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ABSTRACT. The brachistochrone problem, having challenged the talents of Newton, Leibniz and
many others, plays a central role in the history of physics. Their solutions not only give implicit
information as to their mathematieal skills and cleverness, but also are worthwhile beeause oí their
heuristic contento \Ve emphasize several physical and mathematical details around this problem,
reviewing for this the geometrical and mechanical methods of Huygens applied to the cycloid. The
solutions of Leibniz and Bernoulli are presented, followed by Newton 's Theorem on cycloids and
his solution sent to Charles Montague. A geometrical approach to this problem, as counterexample
against the contention of Leibniz that it may only be solved through the mastering of 'his' calculus,
is given. Dnder the light of such solutions and of the historical frame, we discuss how Galileo was
involved, with this problem, into the priority dispute between Newton and Leibniz.

RESUMEl'<.El problema de la braquist6crona, habiendo retado los ingenios de Newton, Leibniz y
muchos otros, juega un papel central en la historia de la física. Las soluciones con que aquellos
respondieron al reto no sólo dan información implícita respecto de sus talentos matemáticos
y astucia, sino que también resultan de gran valor por su contenido heurístico. Resaltamos
algunos detalles físico-matemáticos alrededor de este problema, repasando los métodos geométrico-
mecánicos de Huygens, relativos a la cicloide. Se presentan las soluciones de Leibniz y Dernoulli,
seguidas de un teorema de Newton relativo a la cicloide, y de la solución que envió a Charles
Montague. Se brinda una solución geométrica de este problema, en calidad de ejemplo, contra la
aseveración de Leibniz de que este problema sólo puede ser resuelto mediante el dominio de su
cálculo. A la luz de tales soluciones y del marco histórico, analizarnos como fue involucrado Galileo,
mediante este problema, en la controversia sobre la paternidad del cálculo entre Newton y Leibniz.

PACS: 0J.65.+G; 02.40.-k; 03.20.+i

1. INTRODUCTION

The main object of this work is to analyze the brachistochrone problem in its own histo-
rical frame, which, as known, was proposed by John Bernonlli in 1696 as a challenge to
the best mathematicians. The details are reviewed in Sect. 2. \Ve present in Sect. 3 the
eycloid's geometrical properties, while the rnechanical ones in Sect. 4, to appreeiate the
solutions published by Leibniz and Newton.

The solution of Leibniz is presented next in See\. 5. It may be remarked that its main
assertion, non-justified and obtained from "calculus", is used to establish, by means of
geornetrical reasoning, that the curve must be an are of cycloid.
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The method discovered by John Bernoulli, presented in Sect. 6, is entirely based in the
differential and integral calculus and in Fermat's least time principIe.
\Ve reproduce in Sect. 7.1 a theorem by Newton, related to the motion of heav\, bodies

along cycloids. This is all we can do toward the understanding of Newton's solution, since
there is no record of the method he followed lo face Bernoulli's challenge. It should be
remarked that he already calls "shortest", in this theorem, the time to fall along an arc
of cycloid. Newton's solution, as published, is presented in Sect. 7.2.
\Ve present a geometrical approach to this problem, i.e., not based in a differential

equation, in section Sect. 8. It is adapted from that of Bernoulli and depends thus on the
mentioned work of Fermat, which was established on geometrical grounds.
The brachistocrone problem is, however, connected with the controversy on the priority

dispute between Newton and Leibniz, thus involving even Galileo, as will be shown in
Sect. 9. The presented solutions give implicit information not only as to their mathematical
skills and cleverness, but also on historical facts.

2. BERNOULLI CIIALLENGES THE MATHEMATICIANS

In June 1696, Bernoulli presented a challenge lo the mathematicians by publishing a new
problem: Problema novum ad eujus solutionem Mathematiei invitantur in the famous
journal Acta Eruditorum Lipsi", [1), stated in the following words: "Given two points A
and B in a vertical plan e, assign a path AM B to the moving body M, along which the
body will arrive to point B, falling by its own gravity and beginning from A, in the least
time". Next, Bernoulli adds that the path, although known to the geometricians, is not a
straight line, and that he will indicate that path, if nobody would do so that year. Those
six months elapsed however, without receiving a satisfactory solution. \Vestfall claims that
this challenge was meant to be directed to Newton: "Recall that earlier in 1696 Bernoulli
had expressed the opinion that Newton had filched the method that he first published in
Wallis' Opera from Leibniz papers. Manifestly, both Bernoulli and Leibniz interpreted the
silence from June to December as a demonstration that the problem had baflled Newton.
They intended now to demonstrate their superiority publicly" [21.
In a letter dated Jan. 30 169~, Newton wrole lo Charles Montague, then president

