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ABSTRACT. \Ve describe the current approach to a set of linear cOllpled equations with "random"
coefficients. These are thought of as models for superlattices when charge effects are ignored or
reduced to a one-electron sitllation. Other formally analogous models from solid state physics are
quoted as well. Historieal evolution of model Upotentials" is presented. Current methods are also
outlined together with our own novel method of decimation with real frequencies, which has been
used to derive almost aH of our results, sOllle of which are presented at the end, as an i1lustration
of the eurrent questions in this fie1d. !\Iainly, we approach the eigenvalue-cigcnveetor problem, but
for space reasons the transport properties are not diseussed. However, we do discuss multifraetal
analysis, as a tool for characterizatioll. Extensions to higher dimensions are only rnentioned slightly.
\Ve stress the pedagogical interest of tlle field as an introduction to theoretical research which does
not require large computational facilities.

RESU~1E:-;. Describimos cómo resolver un sistema de ecuaciones lineales acopladas con coeficientes
"al azar" . Se toman como modelos para superredes cuando se pueden ignorar efectos de carga o
reducir a un problema de un electrón. Se mencionan otras aplicaciones dentro de la física del sólido.
Se presenta la evolución histórica de los "potcnciales" modelo. Se discuten los métodos más antiguos
de rcsolución junto con nuestro método más nuevo de decimación con frecuencias reales. Esto se ha
usado para derivar casi todos nuestros resultados, algunos de los cuales se presentan al final, como
ilustración de los problemas que se pueden estudiar en el campo. Discutirnos casi exclusivamente
el problema de encontrar los autovalorcs y los autovectores, pero por razones de espacio, omitimos
las propiedades de transporte. Sin embargo discutimos el análisis multifractal como herramienta de
caracterización. Sólo muy brevemente mencionamos extensiones a dimensiones mayores que uno.
Remarcamos el interés pedag()gico del campo como una introducción a la investigación en física
teórica que no requiere grandes facilidades computacionales.

rAes, 71.10.+X; 71.50.+1; 71.25.-s

l. Ir-:TRODUCTIO:-:

Basically, the problem to be discllssed is the linear, discrete, nearest-neighbor connected
set of e<¡uations with coefficients that are either random, or bllilt from sorne formation
rule or vary as a function non-commellsnrate with the lattice sitcs. It can be called the
non-translational discrete Schriidinger type problem. Because of the laek of translational
symmetry \Ve cannot Fourier transformo The aboye mentioned topie should be a chapter
of the theory of disorder, althollgh it is not clearly pointed out in current literature on
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the subject [1-31. ~lost of the discussiolls here are con cerned with I-d equations, however,
we wil! point out few extensions to higher dimensions.

Connection with physics comes from studies of superlattices, mainly where now, due
to the beam epitaxy technique [4], different arrangements can be formed with a special
type of "disorder" along one direction.

Several physical systems of current interest can be described by these linear models:
crystals containing modulating periodic potentials of a period different from that of the
underlying latticc, either commensurate or incommcnsurate with it [5), electrol1s in 2-
d square lattice in a perpendicular magnetic field [6]' the Schrodinger equation with
arbitrary potential of atomic type (through the construction of the Poincaré maps of the
problem) [7]' superconducth.e networks (through the De Gennes-Alexander theory) [8])
etc.

As for superlattices the experimental realization has been achieved in various ways.
Apart from periodic hetero-structures 14,9] a Fibonacci chain [ID) and a hierarchical
arrangement [111 have been discussed. Also magnetic properties can be studied with mag-
netic superlattices when the quantum Ising model in traverse magnetic field is used [12].

\Ve present here an introductory ovcrview of the field, giving several currently used
examples of "disordcrll or non-translational "potential". \\'e discuss the current methods,
together with the method of decimation that we have applied in one particular way and
that we have used quite successful1y in the field iJ3-15].

\Ve present briefly what is expected to be calculated, il1ustrate some of the questions,
etc. \Ve also discuss the multifractal analysis and use it as a tool to characterize different
regimes. \Ve present here some of our results and give references to related literature.

