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Cooper pairing with a one-dimensional 8-potential
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ABSTRACT. Measurements of quantized magnetic flux establish that pairing is empirically present
in all known superconductors, whether the old low-temperature elemental ones or the newer
high-temperature cuprates. The pairing phenomenon is explained and derived, analytically and
graphically, in a simple one-dimensional model with an attractive b-potentia!. The model displays
a smooth continuous evolution from the loosely-bound, strongly-overlapping Cooper pair extreme
reminiscent of low-temperature, to the well-separated, tightly-bound composite bosons extreme
more characteristic of high-temperature superconductivity. This latter property makes it useful
in addressing exotic superconductivity where strong suggestions of a link with Bose condensation
emerge from recent experiments. The interaction model does not exhibit all the physical properties
of actual electron-electron (or hale-hale) pairing forces in superconductors. However, it lends itself
to a simple, pedagogically useful solution at the Cooper problem level in terms of combined
analytical, graphical and numerical techniques which a!~estandard.

RESUMEN. La acumulación por pares (apareamiento) en un gas de electrones (o huecos) parece
ser un hecho experimental en todos los superconductores, ya sean los convencionales de baja
temperatura crítica o los cupratos recientes con altas temperaturas críticas. Deducimos este
fenómeno, analítica y gráficamente, a partir de un modelo didáctico unidimensional sencillo que
consiste en una interacción atractiva tipo delta de Dirac, resuelto a la manera de Coopero Aparece
una evolución suave y continua entre un régimen de pares débilmente ligados y fuertemente
trasplantados entre sí (que recuerda el caso de la superconductividad de bajas temperaturas
críticas), y el régimen de bosones compuestos fuertemente amarrados y bien separados entre sí
que caracteriza más a la superconductividad moderna de altas temperaturas.

PACS: 74.20.Fg; 74.90.+n; 03.65.Ge

1. INT.RODUCTION

The Cooper fermion-pair problem [1) consists in solving the Schriidinger equation (in
the momentum representation) for two fermions interacting via a potentia! V(r), and
which cannot scatter by phonon exchange into single-fermion states already occupied by
the N - 2 background fermions, where N '" 1023. The two fermions \ViII maxirnize their
mutual attractive interaction if they have opposite spins and zero center-of-mass motion.
Thus, if r == r¡ - r2, K == k¡ + k2 = Oso that k¡ = -k2 == k, and the intrinsic space pair

'On leave of absence from Instituto de Física Teórica, UNESP, Silo Paulo, 01405 SP, Brazil, with
a grant from FAPESP, Brazi!.
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wave function is 4>(r) = ¿kCke;k-r, the coefficients Ck then satisfy the algebraic equations

2£~Ck+ I:Ck,Vk',k = ECk,
k'

(1)

(2)

where £~ '= rt2k2/2m, E is the pair energy eigenvalue and, if LD is the D-dimensional
system volume, then

v. - L-D J dD -;k"rV() -;k.rkl,k = re re. (3)

For the net electron-electron interaction, Cooper employed what is now called the "BCS
model interaction": Vk',k = -V if EF < £~, £~, < EF + rtwD, and = O otherwise, where
rtwD is the maximum energy a phonon can have, EF is the Fermi energy (which is fixed
by the carrier density),and V > O. This simplification immediately leads to the simple
eigenvalue equation

, I
1= VI: 2£0 _ E'

k k

(4)

(5)

where the prime on the summation sign means the k-sum is restricted such that EF <
£~ < EF + rtwD. The sum in (4) can be converted to an energy integral if the density of
states g(ó) '= (L/2rr)D dDk/dó is introduced, so that (4) beco mes

l

EF+hwD g(ó) lEF+hwD dó
I=V dó2ó_E",Vg(EF) 2ó-E'

El-' EF

(6)(3D),

where the last step follows in 3D from the empirical physical fact that in metals flW D «
E
F
, since the former is ~ 102 K while the latter is ~ 104 K to 105 K. Note that this reduces

the problem to a 2D one, where g(ó) is a constant [2] independent of ó. The remaining
integral is elementary and gives

E 2E 2rtwD --> 2E
F

- 2rtwDe-1/),
= F - el/)' _ I ),~o

where ,\ '= g(EF)V /2.
This shows a lowering in energy of the pair, relative to the interactionless case, and

constitutes the well-known "Cooper pairing", which is the fundamental ingredient of all
superconductivity, whether low- or high-temperature.

