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ABSTRACT. A spinor calculus applicable to three-dimensional riemannian spaces of any signature
is given. It is shown that any orthogonal transformation in three dimensions can be expressed in
terms of 2 x 2 matrices and that a spinor defines a triad of vectors.

RESUMEN. Se presenta un cdlculo espinorial aplicable a espacios riemannianos de dimensién tres
de cualquier signatura. Se muestra que cualquier transformacion ortogonal en tres dimensiones se
puede expresar en términos de matrices 2 x 2 y que un espinor define una triada de vectores.

PACS: 02.40.4+m

1. INTRODUCTION

The spinor formalism is a very powerful tool in general relativity and, in some applications,
it is almost an indispensable tool. For a three-dimensional riemannian manifold with a
positive definite metric, a spinor calculus can also be developed [1], which possesses the
advantages of that employed in the four-dimensional space-time of general relativity.

Spinors can be defined in riemannian spaces of any dimension and with any signature
(sce, e.g., Refs. [2,3]); however, for a given dimension, the group of spin transformations
and the properties of the spinor equivalents of tensors depend on the signature of the
metric. The aim of this paper is to extend the results of Ref. [1], developing a 2-spinor
calculus for three-dimensional riemannian manifolds with any signature.

In Sect. 2 the relationship between spinor components and tensor components is estab-
lished and in the specific case of signature (++ —), two alternative relationships are given
(¢f. also Refs. [3,4]). In Sect. 3 it is explicitly shown that the orthogonal transformations
in three dimensions can be expressed in terms of 2 x 2 matrices with unit determinant,
no matter what the signature of the metric. In Sects. 4 and 5 the Levi-Civita connection
and the curvature are expressed in spinor form and in Sect. 6 the concept of spin-weight
and the effect of the prime operation, which interchanges the basis spinors, are given. In
Sect. T it is shown that a spinor defines an orthogonal basis. Lower-case Latin indices a,
b, ..., run from 1 to 3 and capital Latin indices A, B, ..., run from 1 to 2.

2. CORRESPONDENCE BETWEEN TENSORS AND SPINORS

The components of a spinor, or a spinor field, in a three-dimensional space have the form
'z;“rc"';‘.ﬁ'_:, where each of the indices A, B, C, ..., can take two values (e.g., 1 and 2). Under
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a change of spinor basis, the components of any spinor transform according to
1AB... _ (71—1\A -1\B T Vv RS
vep = (U ) jgU™ ) s U U p--- Y1y, (1)

where (U4p) is a non-singular matrix (the superscript labels rows and the subsecript labels
columns) and ((U‘l)""B) is its inverse. Here and henceforth whenever an index occurs
twice in a term, once up, once down, it is to be summed. The spinor indices are raised
and lowered by means of

(eaB) = (__(1) é) = (49), (2)
according to the convention
va=ceapy®, P =Yy, (3)
(i.e., 1 = Y%, Yo = —1¢!) which implies that Yadp? = —pA¢, and EAB = 6;}.

The compatibility of Eqs. (1) and (3) requires that the matrices (U4y) appearing
in Eq. (1) have unit determinant. Indeed, from Eq. (1) one has, for instance, ¢y =
U”At"[; which, in view of Eq. (3), amounts to cacV'€ = UBAEBDTJJD and using again
Eq. (1), SAC(U‘l)CDz,ZJD = L’BAE.‘UDI;JD. The validity of this last equation for any ¥P is

equivalent to
B yD
eac = U 4 U"epp, (4)

which amounts to the condition det(U“y) = 1. (This means that ¢4p is invariant under
the spin transformations (1).) Equation (4) can also be expressed as

(U-I)AB — _€BCUCDEDA - "UBA‘ (

(4]
—

where we have made use of Egs. (3).
Let {ej,e;,e3} be an orthogonal basis such that the inner product of e, with itself is
plus or minus one. Let

Jab = €q * €p, (6)

then (gqs) is a diagonal matrix whose diagonal entries are +1 or —1. Thus, the metric
is positive definite if (gq5) = diag(1,1,1); the metric is indefinite if one of the diagonal
eutries of (gap) is different from the other two.