As far as methods are concerned we beca me very interested in that of decimation
which in I-d is exact and, at I,'ast with our procedure [13-15] al10ws excel1ent solutions
for non-translational problems. ¡'[ost authors use it through Green's functions formulation
where the complication of imaginary parts arises. At least in I-d decimation can solve
bigger samplcs than difect diagonalizatioJ1, having bcsides othcr advantages ovcr the direct
diagonalization of the sta tes.

\Ve have extended it to 2-d iJ6] but ad-hac approximations are needed and it requires
more computation. At present, we study the possibility of using it with a many body
term in nontrivial mean-field approximation 117]. This type of problem, we think, has
many model applications in solid state physics. For example, ill fief. [16] we deal with
superconductivity through the mean field negative U Hubbard mode!. \Ve could also think,
perhaps, of charge effects in superlattices [18]. So, to our knowledge, the field is open.

The overview is organized as fol1ows: In Sec!. 2 we present the problem as the discrete
Schrodinger equation in I-d aJl(1 we also give the equations for some formal1y analogous
problems from solid state physics such as phonolls, low-temperature magnons, the tight-
binding electrons alld the superconducting networks. In Sec!. 3 we present and discuss, in
a historical way, some currently studied "potentials" for disorder such as the binary al1oy,
the Anderson model of localization, the Aubry model, the quasicrystalmodel through the
Fibonacci chain, the Tue-Morse sequential model and the hierarchical mode!. In SeC!. 4
we discuss the numerical solutions; first the traditional methods of direct diagonalization.
the transfer matrix approach and the continuous fraction method. Then we devclop in
sorne dclail the new mcthod of dccimatioll, uascd OH thc rcnofmalization-group-i<icas, and
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especially our novel approach to it. In Sect. 5 we introduce the concept of multifractality
as a tool for the classification, by dimension, of a set formed by the wave-functions of
the aboye mentioned models. In Sect. 6 we show sorne of our numerical results for wave-
functions, integrated densities of states and multifractal singularity distribution function
¡(ex) in order to show connections between those quantities and collaborate in solving
sorne polemical results. AII this was obtained with our procedure of decimation, so it is
also a proof of the efficiency of this method with the cases where there are other available
results. We finish briefly, summing up with sorne conclusions.

We see this job as a kind of pedagogical overview in order to show possibilities in the
area. It is specially useful as a starting point for research in the sol id state field, specially
where large computers are not available.

The overview is mostly based on Lic. F. Lema's Master Thesis work (Bariloche, Dec.
91, unpublished) (in Spanish) where more details can be found.

2. THE DISCRETE l-D SCIlRODINGEIl P!lOBLEM AND OTIlEIl ANALOGIES IN SOLIOS

a) The l-d Schriidinger equatian far ane-pa1'licle

This is the basic formulation. We write the one particle Schriidinger equation l-d

_!!:.. a2:~x) + V(x)1/!(x) = E1/!(x).
2m x

We now set a lattice of spacing a. We discretize the operator as follows:

h2 (,¡,(.+a)-,¡,(.) ,¡,(.)-,¡,(.-a»)
__ a a + V(x)1/!(x) = E1/!(x).
2m a

(1)

(2)

The discrete limit of this notation has to be analyzcd in dctail. However, for the local
potentials used here, we can generalize the problem in the following discrete equation
(taking it as a starting point):

-tfn+! + fnfn - tfn-l = Efn' (3)

This is a basic set of linear equations with "random" diagonal coefficients. \Ve are
interested in determining the eigenenergies E and the eigenfunctions fn. This is called
"diagonal disorder". In other applications we can also make t site-dependent (off diagonal
disorder).

b) Normal rnades

For normal modes we postulate the temporal dependence eiwt and have

(c/>ll - w2 MIl). u¡ +¿c/>ll' • U¡' = O,
l'~l

(4)
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where MI is lhe mass ou sile [ aud "({' = 9(R{ - Re) is lhe force conslant. Wilh onl)'
nearesl neighbor inlNaction "'e have lhe formal equh'alence wilh Eq, (3):

