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ABSTRACT. The divergenceless eigenfunctions of the curl operator in spherical, circular eylindrical,
parabolic cylindrical and elliptic cylindrical coordinates are obtained by means of the method of
adjoint operators. In each case, the eigenfunctions of the curl operator are expressed in terms of
a single scalar potential that satisfies the Helmboltz equation.

RESUMEN. Se obtienen las cigenfunciones sin divergencia del operador rotacional en coordenadas
esféricas, cilindricas circulares, cilindricas parabdlicas y cilindricas elipticas por medio del método
de operadores adjuntos. En cada caso, las cigenfunciones del operador rotacional se expresan en
términos de un solo potencial escalar que satisface la ecuacion de Helmholtz.

PACS: 02.30.+g; 52.30.-; 41.20.—¢

1. INTRODUCTION

The eigenfunctions of the curl operator appear in various areas of theoretical physics. For
instance, the source-free Maxwell equations in empty space can be written as V- F = 0,
VxF = ﬁF where F = E +¢B; therefore, assuming a time dependence of the form
e~ the complex vector field F is a divergenceless cigenfunction of the curl operator. If
a magnetic field B in a plasma is an eigenfunction of the curl operator, then the magnetic
force density vanishes; hence, B is called a force-free fiold (see e.g., Refs. [1-4]). The
eigenfunctions of the curl operator are also useful in the expansion of vector fields in
electromagnetisim, fluid dynamics and acoustics (see, e.g., Refs. [57?] and the references
cited therein).

The divergenceless eigenfunctions of the curl operator in eircular cylindrical and spher-
ical coordinates can be expressed in terms of partial derivatives of scalar potentials that
satisfy the Helmholtz equation [1,7-9]. The fact that the most general eigenfunction of
the curl operator with vanishing divergence is determined by a single scalar potential has
been demonstrated in Ref. [9], where the eigenvalue equation is solved by separation of
variables in spherical and cylindrical coordinates, making use of the spin-weighted har-
momnics. In this paper. a simple derivation of the expressions for the eigenfunctions of
the curl operator in terms of scalar potentials in spherical, circular cylindrical, parabolic
cylindrical and elliptic cylindrical coordinates is given making use of the method of adjoint
operators, which allows the reduction of systems of Lhomogencous linear partial differential
equations to simpler equations [10,11].

188



EIGENFUNCTIONS OF THE CURL OPERATOR. .. 189

2. DEBYE POTENTIALS FOR THE EIGENFUNCTIONS OF TIHE CURL OPERATOR

The eigenvalue equation
N % = A, (1)
can be written in the form
£(u) =0, (2)

where £ is the linear partial differential operator that maps vector fields into vector fields
given by

E(u) =V xu-Au. (3)
If the adjoint of a linear operator .4 that maps n-index tensor fields into m-index tensor

fields is defined as that linear operator A' that maps m-index tensor fields into n-index
tensor ficlds such that

[ A Nag. dv = [LAN N o, )

for any pair of square-integrable n-index and m-index tensor ﬁclds fup-.. and g°P, re-
spectively, then one finds that!

(AB) =AY, (a+Bt=at 4B,  (Aht=4 (5)
and
curl’ = curl, grad' = —div, divl = —grad, (6)

therefore, £ and the laplacian operator are self-adjoint (i.e., £f = £ and (V2)t = ¥2).
If there exist linear operators O, T, S such that

S& = 0T, (7)
then, using Eqs. (5) and the fact that £ = €, Eq. (7) yields
est =Tlot. (8)
Hence, if ¢ satisfies the condition

ot(y) = o, (9)

! The definition of the adjoint of an operator given here is slightly different from that used in
Refs. [10,11]. The definition used here gnarantees the uniqueness of the adjoint operator, which
is essential to obtain Eqs. (5) and (6).
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from Eq. (8) it follows that u = ST(v)) satisfies Eq. (2), which means that u is an
eigenfunction of the curl operator.
In order to find operators O, 7, S, satisfying Eq. (7) it is convenient to introduce the
vector field
K=&u) =V xu-JAu (10)