of the Royal Society [31, that he had received from Groningen, the previous day, two
problems proposed by a great mathematician, and transcribed the whole letter, where
Bernoulli reported that his last .June challenge to the mathematicians had received no
solution and that Leibniz had written him, not only asserting that he had solved the
problem, but also requesting the deadline to be extended to Easter and the problem to
be republished between the French and the Italian. Bernoulli adds that he had accepted
and decided to make public this exlension. In this letter, however, Bernoulli restales the
problem "Find the path connecting two fixed points, chosen at different heighls, not in
the same vertical, along which a moving body, falling by its own gravity and starting
from the higher point, will descend most quickly lo the lower one" and adds a second
purely mathematical problem, which says according to Newton's interpretation: "Given
a fixed point P, a curve is sought, such that for each straight PK L cutting it in two
points h and L, the sum of the distances PK and P L, risen to a given power n, be
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a constant". Newton adds then, in this same letter to Montague, the solution of both
problems. This letter, ineluded in his "Collected Papers" [3], seems anonymous, since
no signature is apparent. Four months later, in May, an excerpt from a paper originally
published in England, in the January issue of the Philosophica/ Transactions, is publis-
hed in the Acta Eruditorum Lipsi"" [41 with the title: "Epistola Missa ad Prrenobilem
Virum D. Carolum Montague Armigerum, Scaccarii Regii apud Anglos Cancellarium, et
Societatis Regire Prresidem: in qua solvuntur duo problemata Mathematica a Johanne
Bernoullio Mathematico Celeberrimo proposita". The solutions presented in this excerpt,
also anonymous, are those of Newton. This fact seems to show that the letter from Newton
to Montague is, really, anonymous. This observation helps to understand several asser-
tions, to be made below. Westfall [2) adds: "In addition to Leibniz's solution, Bernoulli
received two others, one from the Marquis de I'Hospital in France and an anonymous
one from England. Disabused on Newton's skill in mathematics, Bernoulli recognized
the author through the authority the paper displayed -'as the lion is recognized from
his print '-in his elassic phrase, in Latin of course: 'tanquam ex ungue leonem'''. It
should be remarked that the same May Issue of the Acta Eruditorum also published the
paper "Solutio Problematum Fraternorum" by Jakob Bernoulli, senior brother of John
Bernoulli [9].
Leibniz presented all the received solutions [5] in a paper bearing the title: "G.G.L.

Communicatio sure pariter, duarumque alienarum ad edendum sibi primum a Dn. Jo.
Bernoullio, deinde a Dn. Marchione Hospitalio commnnicatarum solutionum problematis
curvre celerrimi descensus a Dn. Jo. Bernoullio Geometris publice propositi, una cum
solutione sua problematis alterius ab eodem postea propositi" in the mentioned May
issue of the Acta EruditoT'llm Lipsi"" as promised by Bernoulli [31, and elaimed [5] that
"Newton could solve this problem if he only undertook the task".

3. CYCLOIDS' GEOMETRY ACCORDING TO HUYGENS

The state of the art on cyeloids in 1696-7, on either geometrical or mechanical properties,
is exposed in the book Gonceming the Motion o/Oscillating G/ocks 01" o/ Pendu/a Adapted
to G/ocks published in 1673 by Huygens [6]. As known, a cyeloid is the path described
by a chosen point E from the circumference of a cirele -the generating cirele- as it
rolls without slipping along a straight line EoE3, called the basis (Fig. 1). To distinguish
between the cases when the cirele stays aboye, as is the case in Fig. 1, or below the
straight line, the curve's concavity being directed downwards or upwards, we shall speak,
following Huygens, of a downwards-facing or of an upwards-facing cyeloid respectively.
Figure 1 shows the generating cirele at an arbitrary position K, the chosen point being
at El; and at the center D, the chosen point falling on the same cirele's diameter DE2,
called the axis of the cyeloid. The are [EoE¡E2E3] is the downwards-facing cyeloid. That
the length of the are [E¡K] equals that of segment EoK, follows from the non-slipping
condition. The two main properties of the cyeloid may be stated with the help of Fig. 1.
Let E¡NGF be a parallelline to the basis EoE3, meeting the generating cirele DGE2 at
G. Draw the segment GE2•
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FIGURE 1. The two main properties oI the cycloid: i) The length oI are [GE2] equals that oI
segment El G. ii) A tangent El T at any point El oI the cycloid is parallel to GE2•

1. The length of are [GE2] equals that of segment E¡ G. This fact may be shown [61 from
the non slipping condition.

2. To draw a tangent at any point El of the eycloid, it is enough to draw El T parallel
to GE2.
These two properties were established by Huygens, reasoning along the classical grounds

of geometry [6-7]. However, he also points a "dynamie" argument, which we reeall he re
beeause of its brevity: when the generating circle is at K, its instantaneous eenter of
rotation is preeisely point K. This means that El K (this segment and segment GD, to be
mentioned lated, are not drawn in the figure, sinee it is a reproduetion of the original one)
is the instantaneous radius, i.e., a normal to the eycloid, itself parallel to the segment GD.
Sinee GE2 is perpendicular to GD, and the tangent E¡T is perpendicular to its normal,
i.e., to EIl(, it follows that E¡T is parallel to GE2.