Proposition. Let (gq) be a diagonal matrix whose diagonal entries are +1 or —1, then
there exist scalars ,4p such that

OaAB = OaBA, (‘)
Garndy 18 = —2gap. (8)



SPINORS IN THREE DIMENSIONS. II 197

Proof. Let us introduce the matrices

(s14B) = ((1] _(1)) ,  (s24p) = (8 ?) , (s3aB) = (_[1] ‘{1]) , (9)

which are obtained by multiplying € by each of the Pauli matrices, then it is easy to see
that the matrices (gaap) = (Sqap) satisfy Eqgs. (7) and (8) with gup = dap (see, e.g., Ref.
[1]). Therefore, the matrices (0,4B) = Aa(Saap) (n0 summation over a) satisfy Eqgs. (7)
and (8) with (ga) = diag()\%,)\?,)\%). Thus, by choosing the A, in such a way that A2 is
+1 or —1 one obtains matrices satisfying Eqs. (7-8) for any signature.

It may be noticed that the matrices (0aap) are not uniquely determined by Egs. (7)
and (8). In fact, expressing conditions (7) and (8) in the form

br = 0, (10)
tr 0o0p = 2¢ab, (11)

where o, is the matrix with entries
(U'a)AB = ECAUGCB (12)

and tr denotes the trace, it is easy to see that given a set of matrices o, satisfying Eqs. (10-
11), the matrices &, = U~2a,U also satisfy Eqs. (10-11) for any non-singular matrix U.
From Egs. (7-8) it follows that

0aaB0" cp = —(€AceEBD + €BCEAD)- (13)

(The indices a, b, ..., are lowered and raised by means of (gq) and its inverse (g®), e.g.,
0%cp = g®oycp.) Therefore, if top . are the components of an n-index three-dimensional

tensor relative to the basis {e;, ez, es} and the components of its spinor equivalent are
defined by

tABCD..EF = (%UQAB) (%Ub CD) s (\%@JC EF) tab...cx (14)
then the tensor components are given in terms of the spinor components by
tab..c = (-"V%Ua AB) (—%05 CD) £a (—%Gc EF) tABCD..EF: (15)
and from Eqs. (13) and (15) it follows that

I e T (16)
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3. THE SPIN-GROUPS

If the basis {e1, ez, e3} is replaced by a second orthonormal basis {e], e}, e} such that

e+ ef = By vy (17)

then the components of an n-index tensor with respect to the new basis, ¢/, ., are given by
d

t"ab...c =L aLeb"'Lfctde...fa (18)

where, owing to Eqgs. (6) and (17), (L%,) is a real matrix such that

Gab = Lf aLd p9ed- (19)

The matrices (L%,) satisfying Eq. (19) form the group O(p,¢), where p and ¢ are the
numbers of positive and negative eigenvalues of the matrix (g.5) or vice versa. Equation
(19) implies that det(L?,) = 1. The matrices with unit determinant that satisfy Eq.
(19) form the subgroup SO(p, q) of O(p, q).

The spinor equivalent of Eqs. (18-19) are

tapep.. = (~1)"L™ 45 L™V op - trsrv.. (20)
[see Eq. (16)] and
cacenp +eapepe = L™ 45 L™ op (erresv + ervesT) (21)
where
ey = 30,00 @ L™, (22)

Hence, using Eqgs. (19), (13) and Eq. (6) of Ref. [1],

AB

AB 1CD _ 5 rd Dod, Fe
eacl™" 11 L7 = 0’ 11 L0470 11 L7 4

gﬂ.
AB_ D AB_ Dyrs . b re d
(0, 0ca” + 0,770,477 )L%0" 1L 0% 11

[o] B

_ 1 BDra _b c d
= _‘Zgace L b7 llL d% 11

= ‘"%gdeBDUandu = 0
this implies that
A8 =ataP, (23)
for some a”. In a similar manner, one finds that

L4%s, = 3485, (24)
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for some 34. From Eq. (21) we have especp L€, LBP,, = 1, which, owing to Eqgs. (23-
24), yields

(@?Ba)® = 1. (25)

Then, using Eq. (25) and the fact that a48? — o84 = (a“Be)e4?, from Egs. (21) and
(23-24) one finds that

LAB, = ol4gB), (26)

where the parenthesis denotes symmetrization on the indices enclosed.
If aB84 = 1, we define UAl = at, vd, = $34: then, Eqs. (23-24) and (26) are
equivalent to

