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ABSTRACT. The brachistochrone problem, having challenged the talents of Newton, Leibniz and
many others, plays a central role in the history of physics. Their solutions not only give implicit
information as to their mathematical skills and cleverness, but also are worthwhile because of their
heuristic content. We emphasize several physical and mathematical details around this problem,
reviewing for this the geometrical and mechanical methods of Huygens applied to the cycloid. The
solutions of Leibniz and Bernoulli are presented, followed by Newton’s Theorem on cycloids and
his solution sent to Charles Montague. A geometrical approach to this problem, as counterexample
against the contention of Leibniz that it may only be solved through the mastering of ‘his’ calculus,
is given. Under the light of such solutions and of the historical frame, we discuss how Galileo was
involved, with this problem, into the priority dispute between Newton and Leibniz.

RESUMEN. El problema de la braquistécrona, habiendo retado los ingenios de Newton, Leibniz y
muchos otros, juega un papel central en la historia de la fisica. Las soluciones con que aquellos
respondieron al reto no sélo dan informacién implicita respecto de sus talentos matemadticos
y astucia, sino que también resultan de gran valor por su contenido heuristico. Resaltamos
algunos detalles fisico-matematicos alrededor de este problema, repasando los métodos geométrico-
mecanicos de Huygens, relativos a la cicloide. Se presentan las soluciones de Leibniz y Bernoulli,
seguidas de un teorema de Newton relativo a la cicloide, y de la solucién que envié a Charles
Montague. Se brinda una solucién geométrica de este problema, en calidad de ejemplo, contra la
aseveracién de Leibniz de que este problema sélo puede ser resuelto mediante el dominio de su
calculo. A la luz de tales soluciones y del marco histérico, analizamos como fue involucrado Galileo,
mediante este problema, en la controversia sobre la paternidad del cédlculo entre Newton y Leibniz.

PACS: 01.65.4+G; 02.40.—k; 03.20.+i

1. INTRODUCTION

The main object of this work is to analyze the brachistochrone problem in its own histo-
rical frame, which, as known, was proposed by John Bernoulli in 1696 as a challenge to
the best mathematicians. The details are reviewed in Sect. 2. We present in Sect. 3 the
cycloid’s geometrical properties, while the mechanical ones in Sect. 4, to appreciate the
solutions published by Leibniz and Newton.

The solution of Leibniz is presented next in Sect. 5. It may be remarked that its main
assertion, non-justified and obtained from “calculus”, is used to establish, by means of
geometrical reasoning, that the curve must be an arc of cycloid.
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The method discovered by John Bernoulli, presented in Sect. 6, is entirely based in the
differential and integral calculus and in Fermat’s least time principle.

We reproduce in Sect. 7.1 a theorem by Newton, related to the motion of heavy bodies
along cycloids. This is all we can do toward the understanding of Newton’s solution, since
there is no record of the method he followed to face Bernoulli’s challenge. It should be
remarked that he already calls “shortest”, in this theorem, the time to fall along an arc
of cycloid. Newton’s solution, as published, is presented in Sect. 7.2.

We present a geometrical approach to this problem, i.e., not based in a differential
equation, in section Sect. 8. It is adapted from that of Bernoulli and depends thus on the
mentioned work of Fermat, which was established on geometrical grounds.

The brachistocrone problem is, however, connected with the controversy on the priority
dispute between Newton and Leibniz, thus involving even Galileo, as will be shown in
Sect. 9. The presented solutions give implicit information not only as to their mathematical
skills and cleverness, but also on historical facts.

