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ABSTRACT. The concept of squeezing is discussed for multimode quantum light with the consid-
eration of polarization by using the polarization gauge SU(2) invariance of free electromagnetic
fields, the related concept of polarization quasispin (P) and appropriate uncertainty relations.
As consequence, we obtain within quantum optics new non-classical states of unpolarized light
generated by specific two-photon excitations (unpolarized biphotons).

RESUMEN. Discutimos el concepto de compresién (squeezing) para el caso de luz cudntica
multimodal con respecto a su estado de polarizacién mediante el uso de la invarianza de norma
SU(2) de polarizacién de los campos electromagnéticos libres. Asimismo, los conceptos relacionados
de cuasi-espin (P) y las relaciones de incertidumbre apropiadas. Como resultado obtenemos nuevos
estados no cldsicos de la luz no polarizada generados por excitaciones especificas de dos fotones
(i.e., bifotones no polarizados).

PACS: 42.50.-p; 03.70.+k

1. INTRODUCTION

For the last several decades, polarization properties of light were widely investigated in
both theoretical and applied aspects (see, e.g., Refs. [1-14] and references therein). Specif-
ically, some fundamental problems of quantum mechanics, related to “hidden” variables,
Bell's inequalities and Einstein-Podolsky-Rosen (EPR) paradox, quantum chaos, different
topological phases etc., are intensively examined with the help of quantum polarization
optics (see, e.g., Refs. [1,2,5,6,12-14] and references therein).

However, as a rule, the polarization structure of light has ben described in terms of the
field correlation functions, associated Stokes parameters and the Poincaré sphere which
are well adapted to classical optics experiments [3-5,13-14] but are not quite adequate
to specific quantum ones (photon counting) [3]. Such a description also ignores a polar-
ization SU(2) symmetry [14-19] of light fields though it has been widely used implicitly
—thorough the Stokes parameters s, which determine, in particular, the polarization
degree deg P = [s? + s3 + s2]'/2/sq of monochromatic plane wave light beams [3,4,7,20].
Furthermore, the physical meaning of the Stokes parameters and their connections with
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the spin properties of light fields are sufficiently studied only for plane wave light beams |3-
6] although in Ref. [7] some generalized Stokes parameters were introduced for examining
light beams with arbitrary wave fronts within classical statistical optics.

Recently, however, a new formalism [16-19] was proposed for a description of polariza-
tion structure of multimode quantum light fields using the polarization SU(2) symmetry
and a related concept of the P—quasispin which generalized the Stokes vector notion at
the quantum level and is closely related to the Stokes operators defined in Ref. [20]. This
approach enabled us to gain a new insight into the polarization structure of light and
quantum mechanisms of its depolarization.

At the same time, at present, so-called squeezed states of light are intensively exam-
ined within quantum optics by many investigators (see, e.g., Refs. [21-25] and references
therein) since these states have attractive properties of the “noise reduction” in measure-
ments of some quantum mechanical observables that provides certain prospects of their
applications, particularly, in optical communication theory, in precise and non-demolition
measurements, etc. However, we note that squeezed states are sufficiently studied only for
the single-mode fields [21-25] whereas for multimode fields it is not the case since even
the definition of the concept of multimode squeezing is not unique that is due to a variety
of the choice of measurable quantities [26,27].

The aim of this paper is to give an analysis of the concept of squeezing of the mul-
timode light related to polarization degrees of freedom by using the above mentioned
formalism of P-quasispin. Specifically, we will show (Sects. 2 and 3) that there exist new
quantum states of light beams exhibiting, in a sense, an absolute squeezing in polarization
degrees of freedom. Such states are generated by specific unpolarized biphoton clusters
and have all characteristics of usual unpolarized light, but unlike the latter one new
quantum states of unpolarized light are “polarizationally noisless” [16-19,28]. Besides we
discuss briefly some generalizations and applications of new non-classical states of light
(Sect. 4). Preliminary results of the work were reported by one of us (V.P.K.) at the
Third International Workshop on Squeezed States and Uncertainty Relations (Baltimore,

August 10-13, 1993).