2. ATTRACTIVE Ó-POTENTIAL MODEL IN ID

To illustrate and better exhibit this fundamental nature of Cooper pairing, we wish to
solve the same problem in ID for the interaction model V(r) = -voó(x), with Vo > O
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and x == XI - X2. This means that f¡w = 00, and implies an unphysical property of the
attractive pairing force in that it allows for arbitrarily large momenta transfers. But it is
precisely this shortcoming in the model interaction, as we shall see, that

Vo ",,' 1
1= L L.. 2,0 _ E'

k k

with the prime now meaning only that EF < ,~< oo.
H this restriction were removed, (7) would become for E < O

(7)

(8)

which on squaring gives the exact two-body Schriidinger result E = -mv5/4f¡2 for the
eigenvalue E, as expected. This result is familiar from elementary quantum mechanics [3).

Going back to the restriction EF < E~ < 00 in the corresponding ID Cooper problem,
instead of (5) we now have, exactly,

100 -1/2Vo E
1= -L Cl dE E'

EF 2E-
(9)

where the ID density of states [2] g(E) = CICI/2, with CI = Jm/2 L/d, has been
inserted. Introducing the dimensionless quantity E == E /2EF• the integral in (9) yields

_1__1 In(1+ y'f)
2VE; y'f 1 - y'f ,

1 1 (" 1 )VE;~ 2"- are tan ~ '

if E > O;

if E < O.

(10)

(U)

The Fermi energy EF = f¡2k;/2m is related to the ID number density p = N/ L =
2kF/", namely EF = f¡2,,2p2/8m. Defining the dimensionless (coupling) quantity ,\ ==
mvO/f¡2p the prefactor in (9) is then just 2,\VE;/,,2, so that Eqs. (9), (10) and (U) lead
to two distinct implicit transcendental equations for E, namely,

,,2y'f _ In (1+ y'f)
,\ - l-y'f'

,,2~ 1
--- = 7r - 2 arctan --

,\ ~

if, > O;

if, < O.

(12)

(13)
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4

FIGURE1. GraphicaJ solution of Eq. (12) (right half) for the typical value of ), = 3.5, as explained
in text, and of Eq. (13) (left half) for the typical value of ), = 30. Note that scales on the horizontal
axis are different for right and left halves.

Expanding both rhs members we see that they both behave like 2vf<T+O(I<13/2) for small
1<1,but (12) is concave up in < while (13) is concave down in 1<1(see Fig. 1). Consequently,
there will be non-trivial (1<1 > O) solutions whenever

O < A < 7[2/2,

7[2/2 < A,

for < > O;

for < < O,

(14)

(15)

with the value A = 7[2/2 corresponding to < = O. This concludes the analy/ical aspects of
the problem. To proceed, we must apply either gmphica/ or numerical methods.
Figure 1 depicts the graphical solutions of Eqs. (12) and (13). The curves in the right

panel refer to the rhs (thick curve) and lhs (thin curve) of (12) for the typical value of
A = 3.5. Those on the left refer to the rhs (thick curve) and lhs (thin curve) of (13).
The dashed straight lines are the asymptotes 2vf<T common to both rhs members of (12)
and (13) for small 1<1. The large dots designate the rhs and lhs intersections whereby the
so/u/ion < can be found in either case < > O or < < O. These solutions are numerically
summarized in Table 1, and graphically displayed in Fig. 2 as a function of 1/ A '" h2p/mvo.
This variable has a simple physical meaning: sínce the pair wave function in vacuum is
exp( -mvolxl/2h2) [31, 1/), is proportional to the pair diameter in units of the average
interparticle spacing L/N = l/p.
Consider the two extremes of A ....., 0+ and A ....., 00, which are, respectively, the

weakly-bound, strongly-overlapping Cooper pair limit and the tightly-bound (point bo-
son) "dimer" limito Let Ó '" 2E.-E be the (positive) binding energy ofthe weakly-bound
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TABLE I. Cooper pairillg eigellvallles f '" E/2EF for different inverse coupling 1/>. '" h2p/mvo in
the ID attractive 6-potential model, ohtained from the graphical solution shown in Fig. 1.

