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The role of dissipation in quantum Hall voltage profiles

A. CABO A:"D A. GO:"ÚLEZ

Centm de Matemáticas y Física Teórica
Calle E :l09, Vedado, Habana 4, Cuba

Hecibido el 31 de agosto de 1993; aceptado el 20 de octubre de 1993

ABSTRACT. Thc effccts oC tcmperaturc alld Ohmic conduction on the field configurations in IQHE
samples are illvestigatcd. TIJc dissipative effects are idelltified as the cause oC the Hall curreuts
10 flow through the bulk of the samples in the experiments. Two regimes for the Hall dfect
observation are traeed out: thc first one works al time intervals shorter than the relaxation time
and is characterized by Hall Cl1lTcnts circulating near the boundary. The second one is rclated to
tIte stationary statc in the presence oC dissipation and is characterized maillly by bulk currents.
AH approxilllate analytical solution of the equatiolls describing the steady state is faund. This
satisfactorily describes the oscillations of the experimental Hall voltage with the magnetic ficld for
interior sample points ami leads to the quantization of the Hall resistan ce to OIle part in 105 or
bet ter.

RESUMEN. Se invl'stigau los cf('elos de la temperatura y la conducción óhmica ell las configura-
ciones de campo en el efecto Hall cuántico Plltero. Los efectos disipativos se identifican como las
causas de que "LO;; corrientes de Hall fluyan a través del vohímen en las muestras experimentales.
Se identifican dos regímcnes para la obscn'ación del efecto Hall cuántico: el primero trabaja ell
intervalos de tiempo ml'lIorcs que el tiempo de relajación y está caracterizado por corrientes de
Hall circulando cerca de la frolltera; el segundo se relaciona con el estado estacionario en presencia
de disipación y se caracteriza básicamente por corrientes volumétricas. Se obtiene una solución
analítica aproximada de la." ('('uaciones que describen el estado estacionario; ella describe satis-
factoriamente las oscilacioll~s d('l voltaje de Hall obtenido experimentalmente con la variación del
campo magnético en puntos interiores de la muestra y produce una cuantificación de la resistencia
de Hall en una parte en 105 o mejor.

PACS, 73AO.ll; 72.20.~ly

Although the integer quantumllall clfect (lQHE) is essentially wellnnderstood [1], certain
aspects of this phenornenon are still under discussion. A particularly interesting problem is
concemed with the current and voltage distributions inside a quantulll Hall device. While
scmiclassical [2,3,4) and pereolatioll [5] argumcnts lead to the propagatioll of CtlrrCllts in
the bulk of the two dimensional system, the dOlllinance of edge currents is stressed in
other approaches [G,7,Sj.

On the other hand, the experiments [9,10,11] show currents that in the regions between
platealls are unifonnly distribu(ed across the sample, and that inside plateaus now mainly
tltrough a ZOIle whose spatial positioll is detcrmined by the value of the applied magnetic
field. This zone may be (hollght as (he patio of millilllal resistivity along ti", sampl,'
(which shoul<l exist hl'c<luse, as a n'stilt of t}¡l' t\ ....o-dill1cl1sionality, lhe carrier dpllsity is
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inhomogeneously distributed across the sample). Consequently, we are led to the idea
that, in spite of the smallness of the Ohmic resistance in plateau regions, dissipative
e!fects may playa major role in determining current and voltage distributions in IQHE
devices. Another characteristic feature of the experiments which also underlines the role of
dissipation is the existence of a relaxation time for the attainment of the steady conductive
state. In the measurements reported by Zheng et a/. [9), Ebert et al. [10]' and Sample
and Salermo [11) this time is typically a few minutes, and grows as the temperature is
lowered.

Theoretical calculations of spatial field distributions have, up to now, ignored dissipa-
tion inside plateaus [12,13,14) and, consec¡uently, can not reproduce the aboye mentioned
experimental results. \Ve aim at presenting in this paper a semi c¡uantitative analysis
-based on e!fective Maxwell ec¡uations, constitutive equations and Fermi distributions
of extended electro n states at finite temperatures- which explicitly models the local
resistivity of the system and its e!fects on the Hall voltage profiles.

\Ve start by considering an idealized Hall arrangement at approximately 4.2 K, in which
the electrons are forced to move in a strip of width L of the xy plane. The current f10ws
in the positive y direction, and the magnetic ficld n is oriented along the z axis.