2. POLARIZATION SU(2) INVARIANCE AN P-SPIN OF ELECTROMAGNETIC FIELDS; UN-
POLARIZED BIPHOTONS

In quantum optics the free transverse electromagnetic field with m spatiotemporal modes
described by the vector potential [1,3,19,20]

. [ 2nh 172
Alrt) = cz (—) Z {ea(j)aa(j) exp[i(kjr — w;t)] + h.c.}

ij
J=1 a=+,-.3

= AO () + A (1), AW = (AT, (2.1)

where aa(j) (a}(j)) are destruction (creation) operators for j-th spatiotemporal and
a-th polarization modes of the field, e,(j) are the polarization unit vectors adapted
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to the helicity basis, e3(j) = k;/w;,V is a quantization volume, etc. With the help of
Eq. (2.1) one determines correlations tensors (3]

- - +
GS) o (lrastali {xhs 65)) = tx [pES (rn, 1) -+ B (e, t)ESD (), 8) - EVP (2, 8)],

iyt fads

1 9A(F)

B = ,
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(2.2)

which correspond to different physical quantities, measurable in optical experiments, and
are expressed in terms of quantum expectations of ordered polynomials in operators a,(j)
and aJ () [12]. The most important of such measurable quantities is the field Hamiltonian
H; which determines the time-evolution of other ficld observables 3]

The starting point of our next analysis is the evident invariance of standard expressions

m m

Hi=> w Y at(iaali), Pr=Y k > af(i)aa(i) (2.3)
i=l  a=+4,—-3 i=1 a=+,—,3

for the Hamiltonian Hy and the momentum P of the transverse electromagnetic field
under the transformations [15-19]

aa(i) — g = Z Ua,3 A3,
Rt (2.4)

(i) = at() = (8())”,  a=4,—-, u=|uqsl € UEQ).

We note the Egs. (2.3) admit, in fact, the more vast group U(3) D U(2) of polariza-
tion transformations [17], but in quantum optics it is reduced to the above mentioned
U(2) group. It is due to the fact that we calculate quantum expectations of any physical
quantities by averaging on the space Lphys = Lr(m) spanned by basis vectors

{071 = N IT TT [ ™% (a2 @)™ o), (2.5)

i=lo=—+

which are generated by the creation operators ag (i) of photons with transverse (a=+,-)
polarizations (helicities) only (that corresponds to a standard form of the gauge condition
for transverse radiation fields in quantum electrodynamics (19,20]).

The transformations (2.4) correspond to the U(2) “rotations” of the polarization unit
vectors eq (1) [15-20] in a “polarization spinor” space [20]:

Cai) = &ali) = ) ugaes(i), (2:6)

=+~
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and, th?refore., may be interpreted as specific polarization gauge transformations. We note
t.hat this contl.nuous polarization group SU(2) is closely related to discrete symmetries of
light fields: mirror reflections and spatial inversion [17].

The generators of this polarization gauge group U(2) are of the form

Py = %Z[ai(i)m(z’) —at@®)] = Y P,

where N is the total photon number operator and operators P, are generators of the
SU(2) subgroup defining the polarization (P) (quasi) spin [15-19]. the operators Pg and
N satisfy commutation relations

[N,Pa] =0, [Py, Ps]=%Ps, [Py, P]=2, (2.8)

and in the case m = 1 coincide up to the factor 1/2 with Stokes operators Y, [20]. As
is clear from Eqs. (2.7) the total P-quasispin of the electromagnetic field is obtained
by adding of the appropriate quasispin quantities for single spatiotemporal modes. This
allows us to consider along with the “global” polarization invariance transformations (2.4)
also their “local” analogues related to P-quasispin and appropriate independent “po-
larization rotations” of the type (2.4) for cach single spatiotemporal mode. However,
from the experimental viewpoint the global polarization SU(2) invariance and the total
P-quasispin of the electromagnetic field enable us to examine new interesting physical
phenomena connected with correlations of different modes, in particular, with so-called
“entangled states” which are widely discussed in multiparticle interoferometry [11,29].