4. CYCLOID'S MECHAN¡CSACCORDINGTO HUYGENS

4.1 Galileo's Hypothesis

Huygens develops all the meehanieal properties of the eycloid, by adopting three laws
of mechanics, establishing first the laws of aeeelerated motion along an incline. In this
work we shall not repeat the reasonings whieh lead him to the establishment of sueh laws,
but shall restriet ourselves to the discussions direetly linked with the eycloid. \Ve shall,
together with Bernoulli [3]' "... to avoid ambiguities ... " adopt Galileo's hypothesis: The
speed of a falling body varies as the square root of the height.

4.2 Huygens' Proposition XXIII

The main meehanieal proposition by Huygens, bearing number XXIII in his treatise, is
related to the falling of a body along an are of an upwards-facing eycloid. Huygens gives



GALILEO,BERNOULLI,LEIBNIZANONEWTON... 463

D e

FIGURE2. Huygen 's main (local) mechanical proposition. A body, placed at point B oC lhe cycloid,
is to be left under the joinl aclion oC gravily and oC lhe cycloid. As the body passes lhrough poinl
G, it has already attained a cerlain velocity. Huygens compares the time lo go through lhe segmenl
M N, langenl lO the cycloid al G, moving wilh lhe speed attained by CallingCromB lo G, against
lhe lime it would take lo go lhrough the segment OP, Cromthe langenl lo lhe cycloid al B, moving
with lhe speed atlained by CallingCromB lo 1.

a sharp geometrical description of the experiment to be performed (Fig. 2): A body,
placed al point B of the cycloid, is to be left under the joint action of gravity and
of the cycloid. As the body passes through point G, it has already attained a certain
velocity. Given a pair of horizontal lines QO and RP, Huygens compares the time to go
through the segment AlN, langent to the cycloid at G, moving with the speed altained
by falling from B to G, against the time it would take to go through the segment OP,
from the tangent to the cycloid at B, moving with the speed attained by falling from B
to l. Remark that the time to go through segment OP plays a róle similar to a time-
unit.
Let ABe be an upwards-facing cycloid, Fig. 2, whose axis AD is vertical. From any

point B in that curve draw the tangent BI, cutting the horizontal Al in l and BF,
perpendicular to the axis AD, cutting the circumference D</JAin V. Let X be the middle
point of FA and F H A be a half-circle. From any point G of the curve BA dra\\" Gl:,
parallel to B F, cutting the circumference F H A in H, the circumference D</JA in </J, the
segment AV in ¡\ and the axis AD in l:. Through the points G and H draw tangenls
to the corresponding curves, whose segments contained between the horizontal lines A/S
and NT be MN and STo Let OP and QR be the segments cut by MS and NT from the
tangent El and Crom the axis DA.
In these conditions, the time IBC(A/N) to go through the segment MN, with the speed

it acquires by falling along the arc IEG], is to the time 1B/(OP) to go through the segment
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OP, with the speed aequired by falling the whole tangent BI, as twice the ratio of ST
to QR:

t8c(MN) ST
--_-_- =2=.
tBI(OP) QR

(1)

Demonstration: Sinee the time to go through a given segment is proportional to its length
and inversely proportional to its speed we have:

t8c(MN) M N VFA
t8/(OP) - OP Vn;'

(2)

where VFA (Vn;) represents the speed reaehed by falling FA (FE). Sinee the attained
speeds vary as the square root of the fallen heights (Galileo's hypothesis, Sect. 4.1), we
may write the speeds ratio as

(2')

Coneerning the segments' ratio M N JOP:

MN I16 A4>
OP = EK = AA'

sinee A</>11 N M Y AV 11 OP. The triangle A</>Abeing similar to triangle A</>V,we can
write

(2")

Substitution of Eqs. (2'-2") into Eq. (2) gives:

t8C(i!!!.) = FH .2. F~ = 2XH = 2 ST.
tBI(OP) HE FH HE QR

Q.E.D.

4.3 Huygens' Propositions XXIV to XXVI

The preeeding result is local, being relative to point G (Fig. 2). Huygens works, however,
in proposition XXIV with a finite are [BE], as can be seen in Fig. 3, eopy of the original
one published in his treatise, exeept for the lettering, ehanged in order to present the
main ideas of Huygens in a simpler way. In this proposition, the time t8(are [BE]) to
go through an are [B El, mapped by means of horizontal lines to the are [F H] of the
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FIGURE3. Huygen's main meehanieal proposilions: i) The lime tB(are [BE]) lo go lhrough an are
[BE). mapped by means of horizonlallines lo lhe are [FHJ of lhe semieirc1e FH A, is shown lO be
direetly proporlional lo lhe lenglh of are [FH]. ii) The lime lOgo lhrough are [BA] is independenl
of poinl B (isoehronous properly). iii) The ralio of lhe lime taCare [BE]) lO go lhrough are [BE]
lo lhe lime ta(are [EA]) lo go lhrough are [EA). having gone lhrough are [BE). equals lhe ralion
of lhe lenglhs of are [FH] lhal of are [HAJ.

