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ABSTRACT.By using the fact that a massless free field can be treated as a conection of independent
harmonic oscillators, it is shown that there exists an infinite number of Hamiltonian structures and
of Hamiltonian functionals for the massless free field equations. The case of the electromagnetic
field and of the Weyl neutrino field are treated explicitly. It is also shown that an n-dimensional
isotropic harmonic oscillator admits an infinite number of Hamiltonian (symplectic) structures for
n>1.

RESUMEN.Usando el hecho de que un campo libre sin masa puede tratarse como una colección
de osciladores armónicos independientes, se muestra que existe una infinidad de estructuras
y funcionales hamiltonianas para las ecuaciones de un campo libre sin masa. Los casos del
campo electromagnético y del campo de neutrinos de Weyl se tratan explícitamente. Se muestra
también que un oscilador armónico isótropo n-dimensiona! admite una infinidad de estructuras
hamiltonianas (simplécticas) para n > 1.

PACS: 11.10.Ef; 03.20.+i

1. INTRODUCTION

It is well-known that the So urce-free electromagnetic field can be expanded in plane waves
and that, by virtue of the Maxwell equations, the coefficients of this expansion vary
harmonically in time, which allows one to relate the evolution of the electromagnetic field
with that 01" a set of independent harmonie oseillators in sueh a way that the sum of
the energies of these oseillators amounts to the usual expression for the energy of the
eleetromagnetie field (see, e.g., Refs. [1-3]).

In reeent years, it has been found that various (linear and non linear) evolution equations
can be written in a form analogous to that of Hamilton's equations of classical meehanies
for systems with a finite number of degrees of freedom. Specifieally, it has been shown
that several evolution equations ean be expressed as

(1)

•Dedicated to Professor Jerzy Plebaúski on the ocassion of his 65th birthday.
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where the <Pa are variables that represent the state of the system, H[<Pal is a suitable
functional of the field quantities <Pa, called Hamiltonian functional, bH/b<p/3 denotes the
functional derivative, and the Da/3 are differential operators. Here and in the forthcoming
a dot denotes partial differentiation with respect to the time and there is summation over
repeated indices. The operators Da/3 define a Hamiltonian structure if the Poisson bracket
defined by

J bF bG
{F, G} == b<pa Da/3 b<p/3 dv, (2)

where F and G are functionals of the <Pa satisfying suitable boundary conditions, is
skew-symmetric and satisfies the Jacobi identity. In fact, there exist evolution equations
that can be written in the form (1) in two or more distinct ways (see, e.9., Ref. [4] and
the references cited therein).
In this paper we show that the coefficients of the expansion of a massless free field

in plane waves can be related to a set of independent harmonic oscillators in an infinite
number of different ways, which leads to an infinite number of different Hamiltonian
structures. We also show that, in a similar manner, an n-dimensional isotropic harmonic
oscillator can be related to a sel of n one-dimensional harmonic oscillators in an infinite
number of different ways. In Sed. 2 we obtain Hamiltonian structures for the source-free
electromagnetic field for which the corresponding Hamiltonian functional can be positive
definite or indefinite. Section 3 contains a similar analysis for the Weyl neutrino equation.
In Sect. 4 we obtain a class of symplectic structures and of Hamiltonians for an n-
dimensional isotropic harmonic oscillator parameterized by GL(n, e) modulo the unitary
(or a pseudo-unitary) group in n dimensions.

2. SOURCE-FREE ELECTROMAGNETIC FIELO

The source-free Maxwell equations in empty space can be written as

\7. F = 0,

with the complex vector field F defined by

i aF
\7 x F =--

c at ' (3)

F == E+iB. (4)

Assuming that F satisfies periodic boundary conditions at the walls of a rectangular box
of volume 0, we expand F in a three-dimensional Fourier series

F(x) = 0-1/2 2)Cke~1) + dke~2))eik.X,
k

(5)
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where the (real) unit vectors e~l) and e~) are orthogonal to k and orthogonal to each other,

so that e~I), e~2), and k form a right-handed seto Making use of the complex combinations

(2) _ 1 ((1) . (2»)
'k =,¡;¡ ek - lek ' (6)

Eq. (5) can also be written as

F(x) = W1/2 L(ak,~I) + bk,~»)eik.x.
k

From Eqs. (6-7) it follows that

(i)

b - ,..,-1/2 J (2)•. F( ) -ikx d3k - H £k x e x. (8)

By substituting Eq. (7) into the second of Eqs. (3) one finds that the time dependence of
the (complex) expansion coefficients ak and bk is given by

(9)

where w == Ikl C.
Equations (9) show that the real and imaginary parts of Ok and bk can be related

with the coordinates and momenta of two independent harmonic oscillators of frequency
w, which allows us to find a Hamiltonian that reproduces Eqs. (9) and, therefore, the
evolution equations contained in Eqs. (3).