(A B -

with
det(U/45) =1, (28)

while if a?B4 = -1, we make U4 | = ia?, U4, = i* and from Eqgs. (23-24) and (26)
we get

LB, = _U(ACUB)D’ (29)

where (U”}) again satisfies Eq. (28). Thus from Eqs. (22), (27) and (29) it follows that
any matrix (L%,) belonging to O(p, ¢) can be expressed in the form

L%, = £30° 450, CPUACUP), (30)

where (U4y) has unit determinant. The determinant of the matrix (L*,) given by Eq.
(30) is equal to +1 or —1 according to whether one takes the negative or the positive sign
in the right-hand side, respectively.

Substituting Eq. (29) into Eq. (20) and comparing with Eq. (1) we see that the spin
transformations (1) correspond to orthogonal transformations with unit determinant, i.e.,
elements of SO(p,q). Thus, the orthogonal transformation corresponding to the spin
transformation (1) is given by

L*, = —30% 450, CPUA U, (31)

It may be noted that the two matrices (U? g) and —(U“p) give rise to the same orthogonal
matrix (L*,). Using Eqgs. (5) and (12), one finds that Eq. (31) can also be written as
Lty = %tr c®UopU~!, where U = (U""B).

Making use of Egs. (13), (4) and (8), it is easy to see that if (U#y) is any complex
matrix with unit determinant then the L%, given by Eq. (30) satisfy Eq. (19); however,
the L, will be complex, in general. As shown below, the conditions that (U;) has to
satisfy in order for (L?,) to be real depend on the choice of the connection symbols g4 45.
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3.1. Positive definite metric

As pointed out in the preceding section, the matrices (c,ap) = (s.48) given by Egs. (9)
satisfy conditions (7-8) with g = . From Egs. (9) and (3) it follows that, under
complex conjugation,

11 12

S _ ez _ — 22
Oqll = —0g22 = —0, "7, gl =10l = =0y Fyfa = S0l = —@

a ¥

or equivalently
TaAB = —0, AB' (32)

Therefore, using Egs. (14) and (32) we find that the spinor equivalent of an n-index tensor
tap.. o satisfy
TABCD. EF = (~1)"ABCD-BF (33)
if and only if the tensor components t,; . are real.
The admissible spin transformations must preserve condition (33); this means that,
for instance, if t, is real, t,z = —#'4B, which, according to Eq. (1), amounts to
UR,USgtrs = —(U)AR(U1)B4tR5 and, making use of Eq. (33), UR, UY,tRS =

(UHA (U 1)B RS, Hence, UR, = £(U1)", and using the condition det(U45) = 1
one gets
UE, ={~ %, (34)

which means that (U4 ) is unitary; therefore, (U45) belongs to SU(2). Using Eqs. (5) and
(32), one readily sees that if (U4p) satisfies Eq. (34), then the orthogonal matrix (L%,)
given by Eq. (31) is real. Thus, Eq. (31) gives the well-known two-to-one mapping (in
fact, homomorphism) of SU(2) onto SO(3) (an alternative derivation is given in Ref. [8]).

3.2. Indefinite metric

The matrices (7148) = (8148), (0248) = —i(s248), (9348) = (s348), given explicitly by

(c14B) = ([1) _(1]) ,  (o24B) = (é (1}) ,  (o3aB) = (_2 _(1)) ) (35)

satisfy Eqgs. (7-8) with
(gab) =diag(la—131)' (36)

Since in this case the 0,45 are all real, from Eq. (14) we see that the spinor components of
a tensor are real if and only if the tensor is real. Thus, the admissible spin transformations
(1) correspond to real or pure imaginary matrices; in the first case (UAB) belongs to
SL(2,R). Taking into account Egs. (35), it is clear that if (U”3) is real or pure imaginary
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then the matrix (L%,) given by Eq. (31) is real. An explicit calculation shows that if
(UAR) € SL(2,R) then L%, > 0 and that L?, < 0 if (U“) is pure imaginary. Equation
(31) establishes in this case a two-to-one homomorphism of SL(2,R) onto SO'(2,1) — the
connected component of the identity in SO(2,1).

