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ABSTRACT. We describe the current approach to a set of linear coupled equations with “random”
coefficients. These are thought of as models for superlattices when charge effects are ignored or
reduced to a one-electron situation. Other formally analogous models from solid state physics are
quoted as well. Historical evolution of model “potentials” is presented. Current methods are also
outlined together with our own novel method of decimation with real frequencies, which has been
used to derive almost all of our results, some of which are presented at the end, as an illustration
of the current questions in this field. Mainly, we approach the eigenvalue-eigenvector problem, but
for space reasons the transport properties are not discussed. However, we do discuss multifractal
analysis, as a tool for characterization. Extensions to higher dimensions are only mentioned slightly.
We stress the pedagogical interest of the field as an introduction to theoretical research which does
not require large computational facilities.

RESUMEN. Describimos cémo resolver un sistema de ecuaciones lineales acopladas con coeficientes
“al azar”. Se toman como modelos para superredes cuando se pueden ignorar efectos de carga o
reducir a un problema de un electrén. Se mencionan otras aplicaciones dentro de la fisica del sélido.
Se presenta la evolucién histérica de los “potenciales” modelo. Se discuten los métodos mds antiguos
de resolucién junto con nuestro método més nuevo de decimacién con frecuencias reales. Esto se ha
usado para derivar casi todos nuestros resultados, algunos de los cuales se presentan al final, como
ilustracion de los problemas que se pueden estudiar en el campo. Discutimos casi exclusivamente
el problema de encontrar los autovalores y los autovectores, pero por razones de espacio, omitimos
las propiedades de transporte. Sin embargo discutimos el andlisis multifractal como herramienta de
caracterizacién. Sélo muy brevemente mencionamos extensiones a dimensiones mayores que uno.
Remarcamos el interés pedagégico del campo como una introduccién a la investigacion en fisica
teérica que no requiere grandes facilidades computacionales.

PACS: 71.10.+x; 71.50.4+1; 71.25.-s

1. INTRODUCTION

Basically, the problem to be discussed is the linear, discrete, nearest-neighbor connected
set of equations with coefficients that are either random, or built from some formation
rule or vary as a function non-commensurate with the lattice sites. It can be called the
non-translational discrete Schrodinger type problem. Because of the lack of translational
symmetry we cannot Fourier transform. The above mentioned topic should be a chapter
of the theory of disorder, although it is not clearly pointed out in current literature on
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the subject [1-3]. Most of the discussions here are concerned with 1-d equations, however,
we will point out few extensions to higher dimensions.

Connection with physics comes from studies of superlattices, mainly where now, due
to the beam epitaxy technique [4], different arrangements can be formed with a special
type of “disorder” along one direction.

Several physical systems of current interest can be described by these linear models:
crystals containing modulating periodic potentials of a period different from that of the
underlying lattice, either commensurate or incommensurate with it [5], electrons in 2-
d square lattice in a perpendicular magnetic field [6], the Schrodinger equation with
arbitrary potential of atomic type (through the construction of the Poincaré maps of the
problem) (7], superconductive networks (through the De Gennes-Alexander theory) [8])
etc.

As for superlattices the experimental realization has been achieved in various ways.
Apart from periodic hetero-structures [4,9] a Fibonacci chain [10] and a hierarchical
arrangement [11] have been discussed. Also magnetic properties can be studied with mag-
netic superlattices when the quantum Ising model in traverse magnetic field is used [12].

We present here an introductory overview of the field, giving several currently used
examples of “disorder” or non-translational “potential”’. We discuss the current methods,
together with the method of decimation that we have applied in one particular way and
that we have used quite successfully in the field [13-15].

We present briefly what is expected to be calculated, illustrate some of the questions,
etc. We also discuss the multifractal analysis and use it as a tool to characterize different
regimes. We present here some of our results and give references to related literature.

As far as methods are concerned we became very interested in that of decimation
which in 1-d is exact and, at least with our procedure [13-15] allows excellent solutions
for non-translational problems. Most authors use it through Green’s functions formulation
where the complication of imaginary parts arises. At least in 1-d decimation can solve
bigger samples than direct diagonalization, having besides other advantages over the direct
diagonalization of the states.

