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Spinors in three dimensions. II
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AnSTHACT. A spinor calculus applicable to thrrc-oimcnsional ricmannian spaces of any signature
i~giyen. It is s1l0\\'1Ithat any orthogonal transformation in tbree dimensions can he expressed in
tenlls of 2 x 2 mat.rices alld that a spinor defines a triad of \'ectors.

RESU~IE:\'. Se prescnta mi cálculo espillorial aplicable a espacios ricmannianos de dimensión tres
de cualquier sigllatura. Se lllucstra qllC cllalqlliC'f transformación ortogonal en tres dimensiones se
puede cxpresar en térrniIlos de matrices 2 x 2 y quc tl11 espinor definc una tríada de vectores.

rAes: 02.~O.+m

1. I:-:THOIlUCTIO:;

T!Ie spillor forlllalisll1 is a \'cr)' pO\\"c1'fultool in general rclatiYity alld, in some applications,
it is almos1. all indispensable tool. For a titrec-ciimensiona! ricmanniall lnallifold with a
positi\'e definite metric, a spinor calenlns can also be de\'Cloped [1), \\'hich possesses the
adnllltagrs of t}¡at C'Inployed in t}¡c fOllr-dimcnsional spacc-tilllc of general rclatiYity.

Spillors can he dcfillCd in ricmannian spaccs of any dimcllsion and ,vith an)' signaturc
(sce, e.y., Rek [2,3]); ho\\'eve!', for a given dime11sio11,the group of spin transformations
a11d the pro¡H'rties of the spinor equivalents of tensors depend 011 the signatnre of the
metric. Tbe aim of this papel' is to extend tbe results of HeL [1), de\'eloping a 2-spi11or
calculus fOl"thrce-dimcnsional ricmannian lllallifolds wit.h an)' signature.
In Sed .. 2 t}¡c rclatiollsllip hctwcen spinor componcll1.s alld tensor componcnts is cstab-

¡¡shed and in thc spccific case of signélturc (+ + -), t\\'o altrrna1.in' rcla1.ionships are givcn
(cj. also Hefs. [3,4]). In Sec!. 3 it is explicitly sbo\\'n tbat the orthogonal transformations
in 1.llr('C'dinH'llSiollS can be cxprcsscd in tcrms of 2 X 2 matrices with llnit dctcrminant,
no matter \\'bat the sig11atnre of tbe metric. 111Sec!s. ~ and 5 lbe Levi-Civita conneetio11
and the cnrvatllre are expressed in spinor form and in See!. G tbe eoneept of spi11-\\'eigbt
and tbe effect of tbe prime operation, \\'hicb interchanges tbe basis spinors, are given. In
Sec!. 7 it is sho\\'n that a 'pinor defines an ortbogonal basis. Lo\\'er-case Latin indices a,
b, .... rtlll frorn 1 to 3 and capital Latill iudiccs A, E, ""' rtlll fron1 1 to 2.

2. COHHESI'OI'])E1'CE BET\\'EE1' TE1'SOHS A1'D SPI1'OHS

Thc compollcuts of a spinor, 01' a spillor field, in a thrce-dilllC'llsional spacc have tIte fonu
1,0¿iL:, \\'here each of the i11diees A, 13,e, ... , can take t\\'o values (e.9., I a11d 2). Under

19:;
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a challge of spinor basis, the compOllcnts oC any spinor trallsforlll accordillg to

,1,'AlJ.. (U-')A (U-I)lJ UT U\' I/lS .'f'CD .. = /l S'" e D"'1/-''1'\I , (1)

",here (UA
lJ) is a non-singular malrix (the superscript labels ro",s amllhe subscript labels

eolull1us) and ((U-I)An) is its inverse. lIere ami henceforlh ",hene,'er an index occnrs
twicc in a tcnn, once up, anc(' clown, it is lo be summed. The spinor inr1iccs are raiseu
and lo",ered by means of

according lo lhe eonvention

_ ( O 1) _ AIJ(éAlJ) = -1 O = (E ), (2)

, "lJ
"IPA = éAllvJ 1

",1J _ oA lJ ".o/ -~ o/A, (3)