Alternatively, if we choose (¢148) = (s14B), (024B) = (s24B), (0348) = —i(s34B), t.€.,
un=(g_1) @m=(57) Cuw=(%5), @
then Eqgs. (7-8) are satisfied with
(9a5) = diag(1,1,-1). (38)
Now we have
Oall = —0a22,  0Oal2 = —0Oal2, (39)
which can be expressed as
TadB = —NARNBST, (40)
where
(naB) = (é _?) . (41)

With the choice (37), the spinor equivalent of an n-index tensor t,, . satisfies the condi-
tions

tap. £r = (—1)"narnps - newyrxttS-WX (42)

if and only if the tensor components t,; . are real.
Proceeding as in the previous subsection, one finds that the spin transformations (UAB)
that preserve the reality conditions (42) must obey the condition

1apUBc = tnep(U™)P (43)
or, equivalently,
UlyU = 49, (44)

where U = (UAB) and 7 = (n4p). The matrices that satisfy Eq. (44) with the positive
sign form the group SU(1,1) (which is isomorphic to SL(2,R)).

Making use of Eqs. (5) and (40) one finds that if (U“) satisfies Eq. (43), then the
matrix (L*,) given by Eq. (31) is real. Furthermore, L®, is positive if U satisfies Eq. (44)
with the positive sign and L is negative if U satisfies Eq. (44) with the negative sign.
Therefore, with the 0,45 given by Eqs. (37), Eq. (31) defines a two-to-one correspondence
between SU(1,1) and SO'(2,1), which is a group homomorphism.
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4. COVARIANT DIFFERENTIATION
Let 0, denote the directional derivative with respect to e, and let ¥V, denote the covariant
derivative with respect to d,. The components of the Levi-Civita connection relative to
the basis {9, 02,03} are the real-valued functions I'¢,, defined by
V=T 3.8, (45)
which are determined by
[0a; 8] = (L€ o — T gp) Oe. (46)
The functions
Tate = gadl *pe
are anti-symmetric in the first pair of indices,
LCase = —Tbae (47)
therefore the spinor equivalent of I' 4., CapcpEFR, can be written as
Capeper = —Tacerepp —U'BpEFEAC (48)
(see, e.g., Ref. [1]), where
Tapcp = —3e®Traspen = 3T 4 ppep- (49)

The components I' 4pcp are symmetric in the first and second pairs of indices

TCapep =Tpaco =Tasnc, (50)
and from Eqs. (33) and (42), using the fact that %5 is real and that det(nap) = —1, one
finds that

=PARCH if (gqp) = diag(1,1,1),
Tapcp = § Tasep if (gap) = diag(1,-1,1), (51)

narnpsnernpyT TV if (ga) = diag(1,1, -1).
Denoting by d4p the differential operators
OaB = ﬁffﬂfmaa, (52)
and making use of Eqs. (16) and (48) one finds that the spinor equivalent of Eq. (45) is

Vasdep =T 4p0rp + T papdor, (53)
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where ¥V 4 p denotes the covariant derivative with respect to d4p. The components of the
covariant derivative of a spinor field ¢€g with respect to dap are given by

cp... CD.. | 1C RD.. . 1D CR...
VapYrg = 0ap¥rc. + 1 gap¥rc. + T rap¥ra
R CD.. TR CD... .
+ =T pap¥re — T gapYrr. — - (54)

The symmetry of ' 4pcp in the first pair of indices [Eq. (50)] implies that the covariant
derivatives of € 4 p vanish and, therefore, the covariant derivative commutes with the raising
and lowering of spinor indices. From Eqs. (53) or (54), making use of Eq. (5), it follows
that under the spin transformation (1) the components I' 4 pop transform according to

T Vv T ,"l‘ T [ -
Tapep = UTcUYp(URLU® gTrsrv + UM, 8rvUnp). (55)

5. CURVATURE
The curvature tensor of a three-dimensional manifold can be expressed in the form
Rabed = —§ EabeCedrG*/, (56)
where g = det(gap), Gap is a symmetric tensor and €193 = 1. Using the fact that
9"Cavecedr = 9~ (gbades = gbsged); (57)
from Eq. (56) we find that G is related to the Ricci tensor Ry, = R€ acy through
Gab = Rap — 3R gas, (58)

where R = R? is the scalar curvature. Therefore, if ®,, denotes the trace-free part of
the Ricci tensor (g5 = Rap — 2R gw), Eq. (58) gives

