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A Hamiltonian structure for the Euler equations
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ABSTRACT. A Hamiltonian structure for the Euler equations for an ideal compressible fluid is
given and it is shown that the corresponding Poisson bracket is degencrate. The case of an ideal
incompressible fluid is also discussed.

RESUMEN. Se da una estructura hamiltoniana para las ecuaciones de Euler para un fluido ideal
compresible y se muestra que el paréntesis de Poisson correspondiente es degenerado. Se trata
también el caso de un fluido ideal incompresible.

PACS: 03.40.Gc

1. INTRODUCTION

As is very well known, the Lagrangian and Hamiltonian formalisms employed in the treat-
ment of mechanical systems with a finite number of degrees of freedom can be extended to
the treatment of continuous media and fields. The Hamiltonian description of continuous
systems is usually obtained starting from the Lagrangian formulation, imitating the steps
followed in the case of the systems of point particles (see, e.q.. Refs. (1,2]); however, in
several cases of interest it is impossible to apply this canonical procedure in a straightfor-
ward manner in order to find a Hamiltonian description, since the momentum densities
are not independent of the ficld variables (see, e.g., Ref. [3]).

Nevertheless, it is possible to give a Hamiltonian formulation for a given continuous
system, without making reference to the Lagrangian formulation, if its evolution equations
can be written in the form

: 6H
¢&:DOSE1 (1)

where the field variables ¢, represent the state of the system, H is some functional of
the ¢a, H/6¢4 is the functional derivative of H with respect to ¢, and the D,3 are
differential operators that must satisfy certain conditions that allow the definition of a
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Poisson bracket between functionals of the ¢, (see, e.g., Refs. [4,3]). Here and henceforth
a dot denotes partial differentiation with respect to the time and there is summation over
repeated indices.

In this paper we give a Hamiltonian structure for the Euler equations for an ideal,
compressible, isentropic fluid. The Euler equations and the equation of continuity are
written in the Hamiltonian form (1), without having to introduce constraints or auxiliary
quantities (see also Refs. [5-7]). As is known, the Hamiltonian formalism allows one to
make the transition to quantum field theory, by replacing Poisson brackets by commutators
(a discussion about the application of quantum hydrodynamics to superfluidity is given in
Ref. [8]). In Sect. 2 we obtain a Hamiltonian structure for the Euler equations assuming
that the pressure depends on the density only and we show that the corresponding Poisson
bracket is degenerate. In Sect. 3. following Ref. [4], we consider the case of an ideal
incompressible fluid, using the components of the vorticity as field variables and we show
that the corresponding Hamiltonian structure is, essentially, a reduction of that obtained
in Sect. 2.

2% I'{A.\IILTONIAN FORMULATION FOR THE EULER EQUATIONS
The Euler equations for an inviscid fluid are
. 1 i
u+ (u-V)u=--Vp+ -B, (2)
p p
where u is the velocity field of the fluid, p is the density, p is the pressure, and B is

the external force per unit volume. The velocity and the density of the fluid are related
through the equation of continuity

5+ (pu) =0. (3)

Making use of the vorticity
w=V xu, (4)

the Euler equations can be written as
: 1.2 1 1 ”
X n+ Vn') = ==VNp+-B, (5)
p p
and taking the curl of this last equation one obtains
. 1 1
W+ Vx(wxu)=—-5VpxVp+Vx ;B : (6)
p

In what follows we shall restrict ourselves to those cases where the external force per unit
mass, B/p, is the gradient of a function —2

DR = 5P (7)
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and the density and the pressure of the fluid are such that
VpxVp=0; (8)
then Eq. (6) reduces to
@ =T % [u x w). (9)
Equation (8) means that p is constant or that p is a function of p only.

If the pressure is a function of the density only, the term %Vp appearing in the right-

hand side of Eq. (5) can be written as the gradient of a certain function. In fact, by
introducing the intrinsic energy of the fluid per unit mass E(p), defined by

V4
(see, e.g., Ref. [9]), one finds that
lope=y ( " E)) (11)

Hence, under the present assumptions, using Eqs. (7) and (11), the Euler equations take
the form

ﬁ:—wxu—V(1u+d(pE)+Q> (12)

lp

which amount to

. 1
Ui = —€ Wty — d; (2@& = —(pE) + D)

1w §H 6H 13
= €91 i
LA k&t op (1)
(Latin indices 7.j,..., range and sum over 1,2,3) where

H= / [%puz + pE(p) + pQ] dv, (14)

and @; = 9/dz;. On the other hand, Eq. (3) can be written as

; 6H
p=—0i(pu;) = _aiF' (15)