(i.c., 1/'1 = 1/,2, l/J2 = -1/") ",hich implies that 1/JA1>A= _1/JAÓA and EAlJ = Sí).
The compatibility of Eqs. (1) and (3) rrquires lhal the matrices (U"lJ) appearing

in Ec¡. (1) have unit delenuinant. Indeed, froll1 Eq. (1) one has, for inslance, l/J'" =
UlJ"l!Jn ",hieh, in vie", of Eq. (3), amounls lo E"C1b'C = UlJ.\élJn>bn and using again
Ec¡. (1), E"c(U-I)C Dl/JD = UlJ"élJIJ!/,D The validity of this lasl equation for any l/JIJ is
equi\'alent lo

(4)

",hieh amounts to lhe condition det(U"lJ) = 1. (This means thal EAlI is invariant under
lhe 'pi n lransformations (1).) Equation (4) can also be expressed as

(U-l)" - o UC oDA - U A[J - -~ lJC D'- - - lJ 1

",11l're ",e have made use of Eqs. (3).
Let {el, C2, C3} be an orthogonal basis such that the inner product of Ca

plus al' lllillllS ol1e. Lct

(5)

",ilh ilself is

(6)

lh('n (Y"I,) is a diagonal matrix ",hose diagonal entries are +1 or -1. Thus, the metric
is positiw definite if (Yab) = diag(l, 1, 1); the metric is indefinile if one of lhe diagonal
ellt ";('8 of (y".) is different from the other t",o.
I'm¡JOsilion. Lel (Yab) be a diagonal malrix ",hose diagonal enlries are +1 or -1, then
thcrc cxist scalars a(lAR sudl t}¡at

(7)
(8)
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Proaf. Let us illtroduce the matrices

(SI,\I1) == (~ -n ' (; O)
(S2AB) == O; , ( O-1)

(S3AH) == -1 O ' (9)

\\"hich are obtained by multiplyillg £ by each of the Pauli matrices, then it is easy to see
that the matrices (O"aAIJ) = (SaAH) satisfy Eqs. (7) alJ(i (8) \\"ith gab = {jab (see, c.g., Ref.
[1]). Thercfore, the matrices (O"aAIJ) = Aa(SaAH) (no summation oyer a) satisfy Eqs. (7)
and (8) \\"ith (gab) = diag(A¡, A~,A~). Thus, by choosing the Aa in such a \\"ay that A~ is
+1 or -1 one obtains matrices satisfying Eqs. (7-8) for any signature.
It may be noticed that the matrices (0"",\11) are not uniquely determined by Eqs. (7)

and (8). In fact, expressing conditions (7) and (8) in the form

tI' Ga = O,
tI' l7aGb = 29ab1

\\'herc Ga is thc matrix with cntries

( )A _ CA
Ga B = £ aaGB

(10)
(11)

(12)

and tr denotes the trace, it is easy to see that giwn a set of matrices 0"" satisfying Eqs. (10-
11), the matrices (ja = U-IO"aU also satisfy Eqs. (10-11) for any non-singular matrix U.
From Eqs. (7-8) it follo\\"s that

(13)

(The indices a, b, ... , are lo\\"ered and raised by means of (g"o) and its ilwerse (g"b), c.g.,
0"" CD = g"bO"bCD.) Therefore, if t"b ... c are the components of an n-index three-dimensional
tensor relativc to thc basis {el,cz,c3} and the componcnts of its spinor equivalcnt are
delined by

(14)

then the tensor components are giyen in terms of the spinor components by

and from Eqs. (13) and (15) it follo,,"s that

t ...a ... s ...a ... = -t ..AH . s' AB .

(15 )

(16)
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3. TIlC SPI;\-GIlOUPS

If the basis {el, e2, e3} is replaced by a second orthonormal basis {e;, eí, e~} such that

(17)

then the components of an n-index tensor with respect to the new basis, t~b ..c' are given by

t' -Ld Le ... Ll tab ... c - a b e de ... /,

where, owing to Er¡s. (6) ancl (17), (La b) is a real matrix such that

(18)

(19)

The matrices (La b) satisfying Er¡. (19) form the group 0(1', q), where l' and q are the
numbers of positive and negative eigenvalues of the matrix (9ab) ar vice Yersa. Er¡uation
(19) implies that dct(La b) = :J:1. The matrices with unit determinant that satisfy Eq.
(19) form the subgroup SO(1', q) of 0(1', q).

