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ABSTRACT. A recent paper used Noether's theorem to obtain first integrals for dissipative systems.
The results were not complete and the physical interpretation of the first integrals was not
established. This paper completes the results and provides a simple interpretation of the first
integrals.

RESUMEN. Un articulo reciente utilizé el teorema de Noether para obtener primeras integrales de
sistemas disipativos. Los resultados estaban incompletos y la interpretacién fisica de las primeras
integrales no fue establecida. Este articulo completa los resultados y da una interpretacién simple
de las integrales primeras. ( Traduccidn de los editores.)

PACS: 02.20.+h; 03.20.+i; 03.65.Fd

1. INTRODUCTION

In a recent paper [1] Noether’s theorem was used to determine first integrals for the
physically important systems described by the Lagrangians

L = {F(t)[2? - w?(t)2?] (1)
and
L = jF(t)[#* - A(t)2? + 2G(t)V (B(t)7)], (2)

where overdots denote, as usual, differentiation with respect to time, F(t) is an arbitrary
real function of time, V' is an arbitrary function of its argument and G(t) and J3(t) are
functions of time the form of which has to be determined. Gonzdlez-Acosta and Corona-
Galindo [1] found the first integrals

I = {F(t)oi - 62)* + ¢(z/0) (3)
and
I1=1Ft)ot - oz)® + ¢(z/0) — V(z/0o) (4)

for Egs. (1) and (2), respectively, where o(t) is the solution of a nonlinear second order
differential equation (Egs. (21) and (37) in Ref. [1]. We do not quote the equation because
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it is incorrect) and ¢(z/c) appears to be regarded as a function that can be selected
arbitrarily. (See the discussion in Ref. 1] between Egs. (37) and (39).)

The results quoted in the paragraph above are incomplete. The reason for this is,
apparently, due to the method of analysis adopted in [1]. In this note, we supply the
correct results using an analysis which we hope will be more transparent to the reader.
In addition, we supply an interpretation of the meaning of the first integrals obtained. To
avoid unnecessary repetition we unify the two Lagrangians into

L=1F()i* - V(x,t). (5)

Following the method of Ref. [1] we use the point symmetry form of Noether’s theorem [2].
If the action integral S = fL(ﬂ:, z,t)dt is invariant under the infinitesimal transformation
generated by

ad
G =€z )5 + 7z e, ©

then there exists a first integral given by

= aL :
I(z,8,1) = f(,¢) - [Le + 52— me)} , ™
where f(z,t) is a gauge function. The functions £, n and f are determined from
: dL oL oL, . .. :
f—fa‘i‘ﬂaﬁ'a(ﬂ—xﬁ)‘?f@ (8)

We note that the quadratic potential in Eq. (1) has also received attention by Profilo and
Soliana [3,4] and Dodonov and Man’ko [5].

2. DETERMINATION OF THE FIRST INTEGRAL

When L in Eq. (5) is substituted into Eq. (8), the velocity dependence is explicit and the
coefficients of linearly independent powers of & must be separately set equal to zero. This
gives the equations

ot

on 109¢ 1F

oz 20t 2FY (10)
af .9 (/3

oz 3 Vas (11)

af v v B
ot~ ot e Vo (12)
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From Eqgs. (9) and (10) it is evident that

E'=alt), (13)
7= % (d - %a) z + b(t), (14)

where a(t) and b(t) are arbitrary functions of time. Since ¢ is independent of z, Eq. (11)
gives

f= %F (d = %a) z* + Fbz + e(t), (15)

where c(t) is again an arbitrary function of time. Finally Eq. (12) has now the form

1o ENT o i . oV [1(. F oV
Z[F(a_fa)] x +(Fb)$+0——aa—t—aV—[§ (a—ﬁa)xﬁ‘)] e (16)

which, in the absence of an initially assumed structure for V', is a linear partial differential
equation for V(z,t).

The solution of Eq. (16) by the method of characteristics requires the solution of the
associated Lagrange’s system

dt _ 2adz d(aV)

PR (r (e () ) - e

From the first and second terms in Eq. (17) we find that one characteristic is

u=x(%)_ —/(%)_%gdt. (18)

The other characteristic is found from the first and third terms in Eq. (17) after using
Eq. (18) to eliminate x. The integration is straightforward albeit tedious. Equation (18)
is then used to eliminate u and this characteristic is

1 =1 [g2fr F
u=aV+§(%) [“F2 —a2+2aa—2a2}7]x2

+ [Fb—%Fb(%)_l (%)}x-%%bz+c (19)

(17)

B
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From Egs. (18) and (19) we see that the potential is
1 fan-t[a2F? ., ., 2*F)| , 1] 1 (a)—l (a)‘
== — —~ — = |Fb-zFb( = +
V=5 (F) [F2 il F\F) \F)|°

1F2 e 1 a\-z a\~1b
e e sl — - — —dt 20
T a+aU{(F) N f(F) ad}' (20

where U is an arbitrary function of its argument, and the corresponding first integral is

2
1.5 a\z . a\3\ b fa\: a\~1 a\~7b
T=g¥ [(f) B ((F) ) v~ (5) } +U{(}F) "”“f(;ﬁ) "l

(21)
Note that the arbitrary function ¢(t) in V does not enter into I. This is not surprising,
because an additive function of time in L plays no role in the dynamics. We emphasize
that the functions a(t) and b(t) are arbitrary in contrast to the conclusion reached in
Ref. [1]. There the authors imposed some structure on the potential V which forced af(t)
and b(t) (their £(t) and ¥(t)) to be the solutions of second order equations. However, here

we have constructed potential and first integral together and the only constraint is one of
consistency between the two.