I I I
-\/ "/,/+1 ' "/+1 + -\/ "11 ' "/ + \/ "/,/_1 ' "/_1
• 1 • 1 1 1

(5)

where "/ is lhe displaC('IIll'nl from lhe equilibrium poslllOn under lhe aclion of elaslic
forces as defiued above, lu l-d, il was sludied for example iu ReL [14),

e) Tite 11Laynetic excitatio7ls

Those are elll'reull)' d,'scribed b)' lhe II<'iseuberg Hamilloniau

ff = -~ L JII'51, 51',
11'

(G)

where J is tile lIlagllctic ex('liallgc (,Ollstallt.

Lel us suppose lhe felTomaguelie case, wilh 5¡Z) < 5, \Ve write down lhe equalion of
mol ion for lhe operators 51(0<) iu Iieiseuberg l'('preseutation:

D5(-)

'
,,,,-1-,- - _? ~ [JI! 5(-)5(2) _ J.15(-)5(2)]DI - - L Il' I J' ll' t' 1 .

t' #-1
(7)

If we suppose lhal eaeh 51(-) behanos as c'u" aud for ahuosl ordered s)'stem (low
lemperalure Solulion) we oblaiu

(

~ I! ) (-) ~.1 (-)25L JII, - {¡w 51 - 25 L JII,51, = O
1';0'1 1';0'1

For onl)' nearest ueighbors:

(8)

d) Tite elee/mns on tite /IJUiee

In the tight biudiug approximatiou, the lattice coulributiou wilh a pOleutial lhal is lll,.
liuear superposition of atomie potentials \,¡(" - RI), where R/ i5 the ionic positiou:

V(,.) =L V{(,. - R¡),
1

(lO)
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\Ve now write down the Schriidinger equation, with a solution given as a linear combination
of atomic orbitals:

'P(r) =L ujn) <t>í' (r - RI).
I,n

\Ve get a set of equations for the coefficients uin):

(11)

«~n) _ E) u~n) + L L Ví¡~'~)u~f) = O. (12)
I';él ~

The Ví~~'~)are the overlap integrals between the different orbitals and the potential. For
nearest neighbor overlaps only (narrow bands) we get

This is the classical equation from the field of Anderson localization [191.

e) Superconducting networks

This description [81 starts with the linearized Ginzburg-Landau equations for nets of thin
wires, which behave as weak links joining the nodes of the network. On a l-d branch which
joins nodes a, b and has length 1= L/~ (~ the coherence length) the order parameter reads

() exp(ha,) [./, . (1) . )' ],p s = . 1 'l'a SIll - S +,pb exp -l"fab sm s ,
5111

(14)

where e is the linear coordinate along the branch from a; 1'a, = h f.' .4(1') di' with .4<Po a

the vector potential of the applied field, 'Po is the flux quantum and 'Pa = l,palein and
,pb = l'Pblei~ are the values of ,p at a, b.

\Vhen the quantum mechanical current associated with the order parameter is imple-
mented with a generalized Kichhoff cnrrent law, one obtains linear equations for the order
para.meter at the nodes, where compatihility conditions lead to the phase diagra.m.

For example, for a geometry of infinite length ladder, the equations are

3 I.,,¡ - h.d _ -h.d - ./,1 - O
COS 'fin e 'f'n-l e If'n+l o/n - 1

3 /./,1 -h ./,1 h ./,1 ./,1 - O
COS 'fin - e 'f'n-l - e 'f'n-l - o/n - 1

(15 )

where n indicates the node, T 1 refer to the branch and 21' = 211'P/'Po. The solutions are
of the form 1/J;: = f:eiqn (o =T!l,
This is again an eigenvalue-eigenvector problem with cos e as energy parameter. The

phase diagra.m is given by the minimum e as a function of 1'.
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The problem was studied for several geometries [221. It is in this model that we !irst
applied our decimation method [22).