Gab = Pab — §R gab- (59)
The spinor equivalent of the alternating symbol €4, is given by

)
EABCDEF = W(EACEBEEDF + €ACEBFEDE + €BDEAEECF +€BDEAFECE)  (60)

(see, e.g., Ref. [1], Eq. (16)), hence the spinor equivalent of Eq. (56) is

1
Rapcperur = 3(cacsenGpprr +caceriGBDER
+eppeenGacrr +€pperiGacEn), (61)

where G apcp are the spinor components of Ggp, and from Egs. (13) and (59) we have

Gapep = Papep + 5(eacepp + anepe), (62)
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where ® 4pcp are the spinor components of ®¢,,, which are totally symmetric.
The spinor equivalent of the equation

(VaVe — VeVa) te = —R? ta, (63)
which defines the curvature tensor, can be written in the form
(eacOsp + cpp0ac) ter = R™ prapeptur (64)
(see, e.g., Ref. [1]), where
Oas = VR 4V (65)
Therefore, from Eqs. (61), (62) and (64) it follows that
Oaptc = —3Papcp¥® — £(eacts + cpciba). (66)
By expanding the left-hand side of Eq. (66) one obtains
~1®4pep — &(eacenp +capenn) = 0% 4T pciBy)R — %z ® aT\pcip)s
-T% 4 "pToesr =T c " (alpsimr,  (67)

where the indices between bars are excluded from the symmetrization.
Since $, is real, from Eqs. (33) and (42) we find that

(I)ABCD if (gab) = dlag(la 17 1)’
Papcp =4 Pasep if (gap) = diag(l, —1,1), (68)

narnasncrioy @V if (gu) = diag(1,1,-1),.

Owing to Eq. (56), in a three-dimensional manifold, the Bianchi identities are equivalent
to the contracted Bianchi identities V%G gy = 0, which amount to

V8% spep + dcpR = 0. (69)

6. SPIN-WEIGHT AND PRIME OPERATION

The concept of spin-weight and the prime operation employed in the 2-spinor calculus
of general relativity (see, e.g., Refs. [5,6]), can also be defined in a three-dimensional
riemannian manifold. Since the case with a positive definite metric has been considered
in Ref. [1], in this section we restrict ourselves to the case where the metric has signature
(++ —), with the o,4p given by Eq. (37). Nevertheless, except for Egs. (73) and (77-78),
all tl.e formulae of this section are also valid in the case of positive definite metric, with
the o,4p given by Eq. (9).
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A quantity € has spin-weight s if under the spin transformation defined by
10/2 0
Ay_ (¢
(U%p) = ( 0 e—wn) (70)

(which belongs to SU(1,1) and corresponds to a rotation through an angle  about e3), it
transforms according to

£ 1 et (71)

Making use of Egs. (1) and (70-71) one finds that each component ¥ 45 p of a spinor has
spin-weight equal to one half of the difference between the number of indices A, B, ...,
D taking the value 1 and those taking the value 2. The 2n + 1 independent components
of a totally symmetric 2n-index spinor can be labeled by their spin-weight

Vs E V1.1 2.2, {8 =02 veu yEN) (72)
R

n+s n-—s

From Eq. (71) it is clear that if £ has spin-weight s, then & has spin-weight —s.
The spin-weighted components of a real trace-free totally symmetric n-index tensor ¢ .,
defined by

n+s n—a

where t4p. p are the spinor components of {4, ., which are totally symmetric, satisfy the
relations

& =(-1)"t,, (73)

where we have made use of Eq. (42) (¢f. Ref. [1], Eq. (37)).