The spinar er¡uivalent of Er¡s. (18-19) are

I ( l)nLRS LTVtAncD ... = - Mi CD'" tRSTV ..

[see Er¡. (16)) and

LllS LTV ( )éAc[nD + [ADEnc = ..lB CD ERTESV + ERVEST

where

LAn _ l ..lB b La
CIJ = 'lITa IT CD b'

lIence, using Er¡s. (19), (13) and Eq. (6) of fieL [1),

(20)

(21 )

(22)

LAn LCDcAe J 11 11

this implies that

LAH _ ~A~n11 - u u; ,

for SOll1C nA. In a similar manncr, ane finds that

LAB - [3A[3n22 - ,

(23)

(24)
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for some {3A FrOln Eq. (21) we have E,WEC[)LACIII/Ji)n = 1. whieh. owiug to Eqs. (23-
2.1), yields

Then, using Eq. (25) and the faet that aA{3/1 - a/l{3A = (OC{3c)E'W, from Eqs. (21) and
(23-2.1) oue finds that

where the parenthesis denotes symmetrization on the indices endosed.
If aA{3A = 1, we define UA 1 == 0,1, UA2 == (3A; then. Eqs. (23-24) aud (26) are

equi\'illent to

LAR - U(A UII) (27)
C[)- C [)

with

(28)

while if aA{3A = -1, we make UA 1 == inA, UA2 == i{3A and from Eqs. (23-24) and (26)
we get

L'lll - UtA U¡¡)
CD - - e D' (29)

where (UA
IJ) again satisfies Eq. (28). Thus from Eqs. (22). (27) and (29) it follows that

any matrix (La b) belonging to 0(1', '1) can be expressed in the form

(30)

where (UA¡¡) has uuit determinant. The delerminant of the matrix (La b) given by Eq.
(30) is equal to +101' -1 according to wll('lher one takes the negati\'e 01'the positi\'e sign
in the right-hand side, respectively.
Substituting Eq. (29) ¡nto Eq. (20) and rompariug with Eq. (1) we see that the spiu

transfonuations (1) cOl'respond to orthogonal trausformatious with nnit determiuant. i.c.,
elcments of 50(1', '1). Thus, the Ol'thogonal trausfonnation corresponding to the spin
transfonnation (1) is given by

La I a C[)UA U¡¡
b = -2a ,Wab C D' (31)

It may be noteu that the two matrices (Ua IJ) and _(UA¡¡) give rise to the same orthogonal
matrix (La b)' Using Eqs. (5) and (12), one finds that Eq. (31) can also be wri\ten as
Lab = ~ tI' a"UabU-1, where U = (UAn).
~[aking USe of Eqs. (13), (4) anu (8), it is easy to see that if (UA

S) is an)' complex
matrix with unit determinant then the La b given by Eq. (30) satisfy Eq. (19); however,
the La b will be complex, in general. As shown below, the conditions that (U,'l¡¡) has to
satisfy iu order fOl' (La b) to be real depenu on the choice of the connection symbols aa,llI,
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3.1. Positive definite metric

As pointed out in the preceding section, the matrices (aaAlJ) = (s",IlJ) giYen by Eqs. (9)
satisfy conditions (7-8) with 9ab = bab. From Eqs. (9) and (3) it follows that, under
complex conjugation,

-a -a -a11all - - a22 - - a

or equivalently

-a - a - a 12a12 - a12 - - a

-- AlJUaAIJ = -Uo (32)

Therdore, using Eqs. (14) and (32) we find that the spinor equivalent of an n-index tensor
tab ... c satisfy

t ' - (_l)"tAllCD ...EFABCD ...EF - (33)

if and only if the tensor components tab ... c are real.
Thc admissiblc Spill transformations must preserve condition (33); this mrans that,

for instance, if ta is real, t~ll = _t'All, whieh, aeeording to Eq. (1), amounts to
UR US tI'S = _(U-1)A (U-1)ll tRS and making use of Eq (33) UR US tRS =A El R S, ., A B

(U-I)'\ R(U-1)IJ stRS Henee, UR A = :I:(U-1)'\ R and using the eondition det(UAlJ) = 1
one gets

(34)

whieh means that (UA
IJ) is unitary; therdore, (UA

lJ) bclongs to SU(2). Using Eqs. (5) and
(32), one readily sees that if (UA

lJ) satisfies Eq. (34), then the orthogonal matrix (La b)

given by Eq. (31) is real. Thns, Eq. (31) gives the well-known two-to-one mapping (in
faet, homomorphism) of SU(2) onto SO(3) (an alternative derivation is given in nef. [8]).