previously drawn semicirele F H A, is shown lo be direetly proporlional lo the lenglh of
are [FH).
Lel, as in Proposilion XXIII, ABe be an upwards facing eyeloid (Fig. 3), wilh verlieal

axis AD. Having ehosen any poinl B from lhe curve, draw lhe horizonlal BF, lhe semieir-
ele F HA and lhe langenl BQ, eulling lhe horizonlal AQ in Q. Lel GE be any horizontal
line below BF, eulling lhe eyeloid in E, lhe langenl line BQ in l, lhe semicirele FHA
in H and lhe axis AD in G.
In lhese condilions lhe lime tB(are [BE)) lo go lhrough are [BE), falling from n, is to

the lime tBQ(Bl) to go through lhe tangent BI with the speed it reaehes by falling from
B lo Q, as lwiee lhe ratio of are [F H] to the segmenl F~, that is,

tB(are [BE)) are [F H]---_-_-- =2-~~.
tBQ(Bl) FG

(3)

Huygens' demonslration of this Proposition is very long, although interesting from the
historieal poinl of view, sinee il prefigures lhe teehniques of integration, lo appear laler
in the works of Newton and Leibniz, exeept thal, instead of taking a limil, as in ealculus,
the reduelio ad absurdum is used. Any way, the influenee is elear, sinee Leibniz ehose
Huygens as professor lo learn malhemalies.
The main ideas of Huygens, however, may be simply sketehed by employing indexed

notation.



466 MIGUEL DE ICAZA HERRERA

Let {Oi, i = 0,1, ... ,n} be a partition of segment FG, whose elements are equally
spaeed, with Oo=F and On=G. Draw a set of horizontal lines {.ci} through Oi, i =
O,... ,n, sueh that .ci euts the semicircle F H A in Ci, the eycloid in Ki and the tangent
BQ in Ti. from Ci and Ki draw downwards the tangents Cit;, K;O;, to the eorresponding
eurves.
If the number n of intervals is large enough, we ean safely identify the time tB (Ki Ki+ 1)

to go through are [KiK;+I], starting from point B, with the time tBK;(K;Oi) to go through
segment KiO; with the speed reaehed by falling from B to Ki. Aeeording to Eq. (1), we
have

which may be rewritten as

(4)

The last equality being due to the equal speed with which both segments TiTi+I and Bl
are gone through. By summing Eq. (4) from i = Oto i = n - 1 we get Huygens' result,
sinee the sum of segments Citi approaehes the length of are [FH].
Huygens' Proposition XXV states the eycloid's isoehronous property: The time to go

through are [BA] (Fig. 3), is independent o/ point B. This result follows both from Eq. (3),
whieh gives tB(are [BA])/tBQ(BQ) = 2.rr, and from the faet that the time tBQ(BQ) equals
the time tDA (DA). This last assertion may be established using Galileo's hypothesis,
noting that BQ is a eycloid's tangent.
Huygens' Proposition XXVI, whieh is the basis of Newton's theorem on eycloids, states

that the ratio o/ the time tB(are [BE]) to go through are [BE] to the time tB(are [EA])
lo go through are [EA], having gane through are [BE], equals the ratio o/ the lengths o/
are [FH] to that o/ are [HAl:

tB(are [BE])
tB(are [EA])

are [FH]
are [HAr

(5)

This Proposition may be established algebraically from proposition XXIV, noting that
tB(are [BA]) = tB(are [BE]) + tB(are [EA]).
We may now follow, having thus established this geometrieal properties of the eycloid,

the works of Leibniz, Bernoulli and Newton.

5. THE SOLUTION OF GOTTFRIED WILHELM LEIBNIZ

Leibniz, who signs GGL beeause of his Latinized name, presents a solution [5]' whose
main assertion is not justified. He even explains that Bernoulli wished to publish his own
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FIGURE4. Johann Bernoulli's and Leibniz' figure lo eslablish lhal a cydoid is a brachislochrone.

method, thus indicating, by the way of contrast, lhat he did noto This seems to mean il
oplional to explain the malhematical details, a fact which may be confirmed by reading
Newton's solution, as shown later in this paper, which also lacks information on the leading
mathematical criterions. Remark thal Leibniz explains carefully lhe steps following his
main assertion:

... calculus has given me lhe 80ughl curve lo be lhe figure represenling lhe circular segmenls
(lineam quresilam esse figuram segmenlorum circularium reprresenlalricem) ...