We have extended it to 2-d [16] but ad-hoc approximations are needed and it requires
more computation. At present, we study the possibility of using it with a many body
term in nontrivial mean-field approximation [17]. This type of problem, we think, has
many model applications in solid state physics. For example, in Ref. [16] we deal with
superconductivity through the mean field negative U Hubbard model. We could also think,
perhaps, of charge effects in superlattices [18]. So, to our knowledge, the field is open.

The overview is organized as follows: In Sect. 2 we present the problem as the discrete
Schrédinger equation in 1-d and we also give the equations for some formally analogous
problems from solid state physics such as phonons, low-temperature magnons, the tight-
binding electrons and the superconducting networks. In Sect. 3 we present and discuss, in
a historical way, some currently studied “potentials” for disorder such as the binary alloy,
the Anderson model of localization, the Aubry model, the quasicrystal model through the
Fibonacci chain, the Tue-Morse sequential model and the hierarchical model. In Sect. 4
we discuss the numerical solutions; first the traditional methods of direct diagonalization,
the transfer matrix approach and the continuous fraction method. Then we develop in
some detail the new method of decimation, based on the renormalization-group-ideas, and
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especially our novel approach to it. In Sect. 5 we introduce the concept of multifractality
as a tool for the classification, by dimension, of a set formed by the wave-functions of
the above mentioned models. In Sect. 6 we show some of our numerical results for wave-
functions, integrated densities of states and multifractal singularity distribution function
f(a) in order to show connections between those quantities and collaborate in solving
some polemical results. All this was obtained with our procedure of decimation, so it is
also a proof of the efficiency of this method with the cases where there are other available
results. We finish briefly, summing up with some conclusions.

We see this job as a kind of pedagogical overview in order to show possibilities in the
area. It is specially useful as a starting point for research in the solid state field, specially
where large computers are not available.

The overview is mostly based on Lic. F. Lema’s Master Thesis work (Bariloche, Dec.
91, unpublished) (in Spanish) where more details can be found.

2. THE DISCRETE 1-D SCHRODINGER PROBLEM AND OTHER ANALOGIES IN SOLIDS

a) The 1-d Schrédinger equation for one-particle
This is the basic formulation. We write the one particle Schrodinger equation 1-d

_ 12 8*Y(a)
2m Ozx?

+ V(z)y(z) = EY(z). (1)

We now set a lattice of spacing a. We discretize the operator as follows:

2m

g2 [ Yata-vz) _ Y()-v@E=a)
a

- = ) + V(z)(z) = Ey(z). (2)

The discrete limit of this notation has to be analyzed in detail. However, for the local
potentials used here, we can generalize the problem in the following discrete equation
(taking it as a starting point):

—tfn41 + €nfn —tha-1 = Efa. (3)

This is a basic set of linear equations with “random” diagonal coefficients. We are
interested in determining the eigenenergies E and the eigenfunctions f,. This is called
“diagonal disorder”. In other applications we can also make t site-dependent (off diagonal
disorder).

b) Normal modes

For normal modes we postulate the temporal dependence e'“! and have

(¢u — wrMel) - uy + Zfi’w cup =0, (4)
£l
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where M, is the mass on site ¢ and ¢ir = ¢(R; — Ry) is the force constant. With only
nearest neighbor interaction we have the formal equivalence with Eq. (3):

! o + : o) + - o u 2y (
— U i U — - . - =it}
M, LI+1 * Uil Y7 1w M, INE R !

o
—

where v is the displacement from the equilibrium position under the action of elastic
forces as defined above. In 1-d, it was studied for example in Ref. [14].

c) The magnetic excitations

Those are currently described by the Heisenberg Hamiltonian

1 ,
H= —5;@&-5{'. (6)

where J is the magnetic exchange constant.
Let us suppose the ferromagnetic case, with S}Z) < 5. We write down the equation of

; 1) . ; .
motion for the operators SI( ) in Heisenberg representation:

s,
_ () ) - gt} _
L= —2) |58 — ghss, | (7)

!’h
0

If we suppose that each S,(_) behaves as ¢! and for almost ordered system (low
temperature solution) we obtain

28 Jf —tuw | 8¢ -28) Jgsi =0 (8)
1] 1'#1

For only nearest neighbors:

[2(Jis + Tiy) = hw] S = 2504, 865

i) - 28048 = (9)

d) The electrons on the lattice

In the tight binding approximation, the lattice contribution with a potential that is the
linear superposition of atomic potentials Vi(r = Ry), where R, is the ionic position:

V(r) =) Vi(r - R). (10)
l
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We now write down the Schrédinger equation, with a solution given as a linear combination
of atomic orbitals:

o(r) =Y uMei(r - Ry). (11)
la

We get a set of equations for the coefficients ul(a) :

GRS

U#EL B

The VIS,Q"G) are the overlap integrals between the different orbitals and the potential. For
nearest neighbor overlaps only (narrow bands) we get

(490 B+ 3 (Vi + V) =0 a
B
This is the classical equation from the field of Anderson localization [19].

e) Superconducting networks

This description [8] starts with the linearized Ginzburg-Landau equations for nets of thin
wires, which behave as weak links joining the nodes of the network. On a 1-d branch which
joins nodes a, b and has length { = L/ (£ the coherence length) the order parameter reads

exp(i7as)

o [’t,ba sin(l — s) + ¥, exp —i74) sin s] ; (14)

Y(s) =

where f is the linear coordinate along the branch from a; ves = i—’; f: A(l'Ydl' with A

the vector potential of the applied field, o is the flux quantum and @, = |Y.]e’™ and
¥p = |¢s|e? are the values of ¢ at a, b.

When the quantum mechanical current associated with the order parameter is imple-
mented with a generalized Kichhoff current law, one obtains linear equations for the order
parameter at the nodes, where compatibility conditions lead to the phase diagram.

For example, for a geometry of infinite length ladder, the equations are

3coslyl — eyl | —e Tyl — vk =0,
| | (15)
3(:05:31,19,11 e e—ni.b,ll_l - Cw‘l’,ll_l - rTz =0,

where n indicates the node, 1] refer to the branch and 2y = 2mp/po. The solutions are
of the form ¥ = fe'?" (a =T]).
This is again an eigenvalue-eigenvector problem with cos ¢ as energy parameter. The

phase diagram is given by the minimum ¢ as a function of 7.
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The problem was studied for several geometries [22]. It is in this model that we first
applied our decimation method [22].

3. THE POTENTIALS

a) Introduction

Superlattices is a topic of growing interest, including nowadays possible extensions to
magnetic-nonmagnetic and to superconducting-normal ones. Of course these last problems
have to be studied with a different formalism. However, they have in common the property
that translational invariance is absent only in one-direction: that of a deposition of the
materials. There has been enormous progress in fabrication techniques of microstructures
by such techniques as molecular beam epitaxy.

We give here examples of mathematical models currently found in present day literature
which relate with semiconductor superlattices or are otherwise of interest as theoretical
models, perhaps not yet explored experimentally.

The potentials can be presented globally as a “diagonal model” for disorder. Starting
with the generalization [Eq. (3)]

Vansrfosr + enfa+ Vacrufa-1 = Bfg, (16)
and taking
Vim=Vya1=V=1
(energy unit), we get the “diagonal disorder model”

frrit+afi+ fiei = Efy; (17)

where ¢ is the potential on the lattice site [ and E is the eigenvalue.

b) The binary alloy

Historically, the first model for “diagonal disorder” consisted in taking two types of site
components €4 and €g, with concentration as a probability for each species. The regime
goes continuously, starting from the very dilute case (the “impurity” model, solved usually
in k-space language through a scattering potentials technique, in the limits of one defect,
which is exactly solvable [23]). to the intermediate case, for which the CPA approximation
has been developed [1,2] and the very dense case which almost joins the next model
(multiple-component alloy model). Although these two models can presumably be in
different universality classes.

The regular intercalated elements A and B are called quantum wells problem in the
literature of semiconductors such as for example GaAs [17]. However, nowadays, some
kind of random deposition can also be generated experimentally. We are aware of recent
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deposition with the Fibonacci sequence [48]. The main problem in matching theoretical
potentials with experimental results is that of diffusion in realistic samples [49].

¢) The Anderson model

This is the model with random diagonal elements on each site taken from some probability
distribution, P(¢). It is the kind of thermodynamical limit of the multi-component alloy
model, from the previous section.