11>.
O
0.010
0.020
0,030
0.040
0.050
0.060
0.070
0.080

f

-00
-972.4000
-232.6500
-98.6600
-52.7790
-32.0040
-20,9679
-14.4625
-10.3365

1/>.
0.090
0.100
0.203
0,300
0.400
0.500
0.600
1.000

f

-7.5738
-5.6443

O
0.7243
0.9119
0.9694
0.9890
0.9998

1

o

-2

-4

-6

-8

0.3 1/,\"1'1 p/mvo

FIGURE 2. Evolution of the pair eigenvalue energy E from 2EF to zero and down to negative
values as the coupling Vo of the attractive pairwise 6-potelltial is increased from zero.

Cooper pairo Defining 6 = 6/2E., Eg. (12) can be expanded for 1 - f = 6 --+ 0+ and
yields .,,2/>. ~ -ln(6/4), or

meaning that the Cooper pair binding energy for weak coupling can be expressed as

( 16)

(17)
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i.e., it cannot be expanded as a power series in ,\, or Va. The same type essential singu-
larity in coupling Eq. (16) also appears in the 3D Cooper pair problem [1], in the 3D
many-electron BCS theory gap (order) parameter and, finally, in the BCS superconduc-
tive transition temperature Te ~ 1.130De-1/2'\ where 0D = nWD/kBT., with kB the
Boltzmann constant and ,\ defined as in Sect. 1 [41. On the other hand, in the present
section equivalent to finite Va but p( or E.) -+ 0, and so it should correspond to treating
the two fermions in a vacuum. In this case, (13) becomes, since IEI == E/2E. -+ 00,

or

71"2 vT-I 2-~-=1r---+ ..',\ vT-I
(18)

(19)

which upon squaring again gives E = -mv5/4r,2, the binding energy of two particles in
a vacuum, as it should.
Leggett [51 has asked the question "What happens to a Cooper pair as density is de-

creased?". He answers the question partially by showing that as density decreases the basic
equation in BCS theory, the gap equation, becomes the two-particles Schriidinger equation
in momentum space with twice the chemical p model, which can be shown to possess the
same dynamics as the 3D electron gas "jellium" model [6]' as straightforward: the Cooper
pair becomes a point boson dimer (called a "diatomic molecule" by Leggett) reminiscent
of "bipolarons". These objects play an increasing important role [7] in modern theories of
high-temperature superconductivity where empirical "coherence lengths" (pair diameters)
-typically 3 to 4 order oi magnitude larger than the lattice spacing in low-temperature
superconductors- can be comparable and even smaller than the average lattice spacing
in the new cuprate superconductors. This latter class of materials, together with organic,
Chevrel-phase, heavy-fermion and bismuthate superconductors, are known as "exotic"
-to distinguish them from conventional, low-temperature, elemental superconductors.
Exotic superconductors can be either 2D-like or 3D-like. Transition temperatures Te for
exotic superconductor range over three orders of magnitude (from tenths to over a hundred
kelvins) but have recently been found experimentally [8] to scale like the corresponding
Bose-Einstein condensation critical temperatures. This suggests the existence for T > Te
of "pre-formed" boson charge carriers which are sufficiently well defined, distinct and
non-overlapping-unlike the low-temperature, weakly-bound Cooper pairs of conventional
BCS superconductors existing only when T :s Te -which somehow Bose condense into
the superconducting phase.

3. CONCLUSION

The Cooper problem of two fermions attracting pairwise via a ó-function potential in ID,
and submersed in a background sea of N -2 inert fermions obeying the Pauli principie, can
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be sol ved exactly in analytical-graphical-numerical formo The relevant parameter is just
the ratio of the pair size to the average interparticle spacing. As this ratio decreases from
infinity (weakly-quasi-bound, strongly-o\"Crlapping Cooper pairs) to zero (tightly-bound
well-separated composite boson dimers), the energy eigenvalue decreases smoothly from
2E. to zero and finally to negative \'allles characteristic of "real" bound pairs. When
the ratio actually reaches the ¡¡mit of zero (infinite dimer separation) one recovers the
familiar bound state energy of the attractive 8-function potential. The model, in spite
of being only ID, also highlights some recent views of both low- and high-temperature
superconductivity in 2D and 3D.
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