This is his main assertion, about whose origin he indicates only to be the caleulus. He
continues:

... Cerlainly, if lhe curve ABK, [Fig. 4), is of such nalure lhal, having drawn lhe cirde, il
culs ils lower poinl K, lhal il 'louches' al G lhe horizonlal slraighl line lhrough A and,
having drawn normally lhe inlerseclions wilh lhe verlical axis AC in C, wilh lhe curve al
M, wilh lhe cirde al L, and wilh ils verlical diameler GK al O, lhal ils ordinales CM are
proporlional lo lhe circular segmenls and lhal lhe reclangle formed by lhe cirde's semiradius
and lhe ordinale CM equals lhe segmenl endosed belween arc [GLJ and lhe cord GL, lhen
AB, lhe arc inlercepled belween lhe lwo given poinls, is lhe curve along which a body, under
ils gravily, may come faslesl from A lo B .
. . . Thal lhis curve is a cydoid may be easily shown: Since lhe segmenl OC equals lhe

semicirde GLK, and lhe segmenl LM equals lhe arc (LKJ, the sum of segments OL + CM
will be equal to lhe arc [GLJ. From lhe cirde's cenler N draw N L. It is obvious lhal lhe
reclangle under lhe semiradius and OL+CM equals lhe circular seclor GN LG, and lhat lhe
reclangle under the semiradius and under OL equals the lriangle GN L. Then lhe rectangle
under the semiradius and under CM equals lhe segment GLG, thal is, lo lhe difference from
lhe circular sector and the lriangle GN L.

From this text, we may remark that Leibniz shows a cydoid lo fulfill his main assertion
bul that he does nol indicale how lo choose the righl cycIoid which solves lhe problem.
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6. THE METHOD OF JOHANN BERNOULLI

Between the solutions of the brachistochrone problem published by Leibniz that year, only
one, the longest, written by Bernoulli, is provided with explanations as lO lhe mathema-
tical principIes followed. In the paper [8] "Curvatura radii in diaphnis non uniformibus,
Solutioque Problematis a se in Actis 1696, p. 269, propositi, de invenienda Linea Bra-
chystochrona, id est, in qua grave a dato puncto ad datum punctum brevissimo tempore
decurrit, et de curva Synchrona seu radiorum unda construenda", Bernoulli makes use
of Fermat's principIe, adapted to the motion of bodies, and the calculus of Newton and
Leibniz. Two points should be remarked from the following excerpt: first, the asymmetrical
statement ofFermat's principIe, and second, the assertion ofBernoulli about the geomelric
nature of Fermat's demonstration:

... Fermat established, in a letler addressed lo De La Chambre, lhal a lighl ray, going from
a rarer to a denser mediuffi, must fefract towards the normal, so that the ray, supposed to
advance from lhe illuminaling lo lhe illuminaled poinl, (qui a punclo luminanle ad punclum
illuminalum successive procedere supponilur) follows lhe palh of shorlesl lime. From lhis
principie, Fermal eslablished lhal lhe sine of lhe angle of inciden ce is lo lhe sine of lhe angle
oí refraction as the d¡reet ratio oí the medía's rarities, DI as the inverse ratio oí the medía's
densilies, lhal is, in lhe direcl ralio of lhe speeds wilh which lhe ray penelrales lhe media (id
est, in ipsa ratione velocitatuffi, quibus radius media penetrat). This principIe was concisely
shown laler lO hold by lhe keen Leibniz in Acta Eruditorum LipsitE, 1682, p. 185. and, more
recently, by lhe celebraled Huygens in his lrealise De /umine, i.e., Conceming Iight, p. 40.
They eSlablished, in a sounder basis, lhe physical principIe, or ralher melaphysical of Fermal,
who was salisfied wilh his geomelric demonslralion ....

Bernoulli adapts then Fermat's principIe to the mechanical motion of bodies, mapping
their changing velocity with a slratified 0plical medium:

... If now we do nol consider lhe medium of uniform densily, bul composed of a large number
oí horizontallayers, whose interstices are filled with a transparent material, oí increasing DI

decreasing rarily according lo a cerlain law, il is evidenl lhal a lighl ray, which we consider as
a parlide, will nol go along a slraighl line, bul along a cerlain curve (a facl already poinled
oul by Huygens in lhe same lrealise, de Lumine, bul wilhoul delermining lhe curve). This
curve is of such nalure lhal lhe parlide goes lhrough lhe are belween any lwo of ils poinls
in lhe shorlesl lime, while ils speed conlinually increases or decreases according lo lhe rarily
changes ...

. . . It is also cIear, since the sine oí the refraction angle varies in each poiot as the medium'g
rarily, or as lhe partide's speed, lhal lhe curve is such lhal The sines 01 the angles 01
inclination measured Imm the vertical vary everywhere in the same ratio as the speeds.Having
eslablished lhese facls, no difficully remains: The brachislochrone curve is lhe palh followed
by a lighl ray going lhrough a medium, whose rarilies are in lhe same ralio as lhe speeds of
a verlically falling body ...