3. THE POTENTIALS

a) Introduetion

Superlattices is a topie of growing interest, including nowadays possible extensions to
magnetic-nonmagnetic and to superconducting-normal ones. Of course these last problems
have to be studied with a different formalismo However, they have in common the property
that translational invariance is absent only in one-direction: that of a deposition of the
materials. There has been enormous progress in fabrication techniques of microstructures
by su eh techniques as molecular beam epitaxy.

\Ve give here examples of mathematical models currently found in present day literature
which relate with semiconductor superlattices or are otherwise of interest as theoretical
models, perhaps not yet explored experimentally.

The potentials can be presented globally as a "diagonal model" for disorder. Starting
with the generalization [Eq. (3)]

(16)

and taking

Ví,l+l = Ví.l-I = V = 1

(energy unit), we get the "diagonal disorder model"

J¡+I + ,¡JI + J¡-I = EJ¡,

where '1 is the potential on the lattice site I and E is the eigenvalue.

b) The binary al/oy

(17)

Historically, the !irst model for "diagonal disorder" consisted in taking two types of si te
components 'A and 'B, with concentration as a probability for each species. The regime
goes continuously, starting from the very dilute case (the "impurity" model, sol ved usually
in k-space language through a scattering potentials technique, in the limits of one defect,
which is exactly solvable [23]). to the intermediate case, for which the ePA approximation
has been developed [1,2] and the very dense case which almost joins the next model
(multiple-component alloy model). Although these two models can presumably be in
different universality classes.

The regular intercalated elements A and B are called quantum wells problem in the
literature of semiconductors such as for example GaAs [171. However, nowadays, some
kind of random deposition can also be generated experimentally. \Ve are aware of recent
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deposition with the Fibonacci sequence [48]. The rnain problem in matching theoretical
potentials with experimental results is that of diffusion in realistic sarnples 149].

e) The Anderson mode/

This is the model with random diagonal elements on each site taken from sorne probability
distribution, P(f¡). It is the kind of thennodynarnicallirnit of the multi-component alloy
rnodel, fram the previous section.

Historically the Anderson probability distribution was the box distribution

P(E) = { 1~1

O,

for - ';' < E < 'v2 - - T

othcl'wise,

( 18)

where W is the disorder pararneter (kind of characterization of the strength of disorder).
Other distributions used are: the Gaussian

(19)

and the Lorentzian P(E) = t~, which can be exactly solved. Anderson was the first
to discuss the possibility of localized statcs in disordercd systell1s in spite of the already
known local mode states in impurity models.

d) The A ubry model

After the idea of random disposition of the "diagonal" parameter the idea of a modulating
function distribution with the possibility of incoll1mensurate periodicity with the lattice
arised.
The model most studied was the Aubry one [24]' which reads

El = ),cos(2rrq/), (20)

where ), is the strength of the potentials, q is the modulation and 1 the position.
There is a transition in parall1eter space. Aubry and An(!ré [24J have shown that a

transition from extended to localized states takes place when ), increases fram valucs less
than 2 to values bigger than 2. The proof of Aubry and André is based on self-duality,
which means that the Fourier transfonn of the tight binding equation with that potentials
has the same form with the change of ), ~ 4/),. For irrational values of 'Y the states are
extended for ), < )" = 2; there is a point spectrum and localized sta tes for ), > )" ancl for
)" the spectrull1 is singular continuous and the statcs are critica!. If 'Y is rational, 'Y = p/q,
thc solutions are extended and satisfy 13I0ch's theorem. The Aubry model [24] and the
rnodified Soukoulis-Economou model [5] both present a strange and new "packet-states".
The resistances and the transitions through thc encrgies of these special state present
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regular oscillatory in magnitude beh:\\'iour with th,' Ic'ugth of the sample [4i,44]. This was
!irst suggested by Sokololf 150]. 1t can be perhaps of technological interest for resistance
de\"ices.

e) Fibonaeei ehai"

The next step was to build the potentia!s through some kind of "inflation" rule, which
in principie does not mean the inflation symmetry. The Fibonacci chain was applied to
a physical problem of 'luasicrystals which are solids with crystallographically forbidden
symmetry. Experimental realizations are being achie\"ed [48). There, the rule is

.4 ~ ..lB, n ~ .'1, (21 )

starting with a set {So} =.4 !ike a zero generation.
It is simple to \"erify that

(22)

The eigel\\'alue E of the chain in the n-generation, will be that of the chaius iu higher
generations n.