The spinor components of the connection I'y;4p and 'yp4p have a well-defined spin-
weight; in fact, from Eq. (55) one finds that under the spin transformation (70)

Ly~ ey, Tin1z — €Tqpg, [1192 = T2,

Tog0z — € 2Tg999, Too12 — € *Tag1a, [a211 — Taon, (74)

Ti211 = €?(Tian — $81160), Tr212 — Ti212 — §0126, Trazy — €7 (T100 — 20296),
therefore, if £ has spin-weight s, then (911 +2sT1211)€, (812+25T1212)€ and (8a2+ 25T 1299)€

have spin-weight s + 1, s and s — 1, respectively.
The unimodular matrix

(U4p) = (? 8) , (75)
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which satisfies Eq. (44) with the negative sign and represents a rotation through 180°
about ey, defines a spin transformation called prime operation. Under this transformation,
the components of a totally symmetric 2n-index spinor defined by Eq. (72), transform as

P! —a?”tj) - (76)

Using Eqs. (1), (39), (55) and (75) one finds that if 45 p are the spinor components of
a real n-index tensor then

tsp..p = tAB..D> (77)

and

oyl - y d
Oxp =0aB. Tupcp =Tascp. (78)

7. THE TRIAD DEFINED BY A SPINOR

In the spinor calculus employed in general relativity, two linearly independent spinors
define a tetrad of vectors. In the case of three-dimensional spaces, a single spinor deter-
mines an orthogonal basis. When the metric is positive definite, this relationship is well
known and allows the representation of a spinor by means of an ax or a flag (see, e.g.,
Refs. [7,8,3]).

In the case of signature (+ + —) we shall make use of the o,4p given by Eq. (37). The
mate of an arbitrary spinor ¢ will be defined by

ba = naBy®, (79)
(@85, Pl =92, g = 1), Using Eqs. (1), (79) and the complex conjugate of Eq. (43) one
finds that under a spin transformation belonging to SU(1,1), 1¢»4 transforms according to

11£!B3

Py = nag’® =nap(U-1)2 YC =U"B

%€ = ncaUP 9

which shows that 1’4 transforms as a spinor under SU(1,1) transformations. Therefore,
the components

Re = icaap™y® (80)

transform under SO'(2,1) as the components of a vector. The components R, are given
explicitly by

(Ra) = (=i (9T9? = 479t) , =PTy? — G2y, — |92 — [0
which shows that R, is real and R® = —R3 > 0. Using Eqs. (13) and (80) one finds that

RoR* = —(¥*a)°. (81)
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(Note that ¥4 = [¥1|? = [¢?|? is invariant under the spin transformations.)
Introducing now

M= O'GAB":»‘J)A'U‘-'Ba (82)

using Eqs. (13), (80) and (82) one readily obtains R,M® = 0, M, M®* = 0 which means
that the real and imaginary parts of M, are orthogonal to I, and to each other and that
they have the same magnitude. In fact, a straightforward computation yields

(Re M,)(Re M?) = (Im M,)(Im M®) = () 4)%. (83)

(Note that, from Egs. (40), (79) and (82) it follows that M, = —a4ptr¢8.) Thus, if ¢4
satifies the condition ) AL,’ 4 =1, then {Re M,Im M, R} i 1‘1 an orthonormal basis with the
same orientation ds {e1,es,e3}. The meors YA and —1* give rise to the same triad. (If
AP = 0, then ¥4 is proportional to ¢! and from Eqs. (80) and (82) it follows that R,
and M, are p:opon.]onal.)

When the metric has signature (+ + +), we take the g, given by Eq. (9) and define
the mate of a spinor ¢*

da=gA (84)

(t.e., Dl = -2, = yl). Asa consequence of Bq. (34), ¢ transforms according to
Eq. (1). In the present case

B, = _JQAB'J"A'Z:DB (85)

are real and transform as the components of a vector under SO(3) and they satisfy R,R® =
(441 4)2. On the other hand,

M, = gaapy?y? (86)

are the components of a complex vector such that R,M* = 0, M,M® = 0 and (Re M,) x
(Re U“) = (Im M,)(Im M?®) = (yA9h4)%. (In the pleson’r case we also have M, =

—0aapt®B.) Therefore, if YA is such that ¥4 = 1 ( v [0 + [¢22 = 1), then
{Ro M,Im M, R} is an 01tl10norma1 basis w1th the same onontntmn as {ej, ey, 03} Also
in this case the spinors ¥* and — define the same triad.

8. CONCLUDING REMARKS

The results of this paper, together with those of Ref. [1], provide a spinor calculus for
three-dimensional manifolds with any signature; the signature of the metric enters through
the choice of the connection symbols o, 4p. In the case where the metric is indefinite, the
symbols 0,45 given by Eq. (37) seem to be more convenient that those given by Eq. (35),
since the use of complex quantities reduces the number of independent equations.
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