Historically the Anderson probability distribution was the box distribution

1 ,
P2 <e< i
Pe)=¢ W ‘ ! (18)

0, otherwise,

where W is the disorder parameter (kind of characterization of the strength of disorder).
Other distributions used are: the Gaussian

Gy — L —epw?

and the Lorentzian P(e) = %e =T which can be exactly solved. Anderson was the first
to discuss the possibility of localized states in disordered systems in spite of the already

known local mode states in impurity models.

d) The Aubry model

After the idea of random disposition of the “diagonal” parameter the idea of a modulating
function distribution with the possibility of incommensurate periodicity with the lattice
arised.

The model most studied was the Aubry one [24], which reads

€p = Acos(2mql), (20)

where A is the strength of the potentials, ¢ is the modulation and [ the position.

There is a transition in parameter space. Aubry and André [24] have shown that a
transition from extended to localized states takes place when A increases from values less
than 2 to values bigger than 2. The proof of Aubry and André is based on self-duality,
which means that the Fourier transform of the tight binding equation with that potentials
has the same form with the change of A — 4/A. For irrational values of v the states are
extended for A < A = 2; there is a point spectrum and localized states for A > A and for
Ac the spectrum is singular continuous and the states are critical. If 7y is rational, v = p/q,
the solutions are extended and satisfy Bloch’s theorem. The Aubry model [24] and the
modified Soukoulis-Economou model [5] both present a strange and new “packet-states”.
The resistances and the transitions through the energies of these special state present
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regular oscillatory in magnitude behaviour with the length of the sample [47,44]. This was
first suggested by Sokoloff [50]. It can be perhaps of technological interest for resistance
devices.

e) Fibonacci chain

The next step was to build the potentials through some kind of “inflation” rule, which
in principle does not mean the inflation symmetry. The Fibonacci chain was applied to
a physical problem of quasicrystals which are solids with crystallographically forbidden
symmetry. Experimental realizations are being achieved [48]. There, the rule is

A— AB, B—A, (21)

starting with a set {Sg} = A like a zero generation.
It is simple to verify that

{Sj+1} = {S;,8;.1}. (22)

The eigenvalue € of the chain in the n-generation, will be that of the chains in higher
generations n.

The number of atoms in generation n will be given by the Fibonacci number F,, which
follows the rule

El = Fn—l oo -Fn—'la
(23)

f) The Tue-Morse model [26]

Another example which has appeared recently in current literature is the sequential model
formed by the rule

A— AB, B - BA, (24)

starting with {Sp} = A as generation.
We verify here that

{Sj+1} = {S;: 55} (25)

where §; means to interchange A with B in S;.

Due to that, if e4 = —ep (antisymmetric), the potential ¢ is odd with respect to
the center of the chain (Lema Master Thesis, Bariloche, 1991). The size of the chains in
generation n is ™.

One difference with respect to the Fibonacci chain, consists in the fact that the ana-
logical model cannot be characterized by a finite number of irrationals (as appear in the
continuous fraction expansion for the self encrgy).
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g) The hierarchical potentials [11]

This chain can be constructed as follows: If k¥ is a maximum integer value so that n is
divisible by 2¥ then e, = —U.R* where U is the strength of a potentials and R the
position of a vector. If we consider that the size of the sample is 2™ — 1, then ¢ is even
with respect to the center.

The hierarchical’s potentials eigenvalues can be mapped on a tree, similar to the pure
tight-binding model [11,29)].

This situation is similar to the Sherrington-Kirkpatrick model of spin glasses [29] for
the spin configuration which are also hierarchical as a function of the order parameter.
It is even possible to draw a close analogy between both models which was suggested
by one of us [30]. The hierarchical potentials is of interest from the theoretical point of
view. It can be thought in some sense as a “model” for going from an insulator towards
a metal although this is a preliminary remark. We think it will play an important role in
a developing field of biological physics e.g. neural networks [29]).