3.2. Indefinite metríc

The matrices (al'w) = (SI,W), (<12,\8) = -i(S2,\8), (a3AlJ) = (S3,1lJ), giYen explieitly by

satisfy Eqs. (7-8) with

(<12AIJ)= (~ n '
(gab) = diag(l, -1, 1).

( 0-1)(a3A¡¡) = -1 O ' (35)

(3G)

Since in this case the aaAll are all real, from Eq. (14) we see that the spinor eomponents of
a tensor are real if and only if the tensor is real. Thus, the admissible spin transformations
(1) eorrespond to real or pure imaginary matrices; in the first case (UA¡¡) bclongs to
SL(2,R). Taking into aeeount Eqs. (35), it is clear that if (UA¡¡) is real or pure imaginary
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then the matrix (La b) givclI b)' Ec¡. (31) is real. An explicit calculatioll shows that if
(UAn) E SL(2,R) thell L2

2 > O alld that £22 < O if (UA
lJ) is pure imaginor)'. Ec¡uotion

(31) estoblishes in this case a two-to-one homomorphism ofSL(2,R) onto SOI(2,1) - the
connected component of the identit)' in 50(2,1).
Alternativol)', ifwe choose ("¡,w) = (81AB), ("2AIJ) = (82 ..\11), ("3AlJ) = -;(S3 ..\El), i.e.,

(,,¡,\El) = (~ -n '
then Ec¡s. (7-8) are satisfied with

(; O)("2AlJ) = O; ,

(gab) = diag(l, 1, -1).

(
O ;)

("3AB) = ; O ' (37)

(3S)

which can be expressed as

(39)

whcre

(1 O)(,/,\8)= 0-1 .

(40)

(41 )

\\'ith the choice (37), the spinar eqnivalent of an 7l-index tensor tab ..e satiefies t he condi-
tions

t ( 1)" tllS ..lVXAlI ...EF = - 'J..\n'/IIs" 'l/EIV'/FX (42)

if and onl)' if the tensor componellts tab...e are real.
Proceeding as in the pre\'ious subsection, one finds that the spin tronsformations (UA

B)

that preserve the realit)' conditions (42) must abe)' the condition

(43)

or, equivalentl)',

(44)

where U = (UA
B) and '/ = ('JAlJ). The matrices that satisf)' Ec¡. (44) with the positive

sign fOrln the group 5U(I,I) (which is isomorphic to 5L(2,R)).
:\laking use of Ec¡s. (5) and (40) one fineis that if (UAn) satisfies Ec¡. (.¡:l), then the

motrix (La b) givon b)' Ec¡. (31) is real. Furthermore. L3
3 is positi\'e if U salisfi,'s Ec¡. (44)

with the positive sign and L3
3 is negati\'e if U satisfies Eq. (44) with the negativc signo

Therefore, with the "aAn gi\'en b)' Eqs. (37), Eq. (31) defines a t\Vo-lo-one COlTCspOlHlence
between 5U(I,I) and 501(2,1), which is a group homomorphism.
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4. COVARlANT DlFFERENTIATION

Let aa denote the directional derivative with respect to ea and let \7a denote the covariant
d',rivative with respect to aa. The components of the Levi-Civita connection relative to
the basis {aj,aZ,a3} are the real-valued functions fe ba defined by

(45)

which are determined by

(46)

The functions

are anti-symn1ctric in thc first paiI' of indicrs,

thercforc thc spinor cqnivalent of rabe, rAJJCf)F:P, can be writtcIl as

fADCDEF = -f ..ICEFElJD - fllDEFEAC

(see, e.g., ReL [1]), where

f 1 IISf - 1fll
ADCD = -'2c IlASnCD - -'2 AllIJCD'

The components f ADCD are symmetric in the first ancl second pairs of indices

fAllCD = flJACD = f ABDC,

(47)

(48)

(49)

(50)

and from E<]8. (33) and (42), nsing the faet that ERS is real and that det(11,w) '" -1, one
finds that

¡_f,lECD if (9ab) = diag(l, 1, 1),

f ABCD = f AlJCD if (9ab) = diag(l, -1, 1),

1}MI7WS1ICT1}Dl'fRSTI' if (9ab) = diag(l, 1, -1).