The number of atoms iu generation n will be gi\"en by the Fibonacci number Fn which
follows the rule

(23)
Fo = 1, F¡ = 2.

f) The Tue-Morse morlel (26/

Another example which has appeared receutly in curreut Iiterature is the sequeutial model
formed by the rule

A -> An,

startiug with {So} = A as generation.
\Ve \"erify here that

n -> nA, (24)

(25)

where Sj meaus to iuterchauge A with n iu Sj.
Oue to that, if EA = -EB (autisymmetric), the poteutial El is oelel with respect to

the ceuter of the chaiu (Lema Master Thesis, Bari!oche, 1991). The size of lhe chaius iu
generatiou n is en.

Qne diffcrcncc \\'ith respect tu tite Fiuollarci c}¡ain. consists in the fact that the aua-
logical moele! cauuot be characterize<\ by a finite unmber of irratiouals (as appear iu the
coutiuuous fraction expausion for the ,elf euergy).
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g) The hierarchical potentials [11]

This chain can be constructed as follows: If k is a maximum integer value so that n is
divisible by 2k then fn = -U,Rk where Uo is the strength of a potentials and R the
position of a vector. If we consider that the size of the sample is 2m

- 1, then fl is even
with respect to the center.

The hierarchical's potentials eigenvalues can be mapped on a tree, similar to the pure
tight-binding model [11,29].
This situation is similar to the Sherrington-Kirkpatrick model of spin glasses [29] for

the spin configuration which are also hierarchical as a function of the order parameter.
It is even possible to draw a close analogy between both models which was suggested
by one of us [3D]. The hierarchical potentials is of interest from the theoretical point of
view. It can be thought in sorne sense as a "model" for going from an insulator towards
a metal although this is a preliminary remark. \Ve think it will play an important role in
a developing field of biological physics e.g. neural networks [29]).

4. TIIE NUMERICAL SOLUTION METlIODS

\Ve shall comment on three "traditional methods", namely: the direct diagonalization,
the transfer matrix and the continuous fraction methods and we shall then present our
original method, the Roman- Wiecko Decimation (DR\V) [13-15]

a) Direct diagonalization

The direct diagonalization depends strongly on computational facilities. As mentioned
in Ref. [31] with the aid of an available subroutine in the EISPAC subroutine library
and by access to a suitably large computing facility (for example eray supercomputers)
it is practical to diagonalize a tridiagonal matrix for N of order 104, specially if one is
satisfied with computation of the eigenvalues only. Accurate computation of the eigen-
states is a considerably greater time-consuming procedure. Localized or extended states
are determined by inspection.

b) The transfer matrix [1]

In this procedure we start with the tight binding equation

(26)

as

(
1/Jn+l) = T~l) ( 1/Jn )
1/Jn 1/Jn-1

'tl ",(1) _ (fn/tn+1
WI 1 .ln -

1
(27)

where 1/Jn is the wave function at site n, t is the hopping parameter and fn = E - f~ with
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E the eigenvalue. The complete set is resumed as the products of transfer matrices

(28)

Starting with a suitable initial condition for 1/10 and 1/11 we calculate the localization length
,\ defined as

,\-1 = lim !...1/1N'
N-oo N

(29)

Ir ,\ > Owe are in the gap region or have a localized state (which is indistinguishable in
the method, so it has to be complemented with the explicit calculation of the density of
states by sorne standard method such as Dean's [32]). Ir ,\ > O the regio n is extended.

e) The continuous ¡raction method

Jt was developed by Economou and Cohen 1331. Jt goes through the formalism of one-
particle Creen's functions defined as

1
G(E) = (OI(E - H)-I¡O) = E _ <n _ 1: '

'---v--------"
bo

(30)

where 10) = 1/J(x) denotes the \Vannier orbital on si te x. 1: is cxpressed in terms of a pair
of infinite continued fraction K+ and IC. Thus if

(31 )

with K defined as the continued fraction obtained UPOll replacing b" by b", a basic result
is that:

¿(E) = -(1(+ + le). (32)

(33)

Two criteria were established:

1. Either 1(+ or K _ diverge for a given energy and the solutions are necessarily extended.

2. if both 1(+ and IC converge, either there is a non normalizable eigenstate or there
exists a localized eigenstate.