We note that operators P, do not commute with components Sq of the gauge non-
invariant (and hence locally non-observable) ordinary spin 8 = (51, S5, S3) of the electro-
magnetic field, wich defines the field transformations with respect to the S0(3) ¢ SL(2C)
group of rotations in the usual space though we have the relation

(@I[Po, Sall9) =0, V16): 1) € Lpnys. (2.9)

Indeed, the components S, are expressed in terms of the A(r,t) Fourier components as
follows [20,19]:

Sa=—13. > cancdi” (1A,

3 b

AP =S eaali) AT = (AD) T (2.10)

&
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where €., is the fully antisymmetric tensor (€193 = 1), €aa(i) is the projection (directing
cosine) of e, (i) on the a—th axis of a fixed spatial frame of reference. From Egs. (2.1),

(2.7) and (2.10) one gets

[P0, Sal = § ) ~{erals) [a3 ()as () + a¥(j)as(j)]
j

+e—a(f) [af (5)a-(j) + as(f)az (7)] }: (2.11a)

Pas Sa] = F 3 " {2e5(i)a2 ()ax(j)

* exa(i) [ad(5)as(s) - a7 (j)as ()] }. (2.11b)

Then Eq. (2.9) follows Immediately from Eqgs. (2.5) and (2.11a). We also note that in
the case of plane wave beams, when all 3z(J) = 635, @ = I; 2.3 ahd e+3(j) = 0, from
Eq. (2.11) one finds a relation

exp(i¢Ss) P, exp(—i¢S;) = exp(iag)P, a=10,%+ (2.12)

Without dwelling here on a fnore complete analysis of other interrolationships between
ordinary spin S and P-spin we only note that the ordinary spin S has some advantages as
against the P-quasispin for describing of “rotation” properties of light fields and appro-
priate experiments (13]. Specifically, from Eqgs. (2.1) and (2.10) one easily finds relations

[Sﬂh (II(_})J = i(li(j) €3a (.]) + “;_(].) €+q (J‘.)s (213&)
[Sa: 0 () = ~a* () e4u(y) + al(j) e—a(j), (2.13b)
[Say 457 (5)] = ~i ) eaedN(), (2.13¢)

specifying “rotation” Properties of appropriate field Operators. Moreover, the ordinary
spin formalism allows us to expand familjar correlation tensors G_(_"';’_TT_’)({. cvie}) from

Eq. (2.2) in sums of the SO(3) irreducible tensors (spin and higher multipole operators)
which possess well-defined transformation properties with respect tq the “spatia]” SO(3)

group (see, e.g.. Ref. [7], where a similar expansjop was given for GE‘,]J.‘])(. ..) in order to
define some generalized Stokes parameters).

At the same time, as it follows from Eqs. (2.7), (2.10) and (2.11), the P-quasispin
formalism has evident advantages ip comparison with the ordinary spin for describing
Properly polarization broperties of light since its components have a clear physical mean-
ing and are measurable in quantum optics polarization experiments related to counting
photons with definite polarizations [19]. In particular, the tota] helicity 2P, of the field
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FIGURE 1. A principal scheme of the measurement of P-quasispin components.

is the difference (N, — N_) of the right- and left-handed photon numbers and Hermitian
operators 2P, = (P4 + P_) and 2P = i(P; — P_) determine (cf. [4,12]) differences of
photon numbers with orthogonal linear polarizations which are connected with the helicity
basis by the unitary transformation

af () = F5{at(h) -} (D}, 0 () = ={al() +at()},  (2.14a)
a7 (j) = Z5{af 4) + a3 (1)} af () = {-af () +af ()}, (2.14D)

implemented, for example, with the help of phase plates and polarization rotators (for
Eq. (2.14b)) [4,12]. We note that from the formal viewpoint components P, and P, corre-
spond to the choice of different subgroups SO(2) C SU(2) unlike the helicity subgroup U(1)
for Py. Moreover, linear polarization basis functions related to Eqs. (2.14) are eigenstates
of operators describing the above mentioned discrete symmetries of light fields. A typical
principal scheme [28] of the measurement of components Py, of P-quasispin is presented
on Fig. 1, where we use the following notations: PP denotes phases plates, PLS stands
for polarization light beam splitters, PA, and PD, are, respectively, polarization analyz-
ers and photodetectors for polarization modes a. This scheme can be realized in both
single-mode (mm = 1) and multimode (m > 1) regimes. However, as it will be seen later,
the use of multimode regimes enables us to reveal new interesting physical phenomena,
in particular, an absolutely unpolarized quantum light [16-19].