Denoting by a,w the differential operators

a - 1 a a.AH = ~a AH a,

(51 )

(52)

and making nse of E<]8. (16) and (48) one finds that the spinor equivalent of E<]. (45) is

(53)
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where V AH denotes the covariant deri\'ative with respect to D,lB' The components of the
co\'ariant deri\'ative of a spinor field ¡Jifg .....\Vith respect to DA/I are given by

V,IlJ1/Jff? = DAlJ1,'Jff?. + rCIIAIl¡Ji~(f? .. + rDI!A/I¡Jie¡.g:

+ rl! ICD... rll ICD .
... - f"AIl~)IIG ... - G,\[¡'iJf"I! . (54)

The symmetry of rA/lCD in the first pair of indices [Eq. (50)] implies that the comriant
derh"ath'cs of E~1JJ vanish aud, thcfeforc, thc covariant dcrivativc C'ommutes \".¡th the raising
and lowering of spinor indices. From Eqs. (53) or (5.1), making nse of Eq. (5). it follows
that under the spin transformation (1) the components rAIlCf) transform according to

r' U'T U.l' (Ull US r UJl" U. )AI1CD = e f) A IJ USTV + A OJ'\' .H lJ .

5. CURVATURE

The curvature tensor of a three.dimensional manifold can he expressed in the form

R - Gefabcd - -g éabeEctlf ,

where 9 == det(9ab), Gab is a symmetric tensor and él23 == 1. Using the fact that

ae -1( )9 éabeéedf = 9 9bdgef - 9bfged ,

from Eq. (56) we find that Gab is related to the TIicci tensor Rab == Re aeb through

(55)

(56)

(57)

(58)

where R == Ra a is the scalar curvaturc. Thcrefore, if <l>abdl'notes the trace-free part of
the TIicci tensor (<I>ab== Rab - !R9ab), E'I. (58) gives

(59)

The spinor equivalent of the alternating symhol éabe is given by

(see, e.g., TIe£. [1]' Eq. (16)), hence the spinor equimlent of Eq. (56) is

RA/lCDEf"HI = ~(éACéEHG lJ/Jn + éACéF1G IlDEH

+ é lJ /Jé EH GACn + é lJ/Jé nG ACEH), (61)

where GABCD are the spinor components of Gab, ami from Eqs. (13) and (59) we have

(62)
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where <PAIJCD are the spinor components of <Pab, which are total!y symI11etric.
The spinor equivalent of the equation

(63)

which defines the curvature tensor, can be written in the form

(64)

(see, e.9., Ref. [1]), where

(65)

Thercfore, from Eqs. (61), (62) and (64) it fol!ows that

(66)

l3y expanding the left-hand side of Eq. (66) one obtains

-~<PAIJCD - t:,(EACELJD +EADEIlD) = oR(AfIDCILJ)I1- fSIIR(AfIDCIIJ)S

- f\A RIJ)fDCSR - fS c
R

(AfIDSIIJ)R, (67)

where the indices between bars are excluded from the symmetrization.
Since <Pab is real, from Eqs. (33) ami (42) we find that

¡<pAIJCD if (9ab) = diag(l, 1, 1),

<PAIJCD = <PAIJCD if (9ab) = diag(l, -1,1),

77AR1/IJS17CT7lDV<PIISTV if (9ab) = (liag(l, 1, -1),.

(68)

Owing to Eq. (56), in a three-dimensional manifold, the l3ianchi idcntities are equivalent
to the contracted l3ianchi identities yaGab = 0, which amount to

yAB<pAIJCD + ~ocDR = O.