In the steady state and neglecting diamagnetic e!fects, the Maxwell equations governing
the electric field distribution in the strip are the following:

0= (curl E), = DIEy,

</>(x) - </>(0) = eL JI dt C>n In Ixlt - JI.
-1

(1)

(2)

In the first equation, we explicitly use the condition DyEI = O, coming from the sym-
metry of the sample geometry, while in the integral Poisson ec¡uation (2), we take the
di!ference of potentials at y = const., and C>n(x) is the electron excess at point x.

To Ec¡s. (1) and (2) we must add the constitutive equations

Ey = p(x)J(x),

Ex = PII(:r)J(x),

(3)

(4 )

which take care of Ohmic dissipation anu momcntum cOIlscrvatioll in tlle x dircction
respectively. Combining (1), (3) and (4) we may obtain another integral equation for the
difference </>(x) - </>(0), which properly stresses that this difference arises as a result of the
process of conduction:

q,(x) _ q,(O) = _JI; d~[PII(t)/p(t)1
Ldtl p(t)

(5)

Some qualitative properties follow directly from the system of Eqs. (1)-(5) (for example,
the dependence J ex 1/ p(x), which arises from Eq. (3) and the constancy of Ey), but to
proceed further we mnst specify the properties of the 2D system, ¡.e., the magnitndes C>n,
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P and PI!' A very simplified, but esselltially correct, picture may be obtained by extending
the analysis of Ingraham and Wilkes iJ51 to include the inholllogeneity in the spatial
distribution of electrons. The nUlllber of extended electro n states in a magnetic field, at
inverse temperature !J, and at point x of the sample is written as

00

n(x) = ~~ v(x) = ~~L [1 +exp{!Jliwc(i+ !) -!J/l(x)}r
1
, (6)

i=O

where h is the Plank constant, Wc = eB/(m.c) is the cyclotronic frequency, and by
/l(x) we understand an e!fective position-dependent chelllical potential, which takes into
account the di!ference between the energy of the electrons in the selfconsistent electric and
magnetic fields and the electrochemical potential, as well as the variation of the density
of states due to dielectric e!fects.

6n, P and PI! are expressed in terms of 11 in the following way 115]:

eB
6n = -[v(x) - ve],

hc

h 1
PI! = '2 -(-)'e v x

P = !!:.. _1 L v;(l - v;).
e2 WcT. v2

•

(7)

(8)

(9)

Here, Ve = vl!,;!,o is the background density, which is supposed lO be independent of
x, but dependent on the magnetic field in order to mode! the contribution of localized
states. Note that in Eq. (7) the number of available electron sta tes is not constrained. This
leads to a plateau width controlled only by the temperature. On the other hand, we will
make use of the hypothesis of charge neutrality, J~l dx 611(X) = O, neglecting in this way
any externally induced charge 01' any possible accumulation of charge as a resnlt of the
establishment of the steady conduction state. The expression for P is almost self-evident.
The Blocking of electrons in the i-th Landau level, ¡.e., the factors 1 - v; prevents this
state to contribute to P when it is entirely filled.

Once all magnitudes in (1)-(5) are well defined, we may solve the system of equations.
By equating 4>(x) - 4>(0) in (2) and (5) we obtain an integral equation for I'(X). An
approximate analytical solution of this equation can be obtained by expanding in 61' =
/l - J1.0, and solving in the linear approximation. !J 61' shall obey the equation

¡.e., we obtain the following solution:

~x
!JI' = !JIto+ (1 _ X2)1/2'

(10)

(11 )
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with ~ = Ih2c[27re4BLvBovB/O(¡JIIO)]-I. \Ve shall use a cutoff for the law (1 - x2)-1/2

near the edges because the eondition of validity of the linear approximation is violated in
this region.
The physical picture emerging from the solution (11) is the following.
In the transition regions between plateaus the coefficient ~ is very small, the l' is essen-

tially constant, i.e., independent of x. This leads Ithrough Eq. (9)) to a (high) resistivity
that is also almost independent of x. Consequently, the Ohm law holds ami the voltage
drops are uniformly distributed.
On the other hand, inside plateaus the coefficient ~ grows, showing a maximum (i.e.,

a minimum of the resistivity) at a certain value of the field, B'. To be definite, let us
eonsider the situation in whieh the first i+ 1 Landau levels are filled. Then at the mlue
B of the magnetie field, the point of the sample in whieh the resistivity is minimal is
determined by the equation