2.1. Positive definite Hamiltonians

For each allowed vector k we introduce four real variables qk, Pk, qk, and Pk satisfying
the equations of motion

• 2Pk = -w qk, .:. 2-Pk = -w qk, (10)

which follow from Hamilton's equations with a Hamiltonian

H = !L [p~ + w2q~ +P~+ w2 q~],
k

(11)

assuming that qk, Pk and qk, Pk are canonically conjugate variables. Equations (10) are
equivalent to

( 12)
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(ef. Eqs. (9)); therefore we can write

ak = gll (k)(Pk + iwqk) + gI2(k)(Pk + iwqk)'

bk = g21(k)(Pk + iwqk) + g22(k)(Pk + iwqk),
( 13)

where the gij(k) are complex-valued functions of k such that det(gij) '" O and the '
denotes complex conjugation. From Eqs. (13) we now obtain

Pk + iwqk = fll(k)ak + fI2(k)bk,

Pk + iwqk = 121(k)ak + h2(k)bk,
(14)

where the matrix f == (fij) is the inverse of 9 == (gij).
Since qk, Pk and qk, Pk are assumed to be canonically conjugate variables, Eqs. (13)

yield

(15)

{ak, bk,} = 2iw6kk' (ggl)12,

{bk, ak'} = 2iw6kk,(gglb,

{bk,bk,} = 2iw6kk'(gglh2,

where gl is the adjoint of g; therefore, using Eq. (7), one obtains the following Poisson
brackets among the cartesian components of F and F' (at equal times):

{Fi(X), Fj(x')} = 2eO-1 ¿(gglb(k)fijmkmeik(X+X'),
k

where we have used the relation

(16)

(17)

and the subseripts i, j denote the cartesian eomponcnts oí the vector on which they
appear; similarly,
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which can be reduced by means of Eq. (17) and

(1) (2) (1) (2) « k;kj)€k,i€k,j + €k,j€k,i = - Vij - Ikl2 .

Using Eqs. (11) and (14), one finds that the Hamiltonian is

H = ~¿[(fIJ)l1(k)QkQk + (f1J)12(k)Qkbk + (fl/b(k)akbk
k

(19)

(20)

which can be expressed in terms of F and F. making use of Eqs. (8). Equations (16), (18),
and (20) show that the Hamiltonian structure induced by the relations (13) depends on ggl
(note that, since / = g-I, it follows that /1/ = (ggl)-I); therefore, two matrix functions
g(k) and g(k) lead to the same Hamiltonian structure, and to the same Hamiltonian, if
and only if

g(k) = g(k)U(k), (21)

where U(k) is a unitary matrix that may depend on k.
A simple example of the present case, where the Hamiltonian coincides with the energy

of the electromagnetic field, is obtained with the choice ggl = 4rr1,where 1 denotes the
unit matrix, which corresponds to

g(k) = v41r 1,

modulo the transformations (21). Then, Eqs. (16) and (18) give

{Fi(x), Fj(x')} = O,

{Fi(x),F/(x')} = 8rrci€ijm" a 6(x _ x'),
UXm

whieh amount to [e/. Eq. (4))

{E;(x), Ej(x')} = {B¡(x), Bj(x')} = O,

{E;(x), Bj(x')} = -4rrC€ijm" a 6(x _ x'),
uXm

and from Eqs. (8) and (19-20) one finds that

H = 2.JF .. Fd3x = _1 J(E2 +B2)d3x.8rr 8rr

(22)

(23)

(24)
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In the same way as the Hamiltonian, which is the generator of displacements in the time,
has an infinite number of distinct expressions, depending on the Hamiltonian structure
chosen, the generator of any canonical transformation will have a different expression
for each Hamiltonian structure. It is known that a differentiable function C( qi, Pi) of the
canonical variables qi,Pi, is the generator of a one-parameter group of canonical transfor-
mations parameterized by a variable s, defined by

dqi oC
-;¡; = °Pi'

dPi
ds
=

oC
oqi (25 )