6. SPII'-WEIGIlT ANI) PIU~IE OPEI\ATION

(69)

The concept of spin-weight and the prime operation employcd in the 2-spinor calculus
of general rclativity (sec, e.g'l Rcfs. [5,6]), can also be d('fincd in a thrce-dirncnsional
riclnannian manifold. Sincc thc case w¡th a positive dcfinitc lllctric has bren considcrcd
in Ref. [1]' in this sectiou we restrict ourselves to the case where the metric has signature
(+ + -), with the aaAB given by Eq. (37). Nevertheless, except for Eqs. (73) and (77-78),
al! tV fonnulae of this section are also \'alid in the case of positi\'e definite metric, with
the <JaAIJ given by Eq. (9).
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A quantity ~ has spin-weight s if under the spin transformation defined by

(iO)

(which belongs to SU(I,I) and corresponds to a rotation through an angle O about C3), it
transforms according to

(il)

:\Iaking use of Eqs. (1) amI (iO-il) one finds that each component ¡jJAIJ ... D of a spinor has
spin-weight equal to one half of the difference between the nUll1ber of indices A, n, ... ,
D taking the \'alue I amI those taking the \'alue 2. The 2n + I independent cornponents
of a totally sYll1ll1etric 2n-index spinor ('an be labeled by their spin-weight

'l/Js =:01...1 2...2,-- (s = O, :1:1, ... , :l:n). (i2)

Froll1 Eq. (il) it is clear that if ~ has spin-weight s, then ~ has spin-weight -s.
The spin-weighted cOIl1]lonents of a real trace-free totally syrnll1etric n-index tensor lab ..e,
defined by

I = I,~-90'

where 1,\lJ ...D are the s]linor eOIl1]lonents of tab...e, which are totally symmetric, satisfy the
relations

(i3)

where we ha\'e made use of Eq. (42) (cf. TIef. [11, Eq. (3i)).
The s]linor components of the connection fllAIJ and f22AIJ ha\'e a well-defined spin-

weight; in faet, from Eq. (55) one finds that under the spin transformation (iO)

""0 -ofllll >-< e-' fllll, fl1l2 >-< c' f1l12, fl122 >-< f1122,

f2222 >-< e-2;of2222, f2212 >-< e-;of2212, f2211 >-< f22l1, (i4)

f12l1 >-< e;O(f12l1 - ~8J10), fl212 >-< fl2l2 - ~8120, f1222 >-< e-W(fI222 - ~8220),

therefore, if ~ has spin-weight s, then (811+2sf12l¡)~, (812+2sfI2l2)~ and (822+2sfI222)~
ha,'e spin-weight s + 1, s and s - 1, res]lecti\-ely.
The unimodular matrix

(UAIJ)=(~~)' (i5)
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wlticlt satisfics Er¡. (44) witlt tite negative sign and represen!s a rotation tltrouglt 1800

about C11 defines a spin transforIllation cal1cel prime opcration. Undpr tItis transfonnatioIl,
tite components of a totally symmetric 2,,-index spinor elefineel by Eq. (72), transform as

I 2
~!,= " 117"'f's 'f/-S' (7G)

Using Er¡s. (1), (39), (55) anel (75) one finds that if tAn ..v are the spinor components of
a real H-inc1ex tensor thCll

ti - tAH ... D - 'A13... V,

and

(77)

r;\IJCV = rAlJcJ). (78)

l. TIIC TRIAD DEFlXCD BY A SPIXOH

In the spinor ca1culus cmploycd in gCllPral rrlativity, t\\'o linrar1:.,. int1eprlldf'llt spiuors
define a t('trad of \"('ctors. In t.hc case of thrcc-<iirnrllsional 5P<'l.(,(,S, a single spinor deter-
mines an orthogonal basis. When the metric is positive elefinite, tltis relationship is well
knowIl and allows the rcprcscntatioll of a spinor by Il1C{lJ1Sof an ax 01' a flag (s{,t.\ e.g'l

TIefs. [7,8,3]).
In tite case of signat1ll'e (+ + -) we sltall make \lse of the (J"MJ gi\'Cn by Er¡. (:37). The

mate of an arbitrary spinor 'V! will be defined by

(79)