T
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Thus, taking (¢1, 2, @3, d4) = (uy,uz, us, p), Eqs. (13) and (15) can be expressed in the
Hamiltonian form

oH

aﬁ%, (16)

‘7—1)0:=D

where a, 3,..., run from 1 to 4, with the Hamiltonian functional H defined by Eq. (14)
and

1 1
Dj. = Wit = E(aiuk — dgus),
Diy = Dy = —0;, Dgy=0. (17)
It is easy to see that the Poisson bracket

OF oG

F,G = — 1)y —dv
1 6F 6G  6F _6G 6F _ 6G
= —Wjjig e = — O — 0| &
/[,Owje"kéu.,: Sup  bu; ' ép 5p86w.,- v )

(cf. Ref. [10]) is antisymmetric for functionals satisfying n,(6F/éu;) = 0 at the boundary

of the fluid, where n is normal to the boundary. A straightforward computation, using the

methods given in Ref. [11], shows that this Poisson bracket satisfies the Jacobi identity.
Using the fact that

t;bc,(r",t) = /.50(36(1‘ = r’)(ﬁg(r,t) dv

it follows that

6da(r',t) _ o
bgar,t) 00T
therefore, from Eq. (18), one gets
{¢a(r, 1), 65(r",1)} = Dag(r)é(r — r') (19)

(compare Ref. [1], p. 567). Thus, Eqs. (17) yield
1
{ll((l‘, f),ﬂk([",f)} = ijfj,-ké(r = I"')

- —;—(am _ Beu)b(r - r'),

{It.i(r,t),p{r',t)} = —056([‘ - r'),
{p(r,t),p(r',t)} =10 (20)
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(cf. Ref. [8], Sect. 5; note that the relation corresponding to the first of Egs. (20) appears
in Ref. [8] with the opposite sign). Similarly, one finds that [Eq.(4)]

1 ! 6 1 ’1t
Silrl) _ cdhde—ry, S8 o

Su;i(r,t) op(r,t)

therefore
1
{wi(r, t), wk(r’, t)} = fijk(r)m (;wmajé(r - I‘I))
1 /
= Gmih O (;—Jwiajé(r -r )) ‘ (21)

The Poisson bracket (18) is degenerate in the sense that there exist nontrivial functionals
Cléa] such that {F,C} =0 for all F or, equivalently,

6C

DOﬁE =

0. (22)

In fact, denoting a; = 6C/6u;, b = 6C/8p, and using Eqs. (17) one finds that Eq. (22)
amounts to

leej,;kak = B,b = D, (23)
P
and

~a; = 0. (24)

Contracting Eq. (23) with w; we get widib = 0, which means that b is a constant along
w; therefore, since the direction of w is arbitrary, we conclude that b must be a constant.
Then, Eq. (23) yields w x a = 0, which implies that a = Aw for some scalar A. Using now
the fact that V.w = [Eq. (4)] and that, according to Eq. (24), V-a =0, it follows that
A must be a constant. Thus,

A
= E/U-wd'u -+ bf,od.v, (25)

where A and b are arbitrary constants. Clearly, the second integral corresponds to the total
mass of the fluid. (The nontrivia] functionals that satisfy Eq. (22) are called distinguished
functionals or Casimir functionals.) It may be noticed that C1 = [u - wdv satisfies the
condition n;6Cy /6u; = 0 at the boundary if all components u; vanish at the boundary.
(An illuminating discussion about the invariant denoted here as C1 and some examples of
flows for which ¢, # 0 can be found in Ref. [12].)
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The functionals corresponding to the cartesian components of the linear momentum P,
must be the generators of translations along the coordinate axes, in the same way as —H
is the generator of translations in time; therefore (¢f. Eq. (16))

O Py
— Bty = Do ge
e (26)
or, equivalently,
; 1 oPy 6Py -
—_ d'r\-'l[l = ;wivnfmn-ijm = IET (2{)
and
O Py
= a, = u(()l_'. ‘)
Ref? b, (28)

Equation (28) is satisfied with 6P /éw; = pdy, which, when substituted into Eq. (27),
gives

o
op
= Jyug — Au; —

— Ot = WmEmih— O

o
bp

This last equation becomes an identity assuming that §P;/dp = wy. Therefore, the func-
tionals

r
P /puk dv (29)

satisfy Eq. (26) and coincide with the usual expressions for the components of the linear
momentum of the fluid. In view of Eq. (22), the functionals P} are defined by Eq. (26) up
to the addition of a functional of the form (25). It may be remarked that the expression of
Py is determined once the Hamiltonian structure, defined by the operators Dz, is given,
without using again the evolution equations. The functionals P need not be conserved;
their conservation depends on the explicit expression of the potential energy per unit mass,
2, and on the boundaries.