. . . In this general manner may be sol ved our problem, for any acceleration law that we
mighl eslablish. It has been reduced lo delermine lhe curvalure of a lighl ray going lhrough
a medium whose rarily varies arbilrarily. Lel FGD, [Fig. 41, be lhe medium, limiled by lhe
horizonlal FG; A, lhe radialing poinl; AD, lhe verlical; AH E, lhe axis of lhe given curve,
so lhal HC slands for lhe medium's rarily al deplh AG, or lhe speed of lhe lighl rayor of
lhe parlide al M, and AMB, lhe soughl palh. Lel x sland for lhe dislance AG; t, for HG;
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y, for CM; dx, for lhe differenlial Ce; dy, for lhe differenlial nm; dz, for lhe differenlial Mm;
and a, for an arbilrary eonslanl. The are [M m] wil! be laken lo represenl lhe eurved lighl
ray; mn, the sine oC the refraction angle, tbat ¡s, oí the curvc's inclination measured from
lhe verlical. For lhe previously indicaled reasons, mñ is direetly proporlional lo HC, lhal is
dy : t = dz : a, implying lhis equalion: a dy = t dz or aa dy2 = tt dz2 = tt dx2 + tt dy2, which
reduced gives lhe general differenlial equalion dy = t dx/ Jaa - tt for lhe soughl curve ...

Bernoulli applies nexl such resulls lo the falling bodies, under Galileo's hypothesis:

... The given curve AH E is a parabola, lhal is, tt = ax & t = ,¡ax, whieh after subslilulion
inlo lhe general equalion gives dy = dxJx/(a - x), from which 1 eondude lhal lhe soughl
curve, lhe brachisloehrone, is lhe cydoid. Lel lhe drde GLK of diameler a be rolled along
AG, beginning al poinl A. The drde's poinl K wil! describe a cydoid, which is found lo
have lhe same differenlial equalion dy = dxJx/(a - x), after subSliluling x for AC and y
for CM. This may be discovered a priori and analylically in lhe following manner:

~

xdx -adx+2xdx adx
dx --- = --===== ---===~-+ -===,(a - x) Jax - xx 2Jax - xx 2Jax - xx

however, adx-2xdx j(2Jax - xx) is a differential quanlily whose sum is given by Jax - xx,
lhal is, LO, and 2dx j (2Jax - xx) is lhe differenlial of lhe arc [GLJ ilself, so lhallhe summed

equalion from dy = dxJx/(a - x) wil! have y or CAl = are[GL]- LO, lhal is, Ala =
ca - are [GL] + LO. Bul ca - arcJQ.LJ = are [LK], since ca equals lhe semicirde GLK,
so lhal we have MO = arc [LK] + LO, and having sublracled lhe common LO we oblain
M L = are [LKJ, showing lhe curve Kl'vl A lo be a eydoid ...
. . .We slil! have lo show, so lhal lhe problem is complelely satisfied, how lo describe from

lhe ehosen poinl, lhe braehislochrone or cydoid, passing lhrough lhe olher given poinl. This
is solved as easy as lhis: Draw [Fig. 5J lhrough lhe given poinls A and B a slraighl line AB,
and, along lhe horizonlal AL, any cydoid beginning al A, inlersecling lhe slraighl line AB
in R. In lhe same ralio as AR is lo AB, lake lhe diameler of lhe generaling eirde of cydoid
ARS lo a fourlh, which wil! be lhe diameler of lhe generaling eirde of lhe soughl cydoid
ABL, which musl pass lhrough B ...

This last detail, published in May 1697, should be compared with Newton's solution,
published the previous January.

7. SIR ISAAC NEWTON AND THE BRACIIISTOCHRONE PROBLEM

There is no record of the method followed by Newton to face Bernoulli's challenge and
solve the problem, although we believe that he reasoned along geometrical, non-analytical
techniques, since not only he sent his solution, established in such terms, but also wrote
a theorem [3]' closely connected with our problem, recorded in a especial chapter from
his Col/eeled Papers [31 entirely devoted to the Bernoulli problems "De problematibus
Bernoullianisll

• In this thcorClu he already gives tite name oí shortest to the time to fall
along an arc of cycloid. Another reason favoring our hypothesis is the natural reaction
against the contention of Leibniz, to be presented later, that the solution may only be
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A

FIGURE5. Bemoulli's figure to ehoose the eycloid going through the given points A and B.

e

v
FIGURE6. Newton's Theorem on Cycloids: About the ratio of time to slide along a straight line,
drawn thmugh the given points A and B, to the shortest, of sliding by the force of gravity, fmm
one of these points to the other along an are of eycloid.

obtained through the ealculus, whieh he, GGL, had diseovered. In the following two pa-
ragraphs, the previously mentioned theorem, related to Fig. 6, and his so[ution to the
braehistoehrone problem, related to Fig. 7 are presented.
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o

FIGURE 7. Newtoo's figure to choose the cycloid goiog through the giveo poiots A aod B.

p e z

7.1 Newton's theorem on cycloids

The next excerpt has been directly translated from Newton's work [3J. The results on
geometrical and mechanical properties of the cycloid, previously presented in Sects. 3 and
4, allow us to follow his reasoning, without difficulty:

About the ratio o/ the time to slide along a straight line, drawn through the given points, to
the shortest, o/ sliding by the /oree o/ gravity, from one o/ these points to the other along an
are o/ cycIoid.