Besides, in the case of the monochromatic plane waves quantum expectations (P
are proportional to the Stokes parameters sq: s = 2(P2), s2 = —2(Fp), s3 = —2(P)
(cf. [3,4,7,20]) which are expectation values of the Stokes operators Lq [20]. Therefore,
one can consider that in general cases quantities (P,), (V) determine the polarization
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degree deg P of light beams with arbitrary wave fronts and frequencies by the relation

1/2
(2.15)

2
deg P = m [ Z (CEa7

a=0,1.2

generalizing the definition for one-mode light beams [3]. At the same time the quantum
averages (| P?[) of the SU(2),,, Casimir operator P? = %(PJr P_+P_Py)+P} are connected
by the relation

(1P = > [oa+ ({IPa]))?], (2.16)

a=0,1,2

with the variances o, = (|P2|) — ({|Pa]))? determining “polarization noises” [3,17,19,28]
and a “radial” uncertainty relations for angular momentum operators [30-32].

Further, calculating the eigenvalue P(P + 1) of the operator P? on the subspace of
one-particle states we find P(P + 1) = 3/4, i.e., the photon should be ascribed the
value P = 1/2, as against S = 1 for the ordinary spin as it follows from Eqs. (2.5) and
(2.10) [17,19]. This fact allows us to identify P-spin of one-photon states with the so-called
effective spin (see, e.g., Refs. [5,12,33]) simultancously clarifying a physical meaning of
the latter one.

Therefore one may use P-spin (P,) as an adequate tool for studying proper polarization
properties of quantum light fields in parallel to the usual apparatus of the correlation
functions and Stokes vectors [3]. But unlike the latter one use of the P-spin formalism
allows us to gain a more deep insight into the inner nature of the polarization structure
of light beams with arbitrary wave fronts.

Indeed, as it was shown in Refs. [16-19], one can decompose the Fock space Lp(m)
spanned by the vectors (2.4) into the direct sum

Lr(m) =) " L(Pn) (2.17)
P

of infinite-dimensional subspaces L(Pr) which are specified by eigenvalues P, 7 of the
P-spin and P, respectively and spanned by basis vectors |Pr;n, A) of the form

[P d) = )" C({ai,ﬁ,-j,vsj}JH(a;(z‘))“"H(};j)ﬁ”(X;;)“J‘]0). (2.18)

Ba;=2|x| 1 % ]
E8ij=2(P—|x|)
E'y,-j=n—2P

For example, in the cases m = 1 and m = 2 we have the following expressions [34]:
Pay = [(F= )P+ m)] =

x (a(0) " (@) " (v34) P, (2.192)
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(2P +1)!

5% (ai(l))PH(aI(.’ZJ)Pﬁt(Xf{,)n—?PIO), t=n(1) —n(2), (2.19b)

for some such vectors. In general, the coefficients C(...) in (2.18) are determined from
the defining equation

p? [Pmin, \) = P(P+1)|Pr;n, A);
Py |Pr;n, A) =7 |Pnm;n, Ay, (2.

2
S~
==
—

N|Pm;n, \) =n |Pmin, ),

and some equations for fixing an extra (vector) label ) (see Refs. [17,19] and references
therein).
The operators

Vi =3t at() +at () at () (2.21a)
and
X5 = al(D)e?(j) - at(i) at(y) (2.21h)

in (2.18) are the solutions of the operator equations
+1 4] -
[P ¥i] =0, [PXf]=0, a=0,+,-, (2.22)

and may be interpreted as creation operators of Py-scalar and P-scalar biphoton kine-
matic clusters respectively. From Eqs. (2.21) and (2.22) one easily obtains that quantum
expectations (P,), a = 0,1, 2, in states generated by actions on the vacuum vectors |0)
operators (X%T)“(YJ)*’ only; for example, simplest states of such types are spanned by
vectors (2.19) with 7 = 0. In general, the states (2.18) describe light beams representing a
mixture of both usual photons and unpolarized P- and FPo-scalar biphotons [16-19]. We,
however, note that biphotons Y,j exist for any number m of time-spatial modes, whereas

Xl-'; # 0 only for m > 2. We also emphasize that in contrast to the usual photon operators

ag (7), aa(j) the operators Xy = (X:;)"f, X,-j?, V= (YJ)"‘, YJ satisfy not the canonical
commutation relations but trilinear commutation relations for quanta of parastatistical
fields [17]. However it is possible to construct from them some operators obeying canonical
commutation relations (sce Refs. [17,19]) and representing peculiar “optical atoms” (cf.
Ref. [33]). Therefore, in a sense, such construction yield a realization within quantum
optics of the method of fusion by L. de Broglie for constructing composite fields from
some simple ones [35].