(i.e., J;I = ~,2, J;2 = ';'1). Using Er¡s. (1), (79) anel the complex conj\lgate of Er¡. (.13) O\le
f¡nels that \luder a spin transformation belonging to 3U(I,I), J;A transforms acconling to

which shows that 1+~A t1'an5[orms as a spinor llndcr SU(I,I) transformations. T}¡creforc1

the cOlnponents

JI -' ¡Al J)
a = 1(J(L.1l11Jl 1jJ

transfol'ln under 301(2,1) as the components of a "ector.
explicitly by

(80)

The componcnts Ha are giycn

(JI,,) = (-i (~)[,:,2-1¡'2~,t) ,_¡/JI,;.2 -';'2¡/J1,-11ji'¡2 _1,;.212)

",hich sho",s that Jla is r('al aut! JI.1= -Jl3 ::: O. Using Er¡s. (13) and (80) one finels thal

(81 )
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(:\ote that l.:1,.\~i'A = IL,112 -ll,,212 is in\"i-lriant undel' the Spill trall~forll1atioIlS.)
Introdllcing llO\\'

\1 - /.-\ !,H
~ n: = aaAlJ1p If' • (82)

nsing E<¡". (1:3), (80) aud (82) oue readiIy obtaius R,,"l" = O, "f"M" = O \\"hieh means
tha! th~ l'('al and imaginary parts of JIa are orthogonal lo na and lo pach othrr and tilat
they ha\"(~t.he same magnitll<1e. In [aet, a straightforward eomplltatioll yi('Ic1s

(83)

(;\ot(' that frolll E<¡s. (,10), (,a) and (82) it foIJo\\"s that M" = -a",wJ,.-\J,H) Thns, if1jJA
satifles the coudition '¡;"\0.-\ = 1, then {Rc 1\1, 1m 1\1,R} is au orthouorlllaI basis \\"ith the
samc orientat.ioll as {Cl,C2!C3}' The spinors I;'¡--\and -~)"\ gin' ris(' lo the same triad. (If
¡j¡.-\';'.-\ = O, th,'u ¿,.-\ is proportionaI to ,y' aud from E<¡s. (80) aud (82) it foIJo\\"s that Ra
and "la are proportiouaL)
Wlu'n the luetric has signature (+ + +), \\"e take the a",1/I gi\"l'u by E<¡, (a) and define

t he mate of él spinor ~.A as

¿'", == ¡jJA (84)

(i,e" 01 = _¡j12, ,j;2 = ¡j,I), As a eonse<¡nmce of E<¡, (:J.I). ¿,"! transform" aeeording to
E<¡, (1), Iu the preseut case

R - ,i,.-\ ,/,H
(1 = -aaAll';'-- 'f' (85)

are real and trausforlll as thc components of a Yeetor nnder SO(:I) allll they "atisfy R"R" =
(0.-\ ¡j1,,)2 On t he ot her hand,

\f - ,¡".¡H
¡ (j = aaAIJY.) ljJ (86)

are the components of a eomplcx vector snch that RaMa = O, "laM" = O and (nc M,,) X

(ne JIa) = (1m "f,,)(lm M") = (¿,A!,J.-\)2 (In the present case \\"c also haYe JIa =
-a"AH0"¿'H) Therpfore, if 1jJ" is snrj¡ that ¡jJ"0" = 1 (i,e" 11,0112 + 11,0212 = 1), then
{He 1\1, 1m 1\L n} is an ort honormal basis ",it h the samp orientat ion as {c 1, C2, C3}' Also
in this case the spinors 1.0,.1 and -óA define the salllC triad.

8, CO:'\CLUIJI:'\C HDtAH"S

TIl(' res\llts of this papel', together ",ith those of n,.r, [1]' prO\'ide a 'pillor ('a!cnlns fol'
t h ree-d imcnsional mani foIds ",i t j¡ any signat urp; the sigila t \11'(' of t he mctric ellt ers through
tIte choice of t he COllllC'ctioll s.ymbols ao/lEJ. In the case \vh('n~the llH'tric is illdrfinitc, thc
symbols a,,'¡¡J gi\'en by Eq, (37) seem to be more rom'ellien\. that those gi\'eu by Ee¡, (35),
sincc thp llSC of complcx qU<lntitics redll(,(,s the 1111Illbcr of illd('pt'Ilc1t'llt eqllat.iolls.
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