4. THE NUMERICAL SOLUTION METHODS

We shall comment on three “traditional methods”, namely: the direct diagonalization,
the transfer matrix and the continuous fraction methods and we shall then present our
original method, the Roman-Wiecko Decimation (DRW) [13-15]

a) Direct diagonalization

The direct diagonalization depends strongly on computational facilities. As mentioned
in Ref. [31] with the aid of an available subroutine in the EISPAC subroutine library
and by access to a suitably large computing facility (for example Cray supercomputers)
it is practical to diagonalize a tridiagonal matrix for N of order 10*, specially if one is
satisfied with computation of the eigenvalues only. Accurate computation of the eigen-
states is a considerably greater time-consuming procedure. Localized or extended states
are determined by inspection.

b) The transfer matriz [1]

In this procedure we start with the tight binding equation

tn—l,nwn-l + €nPn + tn,n+1’¢n+1 =0 (26)
as
n n n t-n, tn_ tn
(w +1) _ v ( P ) with T = (e [tnt1 1/ +1) ’ (27)
w‘n wn—l 1 0

where v, is the wave function at site n, t is the hopping parameter and €, = E — ¢, with
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E the eigenvalue. The complete set is resumed as the products of transfer matrices
i /
(wn-i—l ) _ T(n} ("4’1 ) - HT;'(I) (Ul ) (28)
wn 1”/‘0 i=1 %

Starting with a suitable initial condition for ¥y and ¥, we calculate the localization length
A defined as

MY i iy, (29)

If A > 0 we are in the gap region or have a localized state (which is indistinguishable in
the method, so it has to be complemented with the explicit calculation of the density of
states by some standard method such as Dean’s [32]). If A > 0 the region is extended.

¢) The continuous fraction method

It was developed by Economou and Cohen [33]. It goes through the formalism of one-
particle Green's functions defined as

G(E) = (0|(E - H)7'|0) = T _3° (30)
bn

where |0) = 1(;) denotes the Wannier orbital on site z. ¥ is expressed in terms of a pair
of infinite continued fraction K, and K_. Thus if

Ky=—-———+ (31)

with K defined as the continued fraction obtained upon replacing b, by b,, a basic result
is that:

> (B) = —(K4 +K_). (32)

Two criteria were established:
1. Either K| or K_ diverge for a given energy and the solutions are necessarily extended.

2. if both K, and I{_ converge, either there is a non normalizable eigenstate or there
exists a localized eigenstate.

The continued fraction converges if

Ky = lim (%) , (33)

with %, = byup—1 — up—2 subject to the initial values P_y =1, Py =0,Q_; =0, Qo = 1.
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d) DRW: Roman-Wiecko decimation.
A unified method for eigenvalues and wave-function [13-15,34]

The more recent method was proposed based on the renormalization-group decimation
idea [35,36]. In those references it is formulated through the Green’s functions technique.
The density of states is obtained through the standard relation N(w) = —% ImG(w +
in), n — 0. Ref. [35] makes an early and unnecessary approximation by changing the
site-dependent configuration by some mean values.

We have developed [13-15] the RG decimation method directly for the set of equations
for the wave-function [Eq. (26)]. This has the advantage that we always deal with real
frequencies. (The introduction of imaginary parts apart from numerical complications,
obscures the distinction between localized and extended states.) The approaches as used
in Ref. [36] distinguish localized from extended solutions only by the number of steps
needed for convergence to a fixed point and complements it with direct inspections of the
wave-functions.

Our procedure gives direct criteria for the extended, localized and gap states (even
tentatively for band-edges) as is stated below.

Our procedure is the following [13-15]. Starting with the initial equation of motion for
a given site [Eq. (26)], the variables for the n.n (odd sites) are replaced by their values
from the equation associated with them [equivalent to Eq. (4)]. The number of degrees of
freedom is reduced in one half and the form conserving equation for the doubled lattice is
derived. After r iterations the chain of spacing 2" is reached with the corresponding form
concerning the set of equations

ti:lkwn—k g txi%wn% = 55:)7'Dns

when & = 27 and the recursion relations are

12 #2 (r)
(r+1) _ ( n,n—k n,n+k)
€n =\ € — - s

€n—k €ntk (
34)
¢ " (r)
ir+1 o nt2kntklntkn
nt2k.ntk €ntk

In our procedure the decimation is performed exactly on a given configuration (stored in
the machine). No configurational averages are performed as in Ref. [35]. The capacity of
a Vax machine for this approach allows 15 iterations (=~ 2'6 atoms in a chain).

