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AUSTRACT. A recent paper used Noether's theorem to obtain first integrals for dissipative s)'stems.
The results were not complete and the physical interpretation of the first integrals was not
established. This paper completes the results and provides a simple interpretation of the first
illtegrals.

RESUME~. Un artículo reciente utilizó el teorema de Noether para obtener primeras integrales de
sistemas disipativos. Los resultados estaban incompletos y la interpretación física de las primeras
integrales no fue establecida. Este artÍCulo completa los resultados y da una interpretación simple
de las integrales primeras. (Traducción de los editores.)

PACS: 02.20.+h; 03.20.+i; 03.65.Fd

l. INTRODUCTlON

In a recent paper [1] Noether's theorem was used to determine first integrals for the
physically important systems described by the Lagrangians

(1)

aud

(2)

where overdots denote, as usual, differentiation with respect to time, F(t) is an arbitrary
real function of time, V is an arbitrary function of its argument and G(t) and {3(t) are
functions of time the form of which has to be determined. González-Acosta and Corona-
Galiudo iJ I found the first integrals

and

1 = ~F2(t)[ai: - axf + q,(x/a) - V(x/a)

(3)

(4)

for Eqs. (1) and (2), respectively, where a(t) is the solution of a nonlinear second order
differential equation (Eqs. (21) and (37) in Ref. [1). \Ve do not quote the equatiou beca use
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it is incorrect) and <f¡(x/a) appears to be regarded as a function that can be selected
arbitrarily. (See the discussion in Re£. [1] between Eqs. (37) and (39).)

The rcsults quoted in thc paragraph abovc are incomplete. Thc reason for this is,
apparently, duc to the method of analysis adopted in [1]. In this notc, wc supply thc
correct rcsults using an analysis which we hopc will be more transparent to the reader.
In addition, wc supply an intcrpretation of the meaning of the first integrals obtained. To
avoid unnecessary repetition we unify the two Lagrangians into

L = tF(t)x2 - V(x, 1). (5)

Following the Il1cthod of Rc£. [1) we usc thc point symmctry form of Noethcr's thcorcl1l [2).
lf thc action intcgral S = J L(x, x, t) dt is invariant undcr the infinitesimal Iransformation
gencratcd by

then thcre exists a first intcgral givcn by

I(x, x, t) = f(x, t) - [L( + ~~(r¡ - xo] ,

whcre f(x, t) is a gaugc function. Thc functions C r¡ ami f are detcrmincd from

. !JL !JL!JL . .
f = (a¡ +r¡ !Jx + !Jx(il- xO + L(.

(6)

(7)

(8)

\Ve notc that thc quadratic potential in Eq. (1) has also received attention by Profilo and
Soliana [3,4] and Dodonov and Man'ko [5].

2. DETER~lI:"ATIO¡O¡ OF TIIE FIRST I:'iTEGRAL

\Vhen L in Eq. (5) is substituted into Eq. (8), thc velocity dependcncc is cxplicit and thc
coefficients of lincarly indcpendent powers of x must be separately set equal lO zero. This
gives thc equations

!J( = O
!Jx '

!J11 1 !J( 1 F
!Jx = 2" !Jt - 2" FC

!Jf = F!Jr¡ _ V!J(,
!Jx !Jt !Jx

!Jf !JV iJV !J(
a¡ = -( at - r¡ !Jx - V !Jt.

(9)

(10)

(11)

(12)
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From Eqs. (9) and (10) it is evident that

~= a(t),

1] = ~ (a - :a) x+ b(t),

(13)

(14)

where a(t) and b(t) are arbitrary functions of time. Since ~ is independent of x, Eq. (11)
gives

(15)

where c(t) is again an arbitrary function of time. Finally Eq. (12) has now the form

~ [F (a - Fa)'] . x2 + (Fbr:i: + e = -a ,]V _ av _ [~ (a _ Fa) x + b] &v (16)4 F at 2 Fax '

which, in the absence of an initially assumed structure for V, is a linear partial differential
equation for V(x, t).
The solution of Eq. (16) by the method of characteristics requires the solution of the

associated Lagrange's system

dt
1

2adx d(aV)-----=
F(f)"x+b -t(F(F(J;r)}X2-(Fb)'x-c

(17)

From the first and second terms in Eq. (17) we find that one characteristic is

(a)-! j(a)-!bu = x 7 - F ~dt. (18)

The other characteristic is found from the first and third terms in Eq. (17) after using
Eq. (18) to eliminate x. The integration is straightforward albeit tedious. Equation (18)
is then used to eliminate u and this characteristic is

[

2 • 2 .. ]1 a -1 a F .2 .. 2F 2v = aV + - (-) -- - a + 2aa - 2a - x8 F F2 F

[
1 ( a ) -1 (a).] 1Fb2

+ Fb - 2Fb F F x - 2~ + c. (19)
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From Eqs. (18) and (19) we see that the potentiaI is

1 (a)-l [a2P2 2a2i] 1 [. 1 (a)-l (a)']V = - 8a F --¡:'l - ü2 + 2aa - ----¡;;- x2
-;;- Fb - "2 Fb F F x

1Fb2
e 1u{(a)-~ J(a)-~bd}+ + _ - x - - - t ,

2 a2 a a F F a
(20)

where U is an arbitrary function of its argument, and the corresponding first integral is

[ I (1)' 1]2 { I JI}1 2 a, a, b a , a -, a -, b
1 = "2 F (F) j; - (F ) x - ;;-(F ) + U (F) x - (F ) ;;-dt .