Conversely, the generator of a given one-parameter group of canonical transformations
can be obtained from Eqs. (25).
For instance, the Maxwell equations (3) are invariant under the dua]ity rotations, which

are given by F f-> e"F. The Poisson brackets (23) and the Hamiltonian (24) are a]so
invariant under these transformations; this means that the duality rotations are canonica]
transformations and that their generator is a constant of motion. From Eqs. (8) we see
that F f-> ei'F corresponds to ak f-> e"ak and bk f-> e"bk or, equivalent]y, by virtue of
Eqs. (14) with f(k) = ~l,

y4.

(26)

(27)

From Eqs. (25-26) it is readily seen that the generator of the duality rotations (with
respect to the Hamiltonian structure defined by Eqs. (23)) is

C = !L t [p~+ w2 q~ - P~ - w2q~]
k

= ¿L t [bkbk - akak] = - 8:C ¡A' F' d3x,
k

where we have used Eqs. (8) and (17), and where A is a (complex) vector potentia] for
F, F = V' x A.
It may be noticed that if (ggthI(k) is different from zero, then Eq. (16) shows that

the translations are not canonica] transformations and, therefore, a generator of these
transformations, with respect to such a Hamiltonian structure, cannot existo

2.2. lndefinite Hamiltonians

Instead of Eqs. (10), we can assume that the canonica] coordinates qk, Pk, qk, and Pk
satisfy the equations of motion

. 2
Pk = -w qk, -'- 2-Pk = W qkl (28)

corresponding to the Hamiltonian

H = !L [p~ + w2q~ - P~- w2 q~].
k

(29)
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From Eqs. (28) now we have

Pk + iwqk = iW(Pk + iwqk), Pk - iu..'qk = iW(Pk - iwqk),

and comparison wilh Eqs. (9) suggests lhe relations

ak = gIl(k)(Pk + iwqk) + gn(k)(Pk - iwqk)'

bk = g21(k)(pk + iwqk) + g22(k)(Pk - iwqk)'

where g(k) = (g;j(k)) is a complex nonsingular matrix; hence,

Pk + iwqk = f11 (k)ak + !I2(k)bk,

Pk - iwqk = hI(k)ak + f22(k)bk,

where f(k) == (g(k))-I.
1\[aking use of lhe malrix

(30)

(31)

(32)

(33)

one ¡¡nds lhal lhe Poisson brackels among lhe ak, bk and lheir complex conjugales can
be written in a form analogons lo lhal of Eqs. (15):

{ak, ak' } = {ak, bk,} = O,
{bk,bk,} = {ak,ak'} = O,
{ak' bk'l = {bk, bk,} = O,

{ak,ak'} = 2iwÓkk'(gl)gl)¡l'

{ak' bk,} = 2iwÓkk' (gl)gl)¡2,

{bk,Gk'} = 2iwÓkk,(gl)gl)z¡,

{bk, bk,} = 2iwÓkk'(gl)gl)z2.

(34)

Hence, lhe Poisson brackels among lhe componenls of F and F. can be oblained fram
Eqs. (16) and (18) by replacing ggl by gl)gl:

{F;(x), Fj(x')) = 2c 0-1 ¿(gl)gl)z¡ (k)f;jmkme;k(x+x'),
k

{F;(x), F; (X')) = 2i 0-1 ¿w [(g719I)¡ 1(k)f~~lf~j - (gl)g 1)22(k)f~~jf~~!] e;k(x-x').
k

(35)
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On the other hand, substituting Eqs. (32) into Eq. (29) one obtains the following
expression for the Hamiltonian:

H = ~¿[U'7]f)Il(k)akak + U'7]f)12(k)akbk + U'7]/b(k)akbk
k

(36)

[ef. Eq. (20)]. It may be noticed that /'7]/ = (g7]g')-I, and from Eqs. (35) and (36)
we conclude that two matrix-valued functions g(k) and g(k) yield the same Hamiltonian
structure and the same Hamiltonian if and only if there exists a U(1, 1)-valued function
of k, U(k), such that

g(k) = g(k)U(k) (37)

(i.e., U(k) satisfies, U(k) 7](U(k))' = 7]).
Taking, for example, (g7]g')(k) = (2IkJ)-I7], which corresponds to g(k) = (2IkJ)-1/2I,

up to the transformations (37), from Eqs. (17), (19), (35), and (36) we get

and

{Fi(x), Fj(x')} = O,

{Fi(x),Fl(x')} = -ieO-1¿ (t5ij - ~~~t)eik.(x-x')

k

(38)

(39)

(ef. Ref. [5]). In the present case, one finds that the generator of the duality rotations is
given by

(40)

which, except for a constant factor, coincides with the Hamiltonian (24) (e/. also Ref. [5]).

