary. The second one is related to
the stationary state in the presence of dissipation and is characterized mainly by bulk currents.
An approximate analytical solution of the equations describing the steady state is found. This
satisfactorily describes the oscillations of the experimental Hall voltage with the magnetic field for
interior sample points and leads to the quantization of the Hall resistance to one part in 10° or
better.

RESUMEN. Se investigan los efectos de la temperatura y la conduccién éhmica en las configura-
ciones de campo en el efecto Hall cudntico entero. Los efectos disipativos se identifican como las
causas de que las corrientes de Hall fluyan a través del voliimen en las muestras experimentales.
Se identifican dos regimenes para la observacién del efecto Hall cuantico: el primero trabaja en
intervalos de tiempo menores que el tiempo de relajacion y estd caracterizado por corrientes de
Hall circulando cerca de la frontera; el segundo se relaciona con el estado estacionario en presencia
de disipacién y se caracteriza basicamente por corrientes volumétricas. Se obtiene una solucion
analitica aproximada de las ecuaciones que describen el estado estacionario; ella describe satis-
factoriamente las oscilaciones del voltaje de Hall obtenido experimentalmente con la variacion del
campo magnético en puntos interiores de la muestra y produce una cuantificacién de la resistencia
de Hall en una parte en 10° o mejor.

PACS: 73.40.H; 72.20.My

Although the integer quantum Hall effect (IQHE) is essentially well understood [1], certain
aspects of this phenomenon are still under discussion. A particularly interesting problem is
concerned with the current and voltage distributions inside a quantum Hall device. While
semiclassical [2,3,4] and percolation (5] arguments lead to the propagation of currents in
the bulk of the two dimensional system, the dominance of edge currents is stressed in
other approaches [6,7,8].

On the other hand, the experiments [9,10,11] show currents that in the regions between
plateaus are uniformly distributed across the sample, and that inside plateaus flow mainly
through a zone whose spatial position is determined by the value of the applied magnetic
field. This zone may be thought as the path of minimal resistivity along the sample
(which should exist because, as a result of the two-dimensionality, the carrier density is
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inhomogeneously distributed across the sample). Consequently, we are led to the idea
that, in spite of the smallness of the Ohmic resistance in plateau regions, dissipative
effects may play a major role in determining current and voltage distributions in IQHE
devices. Another characteristic feature of the experiments which also underlines the role of
dissipation is the existence of a relaxation time for the attainment of the steady conductive
state. In the measurements reported by Zheng et al. [9], Ebert et al. [10], and Sample
and Salermo [11] this time is typically a few minutes, and grows as the temperature is
lowered.

Theoretical calculations of spatial field distributions have, up to now, ignored dissipa-
tion inside plateaus [12,13,14] and, consequently, can not reproduce the above mentioned
experimental results. We aim at presenting in this paper a semi quantitative analysis
—based on effective Maxwell equations, constitutive equations and Fermi distributions
of extended electron states at finite temperatures— which explicitly models the local
resistivity of the system and its effects on the Hall voltage profiles.

We start by considering an idealized Hall arrangement at approximately 4.2 K, in which
the electrons are forced to move in a strip of width L of the zy plane. The current flows
in the positive y direction, and the magnetic field B is oriented along the z axis.

In the steady state and neglecting diamagnetic effects, the Maxwell equations governing
the electric field distribution in the strip are the following:

0= (curl B); = @By (1)

¢

d(x) — ¢(0) =€L/ dt Anln|z/t — 1. (2)

|

In the first equation, we explicitly use the condition dyE; = 0, coming from the sym-
metry of the sample geometry, while in the integral Poisson equation (2), we take the
difference of potentials at y = const., and An(z) is the electron excess at point z.

To Egs. (1) and (2) we must add the constitutive equations

E, = p(x)J(x), (3)
E; = pll(m)'](x)’ (4)

which take care of Ohmic dissipation and momentum conservation in the z direction
respectively. Combining (1), (3) and (4) we may obtain another integral equation for the
difference ¢(z) — ¢(0), which properly stresses that this difference arises as a result of the
process of conduction:

[y dxlpu(t)/p(t)]
L dt/p(t)

d(z) — ¢(0) = =1 : (5)

Some qualitative properties follow directly from the system of Eqs. (1)-(5) (for example,
the dependence J o 1/p(z), which arises from Eq. (3) and the constancy of E,), but to
proceed further we must specify the properties of the 2D system, w.e., the magnitudes An,
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p and py. A very simplified, but essentially correct, picture may be obtained by extending
the analysis of Ingraham and Wilkes [15] to include the inhomogeneity in the spatial
distribution of electrons. The number of extended electron states in a magnetic field, at
inverse temperature 3, and at point z of the sample is written as

@) = 2 (@) = 5 [1-+ exp {Bhwe i+ ) - Bu@}] ™ (6)

i=0

where h is the Plank constant, w. = eB/(m*c) is the cyclotronic frequency, and by
p(z) we understand an effective position-dependent chemical potential, which takes into
account the difference between the energy of the electrons in the selfconsistent electric and
magnetic fields and the electrochemical potential, as well as the variation of the density
of states due to dielectric effects.