(21 )
Note that the arbitrary function c(t) in V does not enter into l. This is not surprising,
because an additive function of time in L p]ays no role in the dynamics. \Ve emphasize
that the functions a(t) and b(t) are arbitrary in contrast to the conclusion reached in
Ref. [11. There the authors imposed sorne structure on the potential V which forced a(t)
and b(t) (their ~(t) and ,.(t)) to be the solutions of second order equations. However, here
we have constructed potential and first integral together and the only constraint is one of
consistency between the two.

3. TIIE CASE OF A QUADRATIC POTENTIAL

\Ve notice that Eq. (16) is a linear partia] differential equation for V unless its structure
is initially specified. To enable a better comparison with the results of Ref. [11 and to
rectify an omission in it we consider the special case of a quadratic potential

(22)

where the F is included explicitly as a multiplier. \Vhen Eq. (22) is substituted into
Eq. (16), the position dependence is explicit and the coefficients of lineady independent
powers of x may be separately set equa] to zero to give the equations:

(Fb)" = -a(Fg)" - ü(Fg) - Fw2b - tF (; r Fg, (24)

e = -bFg, (25)

from the coefficients of x2, xl and xO respectively. Equation (23) is easily integrated once
and on the sllhstitlltion

a 2- =p
F

(26)
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reduces lo lhe damped form of lhe wel!-known Pinney equation [6],

.. P. 2 f{
p+ FP+W P= p3F2'

where f{ is lhe constanl of integration. Equation (24) may be rewritten as

.. p. 2 1
b + -b + W b = __ (p3 F2g)

F pF

and Eq. (25) defines e(t). The first integral is

(27)

(28)

(29)

The expression in Eq. (29) aClual!y contains three first inlegrals and not one as implied
by Eq. (23) of Ref. [1]. The reason for this is lhat lhe solution of Eq. (28) conlains two
linearly independenl Solulions of the hOlllogeneous equalion

as wel! as a particular solution of Eq. (28). Specifical!y, if we write

b = Ab¡ + Bb2 + bp,

lhe three integrals are

(30)

(31 )

(32)

which is the generalization of the Lewis-Ermakov invariant [7,8] lo the time-dependent
damped and forced harmonic oscil!alor, ami

12 = F(b¡x - b¡x) - J Fgb¡ di, (33)

13 = F(b2x - b2x) - J Fgb2 di, (34)

which are the linear first integrals associated with the initial conditions.

4. Il'iTERPRETATIO!'i OF TIIE FIHST INTEGHAL

The Harniltonian corresponding to the Lagrangian is

H = ~p2 + 11,
2F (35)
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where

p = Fi. (36)

The expression for the potential in Eq. (20) is considerably simplilied if we use Eq. (26)
and

Then

J(a)-!b o7 -¡¡dt = p'

1( .. ")21V = - -p pF + pF x --2 p2

(37)

(38)

The c(t) is omitted since, as we noted aboye, it plays no role in tbe dynamics or the
structure of the lirst integral. Evidently a suitable new position variable is the argument
of the arbitrary function U, i. e.,

x-oQ=-.
p

A type 11 generating function is

(
X - o)F2(x, P, t) = P -p- + X(.T, t),

wbich gives

P DX
p= -+-,

P Dx

(39)

(40)

(41 )

where the still arbitrary function X(q, t) can be cbosen at convenience. Under tbis canonical
transformation the Hamiltonian (35) with V as in Eq. (38) is transformed to

provided we put

- 1 {l 2 }H = p2F 'iP + U(Q) ,

( ). ( ).21 FjJ 2 o 2 o
X = 2px + Fp p x - J Fp P dt.

(42)

(43)
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FIGURE. The grid in (Q, T) space of the level lines x = const., t = cons!. for x = 1(1)10 and
t = 0.1(0.1)1.0 in the case F(t) = exp(5t), 0(1) = sin I and p(l) = 1 + cos2(51).

lf we introduce a new time

the Hamiltonian beco mes

j¡ = tp2 + U(Q),

(44)

(45)

which is just the lirst integral given in Eq. (21).
Thus the lirst integral is simply the Hamiltonian obtained from the original one under

the generalized canonical transformation [9,101

5. CONCLUSION

x-oQ=-,p

• 2 (o)P = pp - Fpx - Fp P ,

(46)

(47)

(48)

In this note we have corrected sorne misconceptions and omissions in Re£. [1). In particular
we have been able to provide a natural interpretation for the lirst integral. This inter-
pretation is perhaps best viewed as mathematical as, if the variables x and I represent
the usual physical displacement and time, it is unlikely that we can assign a physical
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interpretation to Q and T. The figure i!lustrates the relationship between the (Q, T) and
(x, t) variables for a not untypical choice of the functions F(t), a(t) and p(t).
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