3. THE WEYL NEUTRINO EQUATION

The Weyl neutrino equation for the two-component neutrino field, 1/1, is given by

1/1 = elT • 'V 1/1, (41 )
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where the O"i arc the PauJi matrices (see, e.g., Refs. [6,7]). The spinor field t/J can be
expanded in a form analogous to Eq. (7),

t/J(x) = 0-1/2 L(bk,~I) + ak,~2»)eikx,
k

where, in the prcsent case, ,~I) and ,~2)denote the two-component spinors [6)

(42)

(1) _ (e-i"'/2 cos ~)
€k - eirp/2 sin ~ 1

2
(

-ioo/2' O)(2) _ -e T sm 2
€k - eilp/2 cos ~ '

2

(43)

and e, <p are thc polar and azimuth angles of k. It is casy to see that

(44)

therefore, substituting Eq. (42) into Eq. (41) one finds that

(45)

lc/. Eqs. (9)]. The two-component spinors (43) satisfy thc orthonormality condition

(46)

where the subscripts n, {J, which range and Sllm over 1,2 denote the components of the
spinor on which they appcar. Hencc, from Eq. (42) it follows that

- 0-1/2 J (2)'.1. ( ) -ik.x d3Qk - €k,o '+"0 X e X, b - 0-1/2 J (1)'.1. ( ) -ik.x d3k - €k,Q epa X e x. (47)

Following thc same steps as in Scct. 2, wc can obtain an infinite numbcr of different
Hamiltonian structures for the evollltion eqllations (41) with a positive (or negative)
definite Hamiltonian or with an indefinite Hamiltoniall, by relating thc amplitudes ak

and bk with thc coordinates alld momenta of two indcpendent harmonic oscillators as
in Eqs. (13) and (31). Thc differences with the prcceding case come from the algebraic
relations satisfied by the spinors (43), replacing Eqs. (17) alld (19), namely

(1) (1). (2) (2). k
'k.o 'k,~ - 'k ,o 'k,~ = jkj . uo~,

(48)



414 G.F. TORRES DEL CASTILLO AND D. ACOSTA AVALaS

where f,,~is the Levi-Civita symbol. Thus, we get [e/. Eq. (16)]

{1/J,,(x), 1/J~(X')} = 2if,,~r¡-I¿w(gSgthl (k)eik.(x+x'),

k

(49)

where S = 1, '1, or -1, according to whether the Hamiltonian is positive definite, indefi-
nite, or negative definite, respectively. SimilarIy,

{1/J,,(x),1/J;(x')} = 2ir¡-1 ¿w[(gSgt)22(k)e~~~f~I,~'- (9Sgt)ll(k)f~~~f~~'J
k

(50)

[e/. Eq. (18)1 and the Hamiltonian is given by

H = ~¿[(ftSf)l1(k)akak + (ftSf)12(k)akbk + (ftSlb(k)akbk
k

(51 )

with ak and bk given by Eqs .. (47).

3.1. Example 01 a positive definite Hamiltonian

Taking S = 1 in arder to get a positive definite Hamiltonian, we choose ggt = 1 (which
corresponds to 9 = 1 modulo the transformations (21)), from Eqs. (47-51) we obtain

{1/J,,(x), 1/J~(x')} = O,

{1/J,,(x),1/J;(x')} = 2e{f",,~.V'ó(x - x'),

and

H = ~¿(akak + bkbk) = ~J 1/J~1/J"éx.
k

3.2. Example 01 an indefinite Hamiltonian

Taking now S = '1 and gr¡gt = (2ñw)-lr¡, which is obtained with 9 = (2Iiw)-1/21 up to
transformations of the form (37), Eqs. (47-51) give

{1/J,,(x), 1/J~(X')} = O,

{1/J,,(x),1/J;(x')} = i~ó,,~ó(x - x'),
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and