Further, the decomposition (2.17) is invariant with respect to the Lie algebra s0*(2m)
generated by biphoton operators Xi; and X;TT [17,19]. Therefore, states [t} belonging to a
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subspace L(Pm) with given P, at initial time will be in it for the time evolution govcr_ned
by the interaction Hamiltonians H,, = Hlf({X,-j,X;-}); examples of such Ham:ltomans
are given by those of some parametric processes [16-19)]. Ex.tending' the a!g(fbra 50 (2m) by
adding operators Y;;, Ylj“ we get the algebra u(m,m) associated with Hamiltonians H;,, =

¥o i ({)’,-j,YJf-Xij,X; ) (describing, for example, light propagation in Kerr media [36])

int 1) ?
which keep invariant for time evolution subspaces L'(7) = szm L(P) [19].

3. SQUEEZING IN POLARIZATION QUANTUM OPTICS. UNPOLARIZED QUANTUM LIGHT

The decomposition (2.17) implies a new classification of the polarization states of quantum
light fields from the physical viewpoint [17,19]. This classification is closely related to a
specific sort of squeezing of multimode light beams with consideration of polarization.

In fact, a definition of squeezing in quantum mechanics is based on an analysis of
different uncertainty relations of a set {Aii=1,...,#5 1} of non-commuting Hermitian
operators A; representing some quantum observables {21727,30—32,37739]. Then, unlike
the case of classical mechanics, there exist some restrictions on a possible accuracy of
results of joint measurements of all quantities A; in a given quantum state | ) that is
expressed in the form of different “uncertainty relations” for expectations (|(A4;)°|) [32].
These relations represent specific measure of admissible quantum fluctuations (“noises”)
for observables A; in the state | ).

Specifically, the most widespread uncertainty relation (of the Heisenberg type) has the
form [1,5,30-32]

AA; AA; > L(|[A: A5, (3.1)

where (AA)? = 04 = {|(A)?|) - ({|4]))?. Then the problem of squeezing consists in finding
(uantum states minimizing both the product A A; AAj of two uncertainty measures and
one of them. If the right hand side of inequality (3.1) is a ¢ number this problem is easily
solved and lead to definition of the usual concept of squeezing related to generalized
coherent states of the group SU(I, 1) [21-25]. For example, it is the case for single-mode
electromagnetic field when we use as observables A; two quadrature components of the
field expressed by linear combination of the field operators of creation and destruction [21-
25).

However, for multimode fields the situation becomes more complicated since in this
case we have a more vast set of observables which obey non-trivial commutation rela-
tions [26,27,17,18]. Therefore, we have many possibilities of definition of squeezing re-
lated to a choice (from physical considerations) some subsets of observables for which a
solution of this problem is comparatively simple. For example, as we established above,
in polarization quantum optics as such subsets it is natural to take components of the
P-quasispin obeying the commutation relations (2.8) of the su(2) algebra as well as subsets
of unpolarized biphoton operators of X- and Y -types. That enables us to define a specific
polarization squeezing which is closely related to a new physical phenomenon of quantum
unpolarized light [19].
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Specifically, for the states [Po;n, A) € L(PO) € L'(m = 0) and [00; 2, A) € L(00) from
(2.7), (2.10) and (2.18) we find (IPal) = 0, (|Sal) = 0 for all & that is a characteristic
property of unpolarized light (cf. Refs. [3,4]). Besides the calculations [17] showed that cor-
relation tensors GE;’I}(r, t;r,t) have for these states a form corresponding to unpolarized
light beams with, in general, arbitrary wave fronts [7].

But unlike classical (chaotic) unpolarized light, for the states |00;n, A) and | P0; n, A) we

)

have additional characteristics of light depolarization which follow from Eqs. (2.1}" (2.21]
and are expressed in terms of higher moments for P,; for example, we have
(1(F0)°1) = ({({(Po)))* =0 for |)=|P0O;n,)), (3.2a)
(P’ = (U(P)N)? =0, a=0,4,~ for |)=1]00;n,), (3.2b)

showing the absence of appropriate polarization “noises” of any order measured by ap-
propriate noises of difference photocurrents in schemes of Fig. 1; herewith, as it follows
from Eq. (2.12), for axial light beams results of measurements do not depend on rotations
of analyzers around beam axis.