Theorem

... If io a cycloid AV D, whose basis AD is parallel to the horizon, the vertex V being directed
downwards, any straight line AB is drawn from A, intersecting the eycloid at B, and from
Bis drawn the straight line BC, normal in B to the eycloid, and the perpendicular AC to
BC is drawo from A, 1 assert that the time for a heavy body to go through straight line AB,
starting from rest, is to the time to go through are [AVB] as the straight line AS is to thestraight line AC .

... Draw BL through B, parallel to the eycloid's axis VE, and BK parallel to the basis
AD, intersectiog the axis at G, the generatiog drcle at points F and H, and fioally the
cycloid at K. Draw the straight line EF, which is, aceording to eycloid's nature, parallel to
line BC. It follows that BM equals EF and EM equals BF; whieh, beeause of the eycloid,
equals the are [VFJ; aod henee, AM equals the are [EHV FJ.
.. . Aeeording to Proposition XXV, from the seeond part of the book Horologium OscilIa.

torium [6Jby Huygens, the time for a body to go through AV, starting at rest, is to the free
fall time along EV as the semidrcle is to the diameter, and aeeording to the last Proposition
of the indieated part, the time to go through VB, after going through AV, (whieh eertainly
equals the time to go through KV after going through AK) is to the time to go through AV
as the are [VF) is to the semidrcle; and for this reason, it is to the free fall time along EV,
as FV is to the diameter, so that the time to go through are AVB is to the free-fall time
along EV as the are [EHV FJ is to the diameter EV. But the free-fall time along EV is to
the free-fa1l time a10ng LB (or EG) as EV is to EF. Then, from the equa1ity, the time lo go
through AVB is to the free-fall time along LB as the are [EHV FJ is to lhe eord EF, that
is, as the straight lioe AM is to the straight line M B. However, the free fall time along LB
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is lo lhe lime lo go lhrough lhe slraighl line AB, as LB is lo AB. Then, lhe ralio of lhe
lime lo go lhrough AV B lo lhe lime lo go lhrough AB is composed from lhe ralios AM lo
M B and LB lo BA, and for lhis reason equals lhe ralio of AM x LB lo M B x BA. BUI
AM x LB equals MB x AG, since bOlh are equal lo lwice lhe area of lhe lriangle ABM.
And lhen, lhe lime to go lhrough are lA VBI, slarling from rest, is lO the time lOgo lhrough
AB, as M B x AG lo M B x BA, lhal is, as AG is lo AB. Q.E.D .
... Similarly proceeds lhe demonstralion if lhe poinI B lies belween A and V.

7.2 The solution 01 Isaac Newton

The anonymous solution which Newton sent to Charles Montague was published in En-
gland in the January Jssue of 169~, in the Philosophieal Transactions. Jt was also published
later, aeeording to Bemoulli's promise, in the May issue of 1697, in the Acta Eruditorum
Lipsi<E [4). There is still another eopy in Newton's Colleeted Papers [3]. The solution runs
in the following lerms (Fig. 7):

From lhe given poinl A draw lhe infinile slraighl line APG Z, paral!el lo lhe horizon, and
above this line describe any eycloid AQP, inlerseeling lhe slraighl line AB, produeed if
neeessary, al poinl Q, as wel! as lhe eycloid ABG, whose basis and heighl are lo lhe basis
and heighl of lhe first eycloid as AB is lo AQ. An lhe lasl eycloid wil! pa.'S lhrough poinI
B and be lhal eurved liue along which a heavy body will reaeh mosl quiekly lhe poinl B by
lhe force of its gravily. Q.E.I.

Remark that Q.E.I. means what was to be fouud.

8. GEOMETRICAL SOLUTlON TO THE BRACIIISTOCIlHONE PHOBLE~l

A geometrical solution of this problem is given, as a natural reaetion against the eontention
of Leibniz [5), that the solution may only be obtained through the ealculus whieh he had
diseovered. It is adapted from that of Bernoulli and depends thus on the previously men-
tioned least-time principie of Fermat. It does uot depend, theu, on ealculus, sinee Fermat
died in 1665 and Leibniz began taking lessons of mathematies iu 1672. Furthermore, reeall
thal Bernoulli ealls that work geometrie [8), underestimating Fermat 's demonstration. Our
starting point is Bernoulli's asserlion: The sines 01 the angles 01 inclination, measured lrom
the vertical, vary everywhere in the same ratio as the speeds. This may be writteu

siu (J = kG, (6)

where (J is the inclination angle, measured from the vertical, k, a eonstant and G, the
speed of the falling body, whieh varies as the square root of the height, aeeording to
Galileo's hypothesis. First, we must write the square root of the height using geometrieal
means. Let us represent lhe fallen heights Ga along lhe diameter Gl{ (Fig. 8). Oraw the
horizontal aL through a and the eords LG and Ll<. Sinee the triangles LG l< aud LGO
are similar, we can write LG/Gl< = GO/LG It follows that

(7)
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G

K

FIGURE 8. Geometrical representation of the speed of a fallingbody. SegmentCO stands for the
fallen height while its speed is proportional to segmentCL (Galileo's hypothesis).