The continued fraction converges if

K+ = lim (QPn),
n--oo n

\Vith u" = b"U,,_1 - U,,-2 suhject to the initial values P_I = 1, Po = O, Q-l = O, Qo = 1.
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d) DRW: Roman- Wiecko decimation.
A unified method fOl' eigenvalucs and wave-function [13-15.34]

The more recent method was proposed based on the renormalization-group decÍmation
idea [35,36]. In those referenees it is formulaled through the Creen's funetions technique.
The density of states is obtained throngh the standard relation N(w) = -h ImG(w +
;,¡), r¡ -+ O. ReL [35] makes an early and unnecessary approximation by ehanging the
site-dependent eonfiguration by some mean values.
\Ve have developed [13-15] the RC decÍmation method directly for lhe set of eqnations

for the wave-funclion [Eq. (26)]. This has lhe advantage that we always deal with real
frequeneies. (The introduetion of imaginary parts apart from numerical eomplieations,
obseures lhe distinction belween localized and extended slates.) The approaches as nsed
in ReL [36] distingnish localized from extended solutions only by lhe nnmber of steps
needed for convergence to a fixed point and complements il wilh direct inspections of lhe
wave-funclions.

Our procedure gives direcl criteria for lhe extended, localized and gap slales (even
tentalively for band-edges) as is slated below.

Our procedure is lhe following [13-15]. Starling wilh lhe initial equation of motion for
a given site [Eq. (26)], the variables for the n.n (odd sites) are replaced by their values
from lhe equation associated with them [equivalenl lo Eq. (4)]. The nnmber of degrees of
freedom is reduced in one half and the form conserving equation for the doubled lattice is
derived. After r iteralions the chain of spacÍng 2' is reached with lhe corresponding form
concerning the set of equations

('l, (,) I ('ltn_k1fJn-k + tn,n+k1fJn+k = fn 'l/Jn,

when k = 2' and the recursion relations are

(34)

In our procedure lhe decÍmation is performed exactly on a given configuration (slored in
the machine). No configurational averages are performed as in ReL [35]. The capacity of
a Vax machine for this approach allows 15 iterations (::: 216 atoms in a chain).

The main poi nI of lhe procedure relaled with localization comes from the sludy of
how the coefficients (n and tn,n+6 bchave upon itcration at a givcn cncrgy. \Vc have
found [13-15] thal:

1. An oscillalory behavior of bot]¡ coemcient, characterizes exlended sta tes.

2. COIlvcrgcncc of tu,II+Ó tO\vards ZCfO and of fu towards non-zero valllC charactcrize a
gap ¡no solntion of a set of Eq. (30)].
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3. Convergence of bot/¡ coefficients towards zero characterizes a localized solution (the
only way to have a non-trivial solution once t - Owhich happens for a localized state
with iteration).

4. Convergence of the energy coefficient towards zero can a/so characterize a "packet
state" with infinite localization length, deterlllined by direct inspection of the wave
function.

5. Convergence of <n - O when tn just changes frolll saturation to oscillation is a
"practica!" criterium [or band edges.

The method can be efficiently illlplemented through a short program which analyzes
the behavior of the coefficients at the highcst available iteration as a function of energy.
Criteria for estimating density of states are given in Refs. [13-15). The method is therefore
very systematic and precision can be adcquated to the interest in each particular regio n
of the spectrum once an overall view is perforllled. Convergence in general is ,'ery quick.
The calculation is entirely performed with real nUlllbers.