The main point of the procedure related with localization comes from the study of
how the coefficients €, and t,,4+s behave upon iteration at a given energy. We have
found [13-15] that:

1. An oscillatory behavior of both coefficients characterizes extended states.

2. Convergence of t, n46 towards zero and of €, towards non-zero value characterize a
gap [no solution of a set of Eq. (30)].
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3. Convergence of both coefficients towards zero characterizes a localized solution (the
only way to have a non-trivial solution once t — 0 which happens for a localized state
with iteration).

4. Convergence of the energy coefficient towards zero can also characterize a “packet
state” with infinite localization length, determined by direct inspection of the wave
function.

5. Convergence of ¢, — 0 when t, just changes from saturation to oscillation is a
“practical” criterium for band edges.

The method can be efficiently implemented through a short program which analyzes
the behavior of the coefficients at the highest available iteration as a function of energy.
Criteria for estimating density of states are given in Refs. [13-15]. The method is therefore
very systematic and precision can be adequated to the interest in each particular region
of the spectrum once an overall view is performed. Convergence in general is very quick.
The calculation is entirely performed with real numbers.

So far, our concern was with the eigenvalues. However, if Eq. (26) is simply iterated
with the eigenvalue found from decimation, in the case of a localized state, both the
decreasing and the increasing solutions appear as was observed in Ref. (14].

Here we have found the way around it in order to obtain directly only the normalizable
solution [34].

We chose the origin site 0. Then the equations

t_1¥-1 +eo€eg+ 41y =0 (35a),
o + a1+t =0 (35b),
tath1 + €22 + 393 = 0 (35¢),

define the infinite matrix. We replace Eq. (35c) in (35b) to eliminate ¥, obtaining one
equation connecting vy, 1, and 13; repeating the procedure (n — 1) times one has

ty1%0 + anPn + bpthnyr = 0. (36)
And similarily to the left:

t_1%o + GnPon + b—-n'¢—(n+1) =0, (37)

with the following recursion relations:

€
an = “‘_’}'an—l by
tn
(n2>1), (38)
tn+1
bn = S |
tﬂ
with the initial values ag = —t; and by = 0. Likewise, recursion relations can be written

for negative n.
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The full wave function is determined as follows. Iterate Eqgs. (36) and (37) and by
imposing periodic boundary conditions at a “far away“ site NV, solve the system by taking
Yo = 1. Going back from n = £N to n = %1 using Eqgs. (36) and (37) (the values
for a+n have been previously stored) our method calculates ¢, and matches both solu-
tions using Eq. (35a) by adjusting the eigenvalue. A similar procedure has been proposed
independently in Ref. [32].

In Ref. [35] several iterations were needed to match the equations. Recently [37] we
have discovered that the eigenvalue found by decimation for the central site, the zero
site, matches the equations directly with great numerical precision in the case of localized
states and also for the critical states.

5. THE CHARACTERIZATION BY DIMENSION. MULTIFRACTAL ANALYSIS

Euclidean, integer dimension characterizes continuously derivable geometrical sets. The
fractional dimension was made popular by Mandelbrot [38] and nowadays it has been
incorporated to the study of such non-analytical curves as the wave-functions in non-
translational invariant potentials [39]. Initially it has been stated as mass scaling of the
wave function [40,34,42,42]. The more complete multifractal analysis was introduced by
Kadanoff et al. [43].

Fractality is close to the concept of self-similarity or dimensional dilution symmetry (28].
To introduce the concept we take boxes of size | and cover the volume 1P, We will need
for that NV; boxes. Now, if we reduce the box size 1 which is the change in NV; in order to
cover the whole volume, we get

Ny~1"% for | =0 with d>0. (39)

We can get:

d integer euclidean object
d noninteger fractal object.

We define d as a Hausdorff dimension of a set. This is the extension of the concept of
dimension in the sense of measure.

For the multifractal analysis we cover our set again with boxes of size {. We can have
f(z) (> 0 for all z) as the density of probability associated with each z. We calculate the
integrated probability P;(l) in each box ¢ as

zi+1/2

P, = / f(z)dx. (40)
;—1/2

For | — 0 we suppose the asymptotic behavior

Pi(l) ~ ¢ (41)

(o' the power of the singularity at point x;).
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We now want to obtain the Hausdorff dimension f(a') of each subset. The number of
boxes to cover the subset with the power of singularity a < o/ < a + da will be, for [ ~ 0

N ~ 1=, (42)
We evaluate the auxiliary function
= i = 1 1 q. 4
x(q) = lim Z(q,1) }I_IFEI)ZLP (0] (43)