Equation (7) establishes that the segment LC varies as the square root of segment CO.
We identify thus the body speed e with segment LC. We must now impose that sin () is
directly proportional to the segment LC. This means according to Fig. 8, that we should
identify the angle () with the angle LKC. The--Physical interpretation of Fig. 8 is very
easy: When the body has fallen the distance CO the inclination angle should be LKC,
while the straight line LK should be parallel to its instantaneous tangent. According to
the second property, concerning the drawing of tangents to a cyeloid, mentioned in the
III paragraph of this paper, we may conelude the figure to be a cyeloid. This fact does
not solve completely the problem. A criterion must be given, to choose the right cyeloid.
This, however, is given by Newton's solution.

9. FINAL COMMENTS

Although Bernoulli calls this problem new (novum) [1]' his friend Leibniz writes that
it was originally stated by Galileo [5) and explains that he, GGL, had discovered the
calculus, that Galileo, in spite of being a very elever man (Fuit sane Galilae us Vir ingenii
judiciique maximi) had not been able to solve it, for the art of analysis was not developed
in his time, and even less its superior discipline, the calculus (quod ipsius tempore Ars
Analytica nondum satis promota esset, pars autem ejus superior seu infinitesimalis adhuc
in tenebris jaceret, solutiones hujusmodi sperare non debuit) but that Bernoulli had done
it, (Sed Dn. Jo. Bernoullius, meo calculo profundius inspecto, ejus ope optatam solutionem
obtinuit).
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It is not diffieult to identify the work of Galileo alluded by Leibniz. It is the seholium
of Theorem XXII, Proposition XXXVI, of his book Diseorsi e Dimostrazione matema-
tiehe in tomo a due nuove seienze, which states "... from the faets already shown, it
seems possible to infer that the fastest motion from one end to the other does not take
place along the shortest line, but along a circular are ... ". This seholium, aeeording to
C. Solís and J. Sádaba [10] has been interpreted as statement of the Braehistoehrone
Problem. Galileo, however, states a different faet. To see it, let us reeall his Theorem
XXII, Proposition XXXVI [101 "If a eord is drawn from the lowest point of a vertical
circle, so as to embrace an are not larger than a quadrant, and if from the ends of
sueh a eord two additional ones are drawn to any point of the eorresponding are, the
deseent along these two cords takes less time than along the first eord only". After the
theorem's demonstration, in the mentioned seholium, Galileo eontinues his reasoning.
He starts with an inseribed polygonal-line in the circle's are and eontinues the proeess
started in the theorem, i.e., substituting any fixed segment (eord) of the polygonal line,
by a pair of eords, drawn from its ends to any eommon point of the are, building thus
a new polygonal-line, which not only is closer to the are, but also, whose deseent takes
less time. It is from this result that Galileo, comparing the time along a polygonal-line
against that along the circle's are (not along any are!), -obtained by eontinuing this
proeess indefinitely- establishes the mentioned assertion. We see that Galileo stated a
very different result
In the aboye mentioned text [51, Leibniz repeats five times that Galileo had identified

ineorreetly the 'eatenary', only once that he made the mistake of taking the braehis-
toehrone to be an are of eircle, only once that he had mistaken both problems. On the
other side, he prizes three times the infinitesimal ealculus and its possibilities, not without
reealling that he, GGL, had discovered it. These observations are particularly interesting,
especially after reading the beginning of his text: "... The proposal of problems to the
geometrieians, nowadays eustomary, is eertainly useful, provided that it is not made for
jaetation, (eum non sit animo suos profeetus jaetandi) but to stimulate others, so that,
as eaeh one applies his methods, the art of diseovering grows... ".
The key to understand the assertions of Leibniz is his enormous need lo declare, by

all means, that the ealculus had been diseovered by him, and that it is the fundamental
tool to solve the problem, so as to be favored by the publie opinion. This need is enough
to understand his assertions eoneerning Galileo, and the very especial situation, whieh
not only prevented him lo identify Newton's solution, but also allowed for the implieit
assertion that Newton had not solved the problems.
There is still another faet which should be remarked: In the Acta Eruditorum LipsÚE,

the Journal whieh published the different solutions of the braehistoehrone problem, there
is a page out of text, where all the geometrical figures are eolleeted. Both Leibniz and
Bernoulli present their reasonings using the same figure, whieh we have reprodueed in
our Fig. 4. However, Newton not only asserts the solution to be a eycloid, but indica tes
also how to ehoose the right eyeloid, using the figure which we have reproduced in our
Fig. 7, first published in the January issue of the Philosophical Transactions Journal. We
think this to be the reason for Bernoulli to add, not only a seeond figure, whieh we have
reprodueed in our Fig. 5, identieal to Newton's, but also, to inelude the same method to
ehoose the right eycloid.
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