( 12)

where w~ eorresponds to the field strength 13'. Aetually, the eurrent will fiow through a
regio n in thc vicinity oC x in \vhich the rcsistivity rcmains small1 thus guarantccitlg thc
quantization of the Hall resistanee. \Vhen B = B', the eurrent fiows mainly through the
eenter of the strip but, as the slope of the curve ¡,(x) is relatively small at x = O, the regio n
of minimal resistivity in faet extends to the whole sample. \Vhen B is varied aronnd 13',
we should observe a displaeement of the eurrent from one side of the strip to the other,
as it aetually takes place in the experiments [9,IO,l1j.
In Figs. 1 and 2 we show the Hall voltage drops ealculated by inserting the approximate

solution (12) into Eq. (5). The curves represent the voltage in interior points (distributed
homogeneously aeross the sample) with one of the edges taken as ground. In Fig. 1 the
voltages are ealculated taking the left edge as referenee, while in Fig. 2 the right edge
is laken as ground (it would be equivalent to reverse UlC eurrent or the magnetie field).
The values of the paramelers employed in the ealculation are typieal. That is T = 4.2 K,
1 = 10 I/A, m' = .08 lIle> ¡J¡,O = 50 (whieh eorresponds to l' = 3.2i X 10-14 ergs or
to a density of 3.33 x 1011 eleelrons per em2) and L = 2 mm. \Ve see that this simple
ealculation reproduces the main fealures of the experimenlal curves [9,10,111 i.e., linear
shape in Ihe interplateaus regions, quantization of the Hall resislanee (to better that one
part in 105), and oseillations near the eenters of the plateaus.
Correetions to the linear approximation should not ehange the qualitative behavior of

the dependenee I'(X) given by Eq. (12). \Ve expect, for example, a finite l' in the whole
interval, some asymmetry with respeet to the eenter of the strip (in order to preserve
eharge neutrality), etc. Another eorreetion comes from the faet that the number of avail-
able eleetron states is bounded. This faet puts a bound on the plateau width and leads
to a sharpcf agglomcration oC the potcntial curves around the value n*.
At this point, we want to stress that the ealculations by i\lacDonald el al. [121, lIeinonen

and Taylor [13J, and Cabo el al. [14] are performed by setting p = O and leaving only
the eleetrostatie equation for the determination of the field distribution. It means that
we are working at lime intervals less than the relaxalion lime for the attainment of the
eonduction stale (whieh is laken lo be infinite, i.e., proporlional lo Ihe inverse of Ihe
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FIGURE l. Hall voltagcs in equidistant interior samplc points as a function of the applied lIlagllctic
field. The rcgioll correspon<iing to the lJ = 2 platean is showll. The Idt edge of the s<'llllplc is takcll
as ground.
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FIGUHE 2. The salllc as in Fig. 1, bul with thc r¡ght edge takell as referencc.

conductivity). As it follows from these papers, this regime shows currents f10wing near
the bOllndaries. ThIlS, we are led to a two-regime picture of the Hall effect observation:
f10wing near the bOllndary Hall and edge currents at time intervals shorter than the
relaxation time, and mainly bulk (or filamentary) currents in the steady condllctive 8tate.
It seClllS tllat this picture is part.ially confirlllcci by recent aplical measurClllcnts of voltagp
distriblltions in heterostrllctures IInder QHE conditions IIGI. The complete explanalion of
thesc experimental resu1ts atld thl'ir relatioll with tIle measurClllcnts by mean:; of el('ctric
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contacts deserves, however, a turther analysis in connection with I3uttiker's pictnre of the
"zero-temperature" (edge current) regime [171.

In conclusion, we have identified the dissipative effects as the cause of the Hall current
to flow through the bulk of the sample in the experiments reported by Zheng el al. [9]'
Ebert el al. [la], and Sample and Salermo [11]. The oscillating behavior of the Hall voltage
in interior points as a function of the magnetic field is also qualitatively explained, and
is found to be related to the displacement of the zone of minimal resistivity across the
sample. The quantization of the Hall resistance is guaranteed to the extent in which the
resistivity of this zone is near zero. The discussion seems to give a spatial description of
the bulk currents defined within the model of van Son de Vries and Klapwijk [181.
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