2. BERNOULLI CHALLENGES THE MATHEMATICIANS

In June 1696, Bernoulli presented a challenge to the mathematicians by publishing a new
problem: Problema novum ad cujus solutionem Mathematici invitantur in the famous
journal Acta Eruditorum Lipsie (1], stated in the following words: “Given two points A
and B in a vertical plane, assign a path AMB to the moving body M, along which the
body will arrive to point B, falling by its own gravity and beginning from A, in the least
time”. Next, Bernoulli adds that the path, although known to the geometricians, is not a
straight line, and that he will indicate that path, if nobody would do so that year. Those
six months elapsed however, without receiving a satisfactory solution. Westfall claims that
this challenge was meant to be directed to Newton: “Recall that earlier in 1696 Bernoulli
had expressed the opinion that Newton had filched the method that he first published in
Wallis’ Opera from Leibniz papers. Manifestly, both Bernoulli and Leibniz interpreted the
silence from June to December as a demonstration that the problem had baffled Newton.
They intended now to demonstrate their superiority publicly” [2].

In a letter dated Jan. 30 169%, Newton wrote to Charles Montague, then president
of the Royal Society (3], that he had received from Groningen, the previous day, two
problems proposed by a great mathematician, and transcribed the whole letter, where
Bernoulli reported that his last June challenge to the mathematicians had received no
solution and that Leibniz had written him, not only asserting that he had solved the
problem, but also requesting the deadline to be extended to Easter and the problem to
be republished between the French and the Italian. Bernoulli adds that he had accepted
and decided to make public this extension. In this letter, however, Bernoulli restates the
problem “Find the path connecting two fixed points, chosen at different heights, not in
the same vertical, along which a moving body, falling by its own gravity and starting
from the higher point, will descend most quickly to the lower one” and adds a second
purely mathematical problem, which says according to Newton’s interpretation: “Given
a fixed point P, a curve is sought, such that for each straight PKL cutting it in two
points A and L, the sum of the distances PK and PL, risen to a given power n, be
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a constant”. Newton adds then, in this same letter to Montague, the solution of both
problems. This letter, included in his “Collected Papers” [3], seems anonymous, since
no signature is apparent. Four months later, in May, an excerpt from a paper originally
published in England, in the January issue of the Philosophical Transactions, is publis-
hed in the Acta Eruditorum Lipsie, [4] with the title: “Epistola Missa ad Praenobilem
Virum D. Carolum Montague Armigerum, Scaccarii Regii apud Anglos Cancellarium, et
Societatis Regiz Prasidem: in qua solvuntur duo problemata Mathematica a Johanne
Bernoullio Mathematico Celeberrimo proposita”. The solutions presented in this excerpt,
also anonymous, are those of Newton. This fact seems to show that the letter from Newton
to Montague is, really, anonymous. This observation helps to understand several asser-
tions, to be made below. Westfall [2] adds: “In addition to Leibniz's solution, Bernoulli
received two others, one from the Marquis de I'Hospital in France and an anonymous
one from England. Disabused on Newton’s skill in mathematics, Bernoulli recognized
the author through the authority the paper displayed —‘as the lion is recognized from
his print’—in his classic phrase, in Latin of course: ‘tanquam ex ungue leonem’”. It
should be remarked that the same May Issue of the Acta Eruditorum also published the
paper “Solutio Problematum Fraternorum” by Jakob Bernoulli, senior brother of John
Bernoulli [9].

Leibniz presented all the received solutions [5] in a paper bearing the title: “G.G.L.
Communicatio sua pariter, duarumque alienarum ad edendum sibi primum a Dn. Jo.
Bernoullio, deinde a Dn. Marchione Hospitalio communicatarum solutionum problematis
curvae celerrimi descensus a Dn. Jo. Bernoullio Geometris publice propositi, una cum
solutione sua problematis alterius ab eodem postea propositi” in the mentioned May
issue of the Acta Eruditorum Lipsie, as promised by Bernoulli [3], and claimed [5] that
“Newton could solve this problem if he only undertook the task”.

3. CYCLOIDS' GEOMETRY ACCORDING TO HUYGENS

The state of the art on cycloids in 1696-7, on either geometrical or mechanical properties,
is exposed in the book Concerning