Thus, for states | ) € L(00) all proper polarization properties are identical with those
for vacuum state |0), but unlike the latter the light intensity in these states (measured
as the quantum expectation of the Hamiltonian (2.3)) is not equal to zero. Consequently,
they may be recognized as states describing absolutely unpolarized light, while the states
| ) € L'(0) have a hidden polarization structure revealed in measurements of linear polar-
ization noises. Moreover, the states |00;n, A) minimize both the aforementioned “radial”
uncertainty measure (2.16) as well as uncertainty relation of the (3.1) type for angular
momentum operators [30-32]; besides these states form the infinite-dimensional space on
which three non-commuting operators P, behave themselves as c-numbers exhibiting an
“absolute squeezing” in polarization degrees of freedom (that it is of interest for designing
different experiments related to the EPR-paradox and “hidden variable” theories [1,5,11]).
However, we have not analogous relations for components S, of the ordinary spin as one
can see it from Eqs. (2.10) and (2.13).

Therefore, states |¢) € L'(0) generated by biphotons YJ, X{;T and |¢) € L(00) c L'(0)
generated only by biphotons X;T;T describe new types of unpolarized light due to strong
quantum phase correlations rather than random mixing light beams as it is the case for
the classical unpolarized light [3,4]. Examples of such states are yielded by generalized

coherent states related with interaction Hamiltonians Hiy = H,;Tt + Hi";t, where

i<y
and
Hi=Y (fu¥s +£5Y (3.3b)

1,3
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describe some specific parametric processes [17]. In particular, generalized coherent states
of the SU(1,1) group orbit type

|a)p = exp [aXlg - a*Xﬁ] |0) (3.4)

discussed together with some related models in Refs. [16-18] are generated by H,,

whereas Hﬁ,t produces generalized coherent states of the group Sp(2m, R),

1Bi)r, = exp [ S (B5YiE - B5Y:0)] 0), (35)

coinciding in the case m = 1 with two-mode squeezed states introduced in Ref. [23].
We also note that acting by the group displacement from Eqs. (3.4) and (3.5) on usual
multimode Glauber coherent states |{;", o] }) = ], exp(af af(i)+a; at (i) —a;*ay (i) -
a; "a_(7))]0), aii # 0, we get in general cases states of partially polarized light which
contains (for special values of parameters Crl:—E) a subclass of states corresponding to un-
polarized light. In particular, all states related in such a manner to {aF,a;}) display
properties of usual unpolarized light when |a}'| = |a] | [8,28].

Thus, our analysis displays inner mechanisms of the light depolarization at the quantum
level (cf. Ref. [40], where a conjecture was uttered about a quantum nature of unpolar-
ized light) by contrast to the generally accepted viewpoint [4] that randomization is the
only way of obtaining unpolarized light. Besides the P-spin formalism yields some new
natural measurable quantitative characteristics of light depolarization, namely, degrees
depp = (1-2P/N) and depp, = (1 —|27|/N) of the content of P-scalar and of Py-scalar
biphotons, where P, #, N denote expectation values of appropriate operators; herewith
f_f = —% + (5 + (|P%)))*/? is determined from Egs. (2.15) and (2.16) as a function of deg P,
N and variances ¢,. Evidently, dep p, is connected with the well-known degree of circular
polarization [(N}) — (N_)|/{N), whereas depp provides a new quantitative characteristic
of polarization structure of light related to measurements of polarization noises.

We also note that analysis above can be extended by considering modifications of the
decomposition (2.17), where instead of P, any other Hermitian operator P,,a = 1,2
corresponding to a linear polarization basis is diagonalized [19]. Such extensions lead
to new states of quantum unpolarized light generated by Py~ or P,-scalar biphotons of
the (2.21a) type and having characteristics similar to those described by Eqgs. (3.2) but
with some peculiarities concerning their “rotation” properties determined by Egs. (2.1)),
(2.12), (2.15) and (2.16).