Then, K = 0 if and only if u is an eigenfunction of the curl operator. Taking the curl of
Eq. (10) using the identity V x V x u = V(V - u) — V2u, one gets

VxK=%YV: u)=V?u- AV xu, (11)
and taking now the curl of Eq. (11) one finds that
VxVxK=-VVxu-AV(V-u)+ AV (12)

Therefore, from Eqs. (11) and (12) one obtains the identity

AVXK+VXVxK=—(V4+ 2V x u, (13)
which implies that
r-AVXxK+VxVxK)=—(V 4+ A)(r-V xu) (14)
and, similarly,
&:- AV xK+VxVxK)=—(V>+2)(&, -V xu). (15)

Thus, if u is an eigenfunction of the curl operator (i.e., K = 0), then the scalars r-V xu =
(r x V)-u and é, - V x u satisfy the Helmholtz equation. As shown below, Eqs. (14)
and (15) allow us to find the eigenfunctions of the curl operator adapted to spherical and
cylindrical coordinates, respectively.

2.1. Spherical coordinates
Since K = £(u), Eq. (14) is equivalent to an operator identity of the form (7) with

SK)=-r-(AVxK+VxVxK)
=-ArxV)-K-(rxV) - VxK, (16)

and

T(u)=r-V xu,
O(¢) = (VE+ A)¢. (17)
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Therefore,
u=8"W)=drx V¢ + ¥V x (r x Vi) (18)
is a solution of Eq. (2), provided that Of(¢)) = 0, i.e.,
(V2+ X))y =0. (19)

As is very well known, the Helmholtz equation (19) admits separable solutions in spher-
ical coordinates of the form

w(T: 9’ 99) = (AJJ(}‘?) T an(/\r)) }/jm(ga (:0)1 (20)

where A4, B are arbitrary constants, j;, ny are spherical Bessel functions and the Y}, are
spherical harmoniecs. Substituting Eq. (20) into Eq. (18) one obtains an eigenfunction of
the curl operator that is also an eigenfunction of the square of the total angular momentum
J? and of the z-component of the total angular momentum .J,, with eigenvalues j(j + 1)
and m, respectively [12]. Since a vector field has spin 1, j must be greater than, or equal
to, 1. In fact, if one substitutes Eq. (20) with j = 0 into Eq. (18), one obtains u = 0.
(However, there exist eigenfunctions of curl that are eigenfunctions of J? with eigenvalue
0; they correspond to A =0 [9].)

The first term in the right-hand side of Eq. (18) can be written in the equivalent form
—AV x (ry), which shows that the eigenfunctions of the curl operator given by Eq. (18)
have vanishing divergence. In fact, solving directly Eq. (1) in spherical coordinates, it
furns out that all the divergenceless eigenfunctions of the curl operator can be written
in the form (18) [9]. On the other hand, taking the divergence of Eq. (1) one finds
that 0 = AV - u, therefore the only eigenfunctions of the curl operator that can have a
nonvanishing divergence are those with eigenvalue A = 0. When A = 0, Eq. (1) reduces
to V x u = 0, which implies that locally u is the gradient of some function, u = V.

2.2. Cylindrical coordinates

Equation (15) is equivalent to an identity of the form (7) with

SK)=-é-(A\VxK+VxVxK)