In a similar manner, by defining the functionals Ly, corresponding to the components
of the angular momentum, as the generators of rotations about the coordinate axes (see,
e.g., Ref. [3], Eq. (54)) one finds that

L = /[)Ekgjl‘,’tlj dv, (30)

modulo functionals of the form (25).
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3. HAMILTONIAN STRUCTURE FOR IDEAL INCOMPRESSIBLE FLUIDS

In the case of an inviscid incompressible fluid, assuming that Eq. (7) holds, it is convenient
to use the components of the vorticity as field variables (see. e.g., Ref. [4]). From Eq. (3)
we have

Vou=0 (31)
and therefore Eq. (9) can be written as
w=(w:Vu—(u-V)w. (32)

Since in the present case u is divergenceless, it can be expressed as the curl of a vector
field ¥ [4]

u=V x . (33)

In order to write Eq. (32) in the Hamiltonian form (16), one has to find the functional
derivatives 6 H /6w;. By assuming that the Hamiltonian functional is given by

H :]%puz dv (34)
(cf. Eq. (14)), then

%H[u + € du]

=/pu-éudv:fp('{?xy’))-éua’v
=fp'?,l!'vX(Slld?l:/p'{,[)-ﬁw(h:,

e=0

where we have assumed that fu vanishes at the boundary. Thus 6H/éw; = p1/; and from
Eqs. (32-33) one obtains

. 16H 16H
= mamri"a"‘—'— mWi ) EmijkU; —
Wi = WmOmEijik s (Omwi)e Jkajpéwk
- OH
— Darr,
kﬁwk

which are of the form (16), with ¢; = w; and

~ 1
Dik = ;(fijkwmamaj = Emjk(arnwi)aj)' (35)
The Poisson bracket
6F - 6G
F,G = el —
{ } 6%_1_716%_ dv (36)



216 G.F. TORRES DEL CASTILLO AND N. BAGATELLA FLORES

is anpi§ymmetric and satisfies the Jacobi identity provided one imposes suitable boundary
conditions (e.g., the vanishing of the functional derivatives 6F/6w; at the boundary). From
Eqgs. (35-36) we obtain the basic relations (¢f. Eq. (19))

{wi(r,t),wi(r', 1)} = %(fijkwmamaj — €mjk(Omw;)8;)6(r — 1) (37)

which, under the present assumptions (p = const.), coincide with Eq. (21), thus showing
that the Hamiltonian structure defined by Eq. (35) is, in a sense, a reduction of that given
by Egs. (17).

Looking for nontrivial functionals such that ﬁ?ikéC/éwk =0, one finds [4,13]

A
C=;/u-wdv, (38)

r

where A is an arbitrary constant, which is consistent with the results of the preceding
section since, in the present case, the second integral in Eq. (25) is a constant. The
expressions for the functionals corresponding to the components of the linear and angular
momenta can be obtained as in Sect. 2 For example, from Eqs. (26) and (35) we have

1 P,
—yw; = ;(eijnwmamaj - Emjn(amwi)aj)ﬁ:
which are satisfied if :—Jemjnaj(ﬁPk/&wn) = Omi. Hence, using Eq. (4) and integrating by
parts, one finds

60 Ly
Wy = fwna dv = f(lejmajtt.,,l)E; dv

5P
= —fumfnjmaj (ﬁ) dv = fpumémk di= /puk dv,

which coincides with Eq. (29). In a similar manner one finds that the components of
the angular momentum are given by Eq. (30) up to the addition of a functional of the
form (38). Alternatively, expressions (29-30) can be obtained looking for the conserved
quantities associated with the translational and rotational invariance of the Hamiltonian
functional [13].

4. CONCLUDING REMARKS

The example considered here illustrates the advantages of the Hamiltonian formulation
based on Eqgs. (16) (compare, e.g., Ref. [8] and the references cited therein). It is
interesting to notice that the equation of continuity has to be taken into account in order to
write the Euler equations in the Hamiltonian form (16). Another feature of this system is
that, by contrast with other continuous systems for which the Hamiltonians corresponding
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to different choices of the field variables are not related by a simple change of variables
(consider, e.g., the case of sound waves [1,2]), the Hamiltonian and the linear and angular
momenta have essentially the same form whether one uses the velocity and the density as
field variables or the vorticity. In spite of this fact, the boundary conditions required to
have a Hamiltonian structure in each case are different.

It should be remarked that, in order to write the evolution equations of a given contin-
uous system in the Hamiltonian form (1), it is necessary to choose appropriately the field
variables ¢, (see also Ref. [10]), which may be a difficult task.
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