We can write as an integration over o’
Z(g,1) = /da’g(a')m'—ﬂﬂ'). (44)

As I — 0, the integral is dominated by the minimum value of [ga’ — f(')]. For each g,
we have a(g) that minimizes this expression. So we get a scaling law, for | — 0:

Z(q,1) ~ 1709, (45)
Therefore,
Z(q) = qa(q) — f(alqg)). (46)

We get the conditions for the minimum value:

d d*
H[QQ’ - f(e")] =0, W[qa' - f(a')] <0. (47)
a'=a(q) a'=a(qg)
We deduce that
f'lald) = q,
(48)
f(alg")) < 0.
In literature, the generalized dimension appears as
Z(q)
D, = ——.
1T -1 (49)

If f(a) is a distribution of values we get a multifractal curve.

6. SOME RESULTS

In the type of approach we propose in this overview it is of interest to characterize each
“model” in terms of the localization properties of the spectrum and of the eigenstates.
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Our experience is mostly numerical although the field has also been attracted by rigorous
mathematicians. Also transport properties [45] are of great interest, although we do not
comment on that here. However, the statics and the dynamics are highly related. For
example, we have found in the past [44] that high precision in the eigenvalue is crucial
for good description of the transmission and the resistances.

The three basic types of eigenfunctions are illustrated in Ref. [46] for the Aubry model.
In the past we have found the new function called “connected packets” which corresponds
to the extended region but it is very peculiar [47]. It is shown in Fig.l. This packet
structure, although in a hierarchical manner, also appears in the critical states of the
Fibonacci chain model and the Tue-Morse model. We show it in Figs. 2 and 3 respectively.
This structure strongly influences the transport properties.

Also in the localized region, packet structure appears once we suppress the exponential.
We show it in Fig. 4 for the Anderson model.

To illustrate this we comment on a question we have explored lately. It is whether we
can connect these packet structures with multifractal behavior, also taking into account
the integrated density of states as a function of energy.

It is currently believed that critical states are related to singular continual spectra
(some kind of devil’s staircase for the integrated density of spectra). It is also believed
that they are multifractals.

In Fig. 5 we show these magnitudes for the Fibonacci. However, in the localized regime
there is the controversy about multifractality of the Anderson model wave-functional.
We have compared the binary alloy which, although pure-point, has a spectrum full of
gaps, with self-similar, peaks in the density of states with the Anderson model, where the
spectrum is pure-point but dense. In Fig. 6 we show both model’s integrated densities of
states.

The multifractal analysis for both, shown in Fig. 6, indicates structure. Although in the
case of the Anderson model the spread in « is very small. The spread in the binary alloy,
on the other hand , is compared to the Fibonacci chain. Size analysis on the Anderson
model is not conclusive due to limitations in the available computer memory.

7. CONCLUSIONS

In this overview, we have tried to present in a pedagogical and introductory manner the
field of the “Theory of Disorder® mapped into non-translational, discrete, 1-d Schrédinger
equation. Although we have presented in some detail our unified method of decimation
for the eigenvalues and eigenfunctions which has the advantage of high precision with
low numerical cost, we have not mentioned extensions to 2-d problems and the transport
properties that are of practical interest.

We have also discussed the novel topic of multifractal analysis that can be applied to
such sets as wave functions and also used for its characterization. From our experience
we think that this field is very appropriate for people starting research in physics. We
hope to raise some interest among young scientists, specially in the Latin American area.
This type of research can be performed with quite modest computational facilities and,
nevertheless, publishable results can be obtained and the intellectual capability exercised.



THE DISCRETE, NON-TRANSLATIONAL. .. 163

1.00

0.50 |

> 0.00

-0.50 |

-1.00 4 ‘ .
0 4000 8000 12000 16000

1

FIGURE 1. The wave-function for the Aubry-chain as a function of position (“extended packets”
wave function).
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FIGURE 2. The wave-function for the Fibonacci chain as a function of position (“critical” wave-
function) Ref. 46.
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FIGURE 3. The wave function for the Tue-Morse model as a function of position (hierarchical
packets).
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FIGURE 6. a) the multifractal analysis of the binary alloy; b) the multifractal analysis of the

Anderson model.
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