= Mé:x V) K- (6, xV)-VxK, (21)
and
T(u) =&,V x u,
O(¢) = (V2 + A%)¢. (22)
Therefore,

u=SHy)=ré, x Vg + V x (&, x Vi) (23)
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is an eigenfunction of the curl operator with eigenvalue A provided that OT(Q/J) = (), n.e,
(V2422 =0 (24)
(¢f. Egs. (18) and (19)). Rewriting Eq. (23) as u =V x (=Aé,9 + é, x Vi), one finds

that the eigenfunctions (23) have vanishing divergence.
The expression (23) is adapted to cylindrical coordinates (u, v, z), where

w=a{z; ), v=1v(x,y) (25)
and (z,y, z) are cartesian coordinates, since the operator é; x grad appearing in Eq. (23)
involves partial derivatives with respect to u and v only. Looking for separable solutions
of the Helmholtz equation (24) of the form
Y(u,v, 2) = ®(u,v)e*?, (26)
one finds that ®(u,v) satisfies the two-dimensional Helmholtz equation
(As + a)® =0, (27)
where Ay is the Laplace operator on the plane and
&% = 5~ ", (28)

If (u,v, z) are orthogonal coordinates, Eq. (23) amounts to

Aoy 1 9% Adp 1 9%
= \mae Tmomoe ) T\ iow 1y 6y + Aot €, 29
" (hg dv N hy Bz(‘)u) @t (hl du hy 020 €x + At €., (29)

where hy, ho are the scale factors corresponding to the coordinates u and v, and é; and
é9 are unit vectors in the u-direction and the v-direction, respectively (we are assuming
that {é1, €, €.} is a right-handed basis).

Equation (27) admits separable solutions in cartesian, polar, parabolic and elliptic co-
ordinates, which are orthogonal (see, e.g., Ref. [13]). In polar coordinates (p, ¢), Eq. (27)
has separable solutions of the form

B(p, ) = (AJu(ap) + BNm(ap))e™?, (30)

where A, B are arbitrary constants, J,,, N, are Bessel functions and m is an integer. The
cigenfunctions of curl given by Eqs. (23), (26) and (30) (called Chandrasekhar-Kendall
cigenfunctions) are also eigenfunctions of the square of the linear momentum in the z-y
plane, P?+ P2, and of the z-component of the total angular momentum, J;, with eigenval-
ues a? and m, respectively. These cigenfunctions form a basis for the divergenceless vector
fields [7]. By solving directly Eq. (1) in circular cylindrical coordinates, one finds that all
the divergenceless cigenfunctions of the curl operator are given by Eqgs. (23)-(24) [9].
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In parabolic coordinates (u,v), which are defined by
1
i = E(u2 - Yy = uv, (31)

the two-dimensional Helmholtz equation (27) admits separable solutions
®(u,v) = U(u)V (v), where the separate functions U and V satisfy
d*Vv

duv?

2
U
v + (—aa + o2u)U = 0,

5 + (aa + a2v?)V =0, (32)

and a is a separation constant. Therefore, U and V' can be expressed in terms of the
parabolic cylinder functions (also called Weber functions) (sce, e.g., Refs. [8,13,14]).
Similarly, in elliptic coordinates (£, 1), which are given by

x = dcoshé cosn, y = dsinh € sinn, (33)

where d is a constant scale factor, Eq. (27) admits separable solutions ®(§,7) = U(&)V (n),
where

27 . 42V 5
ot + (b= d*a® cosh? §)U = 0, —— + (b - Pl eos’ n)V =0, (34)
de? dn?

and b is a separation constant. The solutions of Eqs. (34) are lincar combinations of
Mathieu functions (see, e.g., Refs. [8,13]).

3. CONCLUDING REMARKS

One of the advantages of the procedure used here to obtain Eqs. (18) and (23) is that
the coordinates are introduced only at the end, which simplifies the derivation of these
expressions. It should be noticed that by substituting any solution of the scalar Helmbholtz
equation into Eq. (18) or (23), one gets an eigenfunction of the curl operator (in fact, one
can also consider singular solutions of the scalar Helinholtz equation which generate well
behaved vector fields [9]). However, the separable solutions of the form (20) and (26) are
adapted to Egs. (18) and (23), respectively, in the sense that they yield relatively simple
expressions when written in terms of the basis induced by the corresponding coordinates
(sce, e.g., Eq. (29)).
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