4. GENERALIZATIONS, APPLICATIONS AND CONCLUSION

In the previous sections we have shown that in the Fock space Ly(m) of multimode light
with consideration of polarization one can select with the help of Eq. (2.17) subspaces
(L(P = 0m = 0), L'(m = 0) and someones related to them) of quantum sates describing
different new types of unpolarized light and, simultaneously, manifesting specific forms of
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FIGURE 2. Schemes of production of quantum unpolarized light (QUL).

squeezing in polarization optics. Physical realizations of such states are connected with
actions of Py— and P-scalar biphoton squeezed operators,

Sy(Z) = exp(zi;Y;; — #5Yij) (4.1a)
and

Sx(Z) = exp(z,-in.'; - 25 X)), (4.1b)

x
ij
on the vacuum vectors |0) that is represented schematically on Fig. 2, where OPG stands
for parametric oscillator generators corresponding to the operators (4.1) and other no-
tations are the same as on Fig. 1. We note that, in practice, it is easier to realize such
schemes corresponding to Eq. (4.1a) rather than Eq. (4.1b) because the latter require
parametric oscillator crystals with highly anisotropic properties. Therefore, for production
of P—scalar light it is preferable to combine more simple schemes of production of Py-scalar
light together with some interferometric schemes [28).

All other subspaces L(P), L'(7), # > 0,in the decomposition (2.17) describe, generally
speaking, states of partially depolarized quantum light (see Refs. [16,17], where we also
examined various types of polarization generalized coherent states of light, including those
which are eigenfunctions of the operators P?, Py, Xij, Yi; and generalize the Agarwal’s
pair coherent states [39]). However, in real physical experimental situations states of light
beams do not belong to a single subspace L(Pw) but are superpositions of states from
different subspaces L(P). Therefore, it is of interest to study polarization squeezing
properties (with using measurement devices of schemes on Fig. 1) of partially polarized
light beams obtained by actions of the biphoton squeezed operators (4.1) together with
the “proper” (related to generalized coherent states of the polarization invariance group
SU(2) [17,30,31]) polarization squeezed operators S5p(€) = exp(( Py — (*P_) on states
of some input light beams that is presented schematically on Fig. 3. As a result we can
obtain new classes of non-classical states of partially polarized light.

The P-spin formalism and nonclassical states of light described above have also sev-
eral potential applications, one, for example, is in optical communication theory [41-43].
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FIGURE 3. Principal schemes of production of partially polarized squeezed light (PPSL).

Specifically, the decomposition (2.17) and the properties (3.2) of states [¢) € L(Op) a.nd
[17) € L'(0) appear to be promising for designing the quantum channels of communication
systems [41,42]. Such communication channels are realized by light beams using mainly
both the amplitude and phase modulations for encoding transmitted information. But
polarization methods of its encoding appear to be more preferable because of certain
(mainly energetic) reasons [42]. We sketch a scheme of using quantum unpolarized light
within such an approach following [41,19].

For discrete channels their efficiency is usually estimated with the aid of the conditional
error probability F.[i # m] (where m is an input message and m is the appropriate
output one) [41]. Then, using states p1 € L'(m # 0) for transmitting the logical “1” in
binary discrete channels, we can use the above results for optimizing P.[...] (cf. Ref. [41]).
For this end it is also of interest to estimate the information capacity [43] of the states
[#) € L'(0) as compared with that of other quantum states.

From other lines of possible applications of the results above, we point out precise
measurements in spectroscopy of anisotropic media (28] and studies of interaction of light
in different new polarization states witl, optically active biological macromolecules [44].

In conclusion, we emphasize that the above results give a more deep insight into polar-
ization structure of light enabling to determine new nonusual states in quantum optics. In
a sense, the results of Sects. 2.3 and those of papers [16-19] yield all necessary prerequisites
for developing a quantum description of unpolarized light waves whose existence has not
yet an adequate solution within the classical optics [4,45]. Besides, we established some
interrelations between proper polarization (related to the P-spin) and rotation (connected
with the ordinary spin S) characteristics of light fields [Eqs. (2.11) and (2.12)] that enables
us to examine a behaviour of polarization characteristics of light beams in dependence
on rotation of measurement devices (on schemes of Fig. 1) with respect to light beam
directions.

All this opens some possibilities in setting new optical experiments related, in particu-
lar, to “hidden” variables, “entangled states” and EPR paradox [1,2,5,11,29], polarization
chaos, spontaneous symmetry breaking and bistability [6,8,40,42], “optical atoms” and
polarization solitons [9,33], reduction of quantum noises [10,12,29], etc. We are planning
to discuss these topics as well as some practical schemes and mechanisms of producing
new quantum polarization states of light (including those obtained with devices of both
Fig. 1 and Fig. 2) in forthcoming papers.
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