So far, our concern was with the eigenvalues. Howcvcr, if Eq. (26) is simply iterated
with the eigenvalue found frolll decilllation, in the case of a localized state, both the
decreasing and the increasing solutions appear as was observed in Ref. [14).

Here we have found the way around it in ordcr to obtain directly only the normalizable
solution 134).

\Ve chose thc origin site O. Then the equations

LI1/J-I + <0<0 + tl1/JI = O (35a),

(35b),

(35c),

define the infinite matrix. \Ve replace Ec¡. (35c) in (35b) to eliminate 1/JI obtaining one
equation connecting 1/Jo, 1/J2 and 1/J3; rcpeating the procedure (n - 1) times one has

(36)

And similarily to the left:

with the following recursion reJations:

(37)

b in+l
n = ---Uu-i

tn

(n ~ 1), (38)

with the initial values ao = -tI and bo = O. Likewise, recursion relations can be written
for negative n.
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The full wave function is determined as follows. Iterate Eqs. (36) and (37) and by
imposing periodic boundary conditions at a "far away" site N, solve the system by taking
1Po = 1. Going back from n = ::lN to n = ::l1 using Eqs. (36) and (37) (the values
for azn have been previollsly stored) our method calculates 1Pn and matches both solu-
tions using Eq. (35a) by adjusting the eigenvalue. A similar procedure has been proposed
independently in Re£. [32].

In Re£. 135] several iterations were needed to match the equations. Recently [37] we
have discovered that the eigenvalue found by decimation for the central site, the zero
site, matches the eqllations directly with great numerical precision in the case of localized
states and also for the critical states.

5. TIIE CIIARACTERIZATION BY DIMENSION. MULTIFRACTAL ANALYSIS

Euclidean, integer dimension characterizes continuously derivable geometrical sets. The
fractiollal dimension was made popular by Mandelbrot [38] and nowadays it has been
incorporated to the stlldy of such non-analytical curves as the wave-fullctions in non-
translational invariant potentials [391. Initially it has been stated as mass scaling of the
wave function [40,34,42,421. The more complete multifractal analysis was introdllced by
Kadanoff et al. [43].

Fractality is close to the concept of self-similarity or dimensional dilution symmetry [28].
To introduce the concept we take boxes of size I and cover the volume ID. \Ve will need
for that N, boxes. Now, if we reduce the box size I which is the change in N, in order to
cover the whole volume, we get

"Ve can get:

N, ~ I-d for I -; O with d ~ O. (39)

d integer
d noninteger

euclidean object
fractal object.

\Ve define d as a Hausdorff dimension of a set. This is the extension of the concept of
dimension in the sense of measure.

For the multifractal analysis we cover our set again with boxes of size 1. 'Ve can have
¡(x) (~ O for all x) as the density of probability associated with each x. \Ve calculate the
integrated probability Pi(l) in each box i as

1,,+1/2
Pi = ¡(x) dx.

,,-1/2

For I -; Owe suppose the asymptotic behavior

(a' the power of the singularity at point Xi)'

(40)

(41)
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\Ve now want to obtain the Hausdorff dimension /(0') of each subset. The number of
boxes to cover the subset with the power of singularity o :So' :So + do will be, for 1 ~ O

N 1-/(0')
01 I"V •

\Ve evaluate the auxiliary function

x(g) = liro Z(g,l) = liro "[Pi(l)lq.
q-O l_oL

i

\Ve can write as an integration ovcr nI

Z(g,l) = ¡dO' g(o')I"°'-/(o')

(42)

(43)

(44)

As 1 ...• O, the integral is dominated by the minimum value of [go' - /(0')1. For each g,
we have o(g) that minimizes this expression. So we get a scaling law, for 1 ...• O:

Z(g,l) ~ IZ(q).

Therefore,

Z(g) = qo(g) - /(0('1)).

\Ve get the conditions for the minimum value:

(45)

(46)

d~'[go' - /(0')]1 = O,
o'=o(q)

\Ve deduce that

d(~:)2 [go' - /(0')11 :S o.
o'=o(q)

(47)

1'(0('1')) = g,

1"(0('1')) :S o.
In literature, the generalized dimension appears as

Ir /(0) is a distribution of values we get a multifractal curve.