3. THE CASE OF A QUADRATIC POTENTIAL

We notice that Eq. (16) is a linear partial differential equation for V' unless its structure
is initially specified. To enable a better comparison with the results of Ref. [1] and to
rectify an omission in it we consider the special case of a quadratic potential

V = F[L (t)r? + g(t)z], (22)

where the F is included explicitly as a multiplier. When Eq. (22) is substituted into
Eq. (16), the position dependence is explicit and the coefficients of linearly independent
powers of z may be separately set equal to zero to give the equations:

H(F(r@)) =trar-sma-42 (- (7). @

(Fb) = —a(Fg) - (Fg) - Fu*b— }F (%) Fo, (24)

¢= —bFg, (25)

from the coefficients of z2,z! and z° respectively. Equation (23) is easily integrated once
and on the substitution

B o A2
—=p (26)
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reduces to the damped form of the well-known Pinney equation [6],

" F. cutee K -
p Fp w P - pan’ ( )
where K is the constant of integration. Equation (24) may be rewritten as
P FL 1 39
b+Fb+wb=—E~f(ng) (28)
and Eq. (25) defines ¢(t). The first integral is
Ll it B 2 12 i .
I =3F%(px — pr) +?p—2+ngr+c+Fbx—Fbr. (29)

The expression in Eq. (29) actually contains three first integrals and not one as implied
by Eq. (23) of Ref. [1]. The reason for this is that the solution of Eq. (28) contains two
linearly independent solutions of the homogeneous equation

"
Gt +w?b =0, (30)

as well as a particular solution of Eq. (28). Specifically, if we write
b= Ab, + Bby + bp, (31)

the three integrals are

K z? - .
I = iF*(pi — pz)? + -52—2 + p Fgz — /ngp dt + F (bpx — bpi), (32)

which is the generalization of the Lewis-Ermakov invariant [7,8] to the time-dependent
damped and forced harmonic oscillator, and

I = F (b - bii) - /ngl dt, (33)

13 = F(bg:t = 62.?'5') = /ngz dt, (34)

which are the linear first integrals associated with the initial conditions.

4. INTERPRETATION OF THE FIRST INTEGRAL

The Hamiltonian corresponding to the Lagrangian is

1p2
H=-—4YV 35
2F+ ' {45)
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where
p = Fi. (36)
The expression for the potential in Eq. (20) is considerably simplified if we use Eq. (26)
and
A.% b
/(5) di=2 (37)
f a P
Then

2
1, « 1 i
+=p°F| —| +—==U . 38
2’ (p) P*F ( p ) o=
The c(t) is omitted since, as we noted above, it plays no role in the dynamics or the

structure of the first integral. Evidently a suitable new position variable is the argument
of the arbitrary function U, i.e.,

I—ao
Q= . (39)
p -
A type II generating function is
Fy(a,P,t) = P (%) +x(@,1), (40)
which gives
P iy
S . 41
5 + o0 (41)

where the still arbitrary function x(g,t) can be chosen at convenience. Under this canonical
transformation the Hamiltonian (35) with V as in Eq. (38) is transformed to

B= pi{%P2 +U(Q)}, (42)

provided we put
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0.1r , | _
0.09 - = e

oo IS
s [/ 2
w- \| [/ 7
e I r—

Fi1GURE. The grid in (Q,T) space of the leve! lines z = const., ¢ = const. for z = 1(1)10 and
t =0.1(0.1)1.0 in the case F(t) = exp(5t), a(t) = sint and p(t) = 1 + cos?(5¢).

If we introduce a new time

T= /(sz)_ldt, (44)
the Hamiltonian becomes

H=3iP’+U(Q) (45)
which is just the first integral given in Eq. (21).

Thus the first integral is simply the Hamiltonian obtained from the original one under
the generalized canonical transformation [9,10]

Q= ; (46)

5. CONCLUSION

In this note we have corrected some misconceptions and omissions in Ref. (1]. In particular
we have been able to provide a natural interpretation for the first integral. This inter-
pretation is perhaps best viewed as mathematical as, if the variables x and ¢ represent
the usual physical displacement and time, it is unlikely that we can assign a physical
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interpretation to @ and T. The figure illustrates the relationship between the (Q,T") and
(z,t) variables for a not untypical choice of the functions F(t), a(t) and p(t).
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