II =¿Í!w(akak - bkbk) = J 1/J~iÍ!euo~. \l¡J¡~(¡JX.
k

4. HAMILTONIAJ' STIlUCTURES FOR TlIE ISOTROPIC lIARMONIC OSCILLATOll

Sinee an n-dimensional isotropic harmonic oscillator ean be eonsidered as a set of n
independent one-dimensional harmonic oscillators, we ean generalize Eqs. (13) and (31)
relating these n one-dimensional harmonie oscillators with another set of n (auxiliary)
one-dimensional harmonie oscillators. Let qi, Pi be the coordinates and momenta of the
n harmonic oscillators corresponding to an n-dimensional isotropic harmonic oscillator,
which satisfy the eqnations of motion

Pi + iw(jo = iW(Pi + iwq,), (i = 1,2, ... , n).

\Ve now introduce 2n coordinates qj, Pj, (j = 1,2, ... , n) such that

(52)

(53)

[e! Eq. (30)1, where each (j is +1 or -1. Assnming that the coordinates qj, p. are canon-
ically conjugate, i.e., J

Eqs. (53) can be obtained from the Hamiltonian

"
II = ~¿(j[p} +w2q}1

j=1

(54)

(55)

[e! Eq.(29)j.
Equations (52) are reproduced if the variables qi, Pi are related with q, P through the

l. r.. b J Jmear translormatlOn glven y

or, equivalently,

"
Pj + iwqj =¿gjm(Pm + (miwqm)

m=l

"
Pj + (jiwqj =¿ /jm(Pm + iwqm),

m=l

(56)

(57)

where 9 = (gij) in an arbitrary nonsingnlar complex TI x n matrix and / = (Jij) = g-l.
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Substituting Eqs. (57) into Eq. (55) we find that, in terms of the original coordinates,
the Hamiltonian (55) is given by

(58)

Introducing the diagonal matrix

(59)

Eq. (58) can be rewritten as

n

H = t ¿ (j1(f)mk(Pm - iwqm)(Pk + iwqk)
k,m=!

n

= t ¿ [(Re(jt(f)mk) (Pmqk + w2qmqkl
k,m:::;1

(60)

where we have used the fact that (jl(f) is hermitian. Thus, we see that the Hamiltonian,
which is a constant of motion, is a linear combination of the constants of motion PmPk +
w2qmqk and qmPk - qkPm' From Eqs. (54) and (56) one finds that the Poisson brackets for
the original variables qi, Pi are given by

{qj,pd = Re(g(gl)jk,

1
{qj,qd = -- Im(g(gl)jk,

w
(61)

Equations (60) and (61) show that two complex nonsingular matrices 9 and 9 give rise
to the same Hamiltonian (or symplectic) structure and to the same Hamiltonian if and
only if they are related through

9 = gU,

where U is an arbitrary complex matrix such that

U(UI = (,

(62)

(63)

which means that U is a unitary or pseudo-unitary n x n matrix. In particular, ( = l,
9 = l, lead to the usual expression for the Hamiltonian of an n-dimensional isotropic
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harmonic oscillator and the matrices U, appearing in Eq. (62), that leave invariant this
Hamiltonian and the corresponding symplectic structure, according to Eq. (63) are the
n x n unitary matrices.

5. CONCLUDING REMARKS

A massless field of an arbitrary spin greater than zero can be expanded in terms of
circularly polarized plane waves as in Eqs. (i) and (42), and from the massless free field
equations one obtains equations analogous to (9) and (45); therefore, as in the cases
treated in Sects. 2 and 3 one can obtain an infinite number of Hamiltonian structures for
the corresponding evolution equations. For instance, in the case of the Einstein vacuum
field equations linearized about the Minkowski metric, by choosing the matrix g(k) as in
Secs. 2.1 and 3.1, one gets the Hamiltonian structure given in Re£. [8].
Since each Hamiltonian constructed by the procedure presented here ;'. ~ constant of

motion, one obtains in this manner an infinite number of constants of motion (which may
not be in involution with respect to a given Hamiltonian structure of the dass considered
aboye). It should be remarked that, in general, these Hamiltonians will not correspond
to the energy of the field [see, e.g., Eq. (39»). The operators D"'{i appearing in Eqs. (1-2)
can be read off from the Poisson brackets among the field components [such as Eqs. (23)],
since Eq. (2) implies that {rP",(x), rP{i(x')} = D",{i(x)ó(x - x') (ef. also Re£. [8)).
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