An, p and py are expressed in terms of n in the following way [15]:

An = — e [u — va), (7)
h 1
Pn=— m, (8)
h 1 (1 — by
Pze_gwcTZV(VQV")- (9)

1

Here, vy = v|,=,, is the background density, which is supposed to be independent of
z, but dependent on the magnetic field in order to model the contribution of localized
states. Note that in Eq. (7) the number of available electron states is not constrained. This
leads to a plateau width controlled only by the temperature On the other hand, we will
make use of the hypothesis of charge neutrality, f dr An(z) = 0, neglecting in this way
any externally induced charge or any possible accumulatlon of charge as a result of the
establishment of the steady conduction state. The expression for p is almost self-evident.
The Blocking of electrons in the i~-th Landau level, i.e., the factors 1 — v; prevents this
state to contribute to p when it is entirely filled.

Once all magnitudes in (1)-(5) are well defined, we may solve the system of equations.
By equating ¢(z) — ¢(0) in (2) and (5) we obtain an integral equation for u(z). An
approximate analytical solution of this equation can be obtained by expanding in Ay =
# — po, and solving in the linear approximation. 8 Ay shall obey the equation

dvy 2¢*BL
—Uaa(ﬁ,uo) Thie f dt fApln|z/t — 1], (10)

t.e., we obtain the following solution:

Bu = Buo + (11)

(1 2 332)1/2’
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with € = ITh%c[2me® BLugOvy/d(Buo)] ' We shall use a cutoff for the law (1 — z?)~!/2
near the edges because the condition of validity of the linear approximation is violated in
this region.

The physical picture emerging from the solution (11) is the following.

In the transition regions between plateaus the coefficient £ is very small, the p is essen-
tially constant, i.e., independent of z. This leads [through Eq. (9)] to a (high) resistivity
that is also almost independent of z. Consequently, the Ohm law holds and the voltage
drops are uniformly distributed.

On the other hand, inside plateaus the coefficient € grows, showing a maximum (z.e.,
a minimum of the resistivity) at a certain value of the field, B*. To be definite, let us
consider the situation in which the first i + 1 Landau levels are filled. Then at the value
B of the magnetic field, the point of the sample in which the resistivity is minimal is
determined by the equation

Bhuw (i + 3) — Bulx) = Bhw; (i + ) — Buo, (12)

where w? corresponds to the field strength B*. Actually, the current will flow through a
region in the vicinity of z in which the resistivity remains small, thus guaranteeing the
quantization of the Hall resistance. When B = B*, the current flows mainly through the
center of the strip but, as the slope of the curve p(z) is relatively small at z = 0, the region
of minimal resistivity in fact extends to the whole sample. When B is varied around B*,
we should observe a displacement of the current from one side of the strip to the other,
as it actually takes place in the experiments [9,10,11].

In Figs. 1 and 2 we show the Hall voltage drops calculated by inserting the approximate
solution (12) into Eq. (5). The curves represent the voltage in interior points (distributed
homogeneously across the sample) with one of the edges taken as ground. In Fig. 1 the
voltages are calculated taking the left edge as reference, while in Fig. 2 the right edge
is taken as ground (it would be equivalent to reverse the current or the magnetic field).
The values of the parameters employed in the calculation are typical. That is T = 4.2 K,
I = 10 pA, m* = .08 me, Buo = 50 (which corresponds to p = 3.27 X 10~ ergs or
to a density of 3.33 x 10! electrons per cm?) and L = 2 mm. We see that this simple
calculation reproduces the main features of the experimental curves [9,10,11] t.e., linear
shape in the interplateaus regions, quantization of the Hall resistance (to better that one
part in 10°), and oscillations near the centers of the plateaus.