6. SOME RESULTS

(48)

(49)

In the type of approach we propose in this overview it is of interest to characterize each
Hmodcl" in terms of the localizatioll propcrtics of tIle spectrull1 and of the eigenstates.
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Our experience is mostly numerical although the field has also been attracted by rigorous
mathematicians. AIso transport properties [45] are of great interest, although we do not
comment on that here. However, the statics and the dynamics are highly related. For
example, we have found in the past [44] that high precision in the eigenvalue is crucial
for good description of the transmission and the resistances.
The three basic types of eigenfunctions are illustrated in Ref. [46] for the Aubry mode!.

In the past we have found the new function called "connected packets" which corresponds
to the extended region but it is very peculiar [47]. It is shown in Fig.l. This packet
structure, although in a hierarchical manner, also appears in the critical states of the
Fibonacci chain model and the 1\JC-Morse mode!. \Ve show it in Figs. 2 and 3 respectivel)'.
This structure strongl)' influences the transport properties.

AIso in the localized region, packet structure appears once we suppress the exponentia!.
\Ve show it in Fig. 4 for the Anderson mode!.
To illustrate this we comment on a question we have explored lately. It is whether we

can connect these packet structures with lIlultifractal behavior, also taking into account
the integrated density of states as a function of energy.
It is currently believed that critical states are related to singular continual spectra

(some kind of devil's staircase for the integrated density of spectra). It is also believed
that they are multifractals.
In Fig. 5 we show these magnitudes for the Fibonacci. However, in the localized regime

there is the controversy about multifractality of the Anderson model wave-functiona!.
\Ve have compared the binary anoy which, although pure-point, has a spectrum fun of
gaps, with self-similar, peaks in the density of states with the Anderson model, where the
spectrum is pure-point but dense. In Fig. 6 we show both model's integrated densities of
states.

The multifractal analysis for both, shown in Fig. 6, indicates structure. Although in the
case of the Anderson model the spread in Q is very smal!. The spread in the binary anoy,
on the other hand , is compared to the Fibonacci chain. Size analysis on the Anderson
model is not conclusive due to limitations in the available computer memory.

7. CONCLUSIONS

In this overview, we have tried to present in a pedagogical and introductory manner the
field of the "Theory of Disorder" mapped into non-translational, discrete, l-d Schr6dinger
equation. Although we have presented in some detail our unified method of decimation
for the eigenvalues and eigenfunctions which has the advantage of high precision with
low numerical cost, we have not mentioned extensions to 2-d problems and the transport
properties that are of practical interest.
\Ve have also discusscd the novel topic of n11lltifractal analysis that can be applied to

such sets as wave functions and also used for its characterization. From our experience
we think that this field is very appropriate for people starting research in physics. \Ve
hope to raise some interest among young scientists, speciany in the Latin American arca.
This type of research can be performed with quite modest computational facilities and,
nevertheless, publishable results can be obtained and the intenectual capability exercised.
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FIGURE 1. The wavc-function for the Aubry-chain as a function oí position ("extended packets"
wave function).

1.00

0,50

::T 0.00

-0.50

-1.00
44400 -2200 o 2200 4400

FIGURE 2. The wave-function for tite Fibonacci chain as a functioll oí positioIl ("critical" wave-
function) Ref. 46.

5.00

2.50
1
I
1

::T 0.00 -
,

"1 I 1

-2.50 I
-5.00

-1800 -900 o 900 1800

FIGURE 3. The wave function for the Tuc-Morse model as a functioll oí position (hierarchical
packets).
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FIGURE 4. The wave-function (without the exponential decay) for the Anderson model as a
function of position.
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FIGURE 5. Fibonacci chain: the integrated density of states a) and its dilution amplified symmetry
character b); e) the mllltifractal I(o) distribution.
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FIGURE 6. a) the mllltifractal analysis of the billary alloy; b) the mllltifractal analysis of the
Andcrson model.
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