Corrections to the linear approximation should not change the qualitative behavior of
the dependence pu(z) given by Eq. (12). We expect, for example, a finite p in the whole
interval, some asymmetry with respect to the center of the strip (in order to preserve
charge neutrality), etc. Another correction comes from the fact that the number of avail-
able electron states is bounded. This fact puts a bound on the plateau width and leads
to a sharper agglomeration of the potential curves around the value B*.

At this point, we want to stress that the calculations by MacDonald et al. [12], Heinonen
and Taylor [13], and Cabo et al. [14] are performed by setting p = 0 and leaving only
the electrostatic equation for the determination of the field distribution. It means that
we are working at time intervals less than the relaxation time for the attainment of the
conduction state (which is taken to be infinite, i.e., proportional to the inverse of the
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FIGURE 1. Hall voltages in equidistant interior sample points as a function of the applied magnetic

field. The region corresponding to the v = 2 plateau is shown. The left edge of the sample is taken
as ground.
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FIGURE 2. The same as in Fig. 1, but with the right edge taken as reference.

conductivity). As it follows from these papers, this regime shows currents flowing near
the boundaries. Thus, we are led to a two-regime picture of the Hall effect observation:
flowing near the boundary Hall and edge currents at time intervals shorter than the
relaxation time, and mainly bulk (or filamentary) currents in the steady conductive state.
It seems that this picture is partially confirimed by recent optical measurements of voltage
distributions in heterostructures under QHE conditions [16]. The complete explanation of
these experimental results and their relation with the measurements by means of electric
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contacts deserves, however, a turther analysis in connection with Buttiker’s picture of the
“zero-temperature” (edge current) regime [17].

In conclusion, we have identified the dissipative effects as the cause of the Hall current
to flow through the bulk of the sample in the experiments reported by Zheng et al. [9],
Ebert et al. [10], and Sample and Salermo [11]. The oscillating behavior of the Hall voltage
in interior points as a function of the magnetic field is also qualitatively explained, and
is found to be related to the displacement of the zone of minimal resistivity across the
sample. The quantization of the Hall resistance is guaranteed to the extent in which the
resistivity of this zone is near zero. The discussion seems to give a spatial description of
the bulk currents defined within the model of van Son de Vries and Klapwijk [18].

ACKNOWLEDGEMENT

The authors would like to thank Prof. Abdus Salam, the IAEA and UNESCO for hospi-
tality at the ICTP, Trieste where part of this work was done. During our stay, we benefited
from useful discussions with Profs. P.N. Butcher and R.L. Willet. We would like to thank
also the TWAS Research Grant Programme for support.

REFERENCES

1. R.E. Prange and S.M. Girving (eds.), The Quantum Hall Efect, Vol. 1, Springer Verlag, New
York (1987).

2. R.F. Kazarinov and S. Lurgi, Phys. Rev. B25 (1982) 7626.

3. S. Apenko and Yu Lozovik, J. Phys. C18 (1985) 1197.

4. B. Shapiro, Phys. Rev. B33 (1986) 8447.

5. S. Trugman, Phys. Rev. B27 (1983) 7539.

6. B.I. Halperin, Phys. Rev. B25 (1982) 2185.

7.  A.H. Mac Donald, Phys. Rev. 30 (1984) 4392.

8. M. Buttiker, Phys. Rev. B38 (1988) 9375.

9. H.Z. Zheng, D.C. Tsui and A.M. Chang, Phys. Rev. B32 (1985) 5506.

10. G. Ebert, K. von Klitzing and G. Weimann, J. Phys. C18 (1985) L257.

11. H.H. Sample and J.P. Salermo, Phys. Rev. B33 (1985) 1190.

12. A.H. Mac Donald, T.M. Rice and W.F. Brinkman, Phys. Rev. B28 (1983) 3648.

13. O. Heinonen and P.L. Taylor, Phys. Rev. B32 (1985) 633.

14. A. Cabo, J. Castifieiras, R. Gonzdlez and S. Penaranda, Phys. Lett. A153 (1991) 377.

15. R.L. Ingraham and J.M. Wilkes, Phys. Rev. B41 (1990) 2229.

16. P.F. Fontein, J.A. Kleinen, P. Hendriks, F.A.P. Blom, J.H. Wolter, H.G.M. Lochs, F.A.J.M.
Driessen, L.J. Giling, and C.W.J. Beenakker, Phys. Rev. B43 (1991) 12090.

17. M. Buttiker, in Nanostructure Physics and Fabrication, Eds. M.A. Reed and W.P. Kirk,
Academic Press, Boston (1989).

18. P.C. van Son, F.W. de Vries and T.M. Klapwijk Phys. Rev. B43 (1991) 6764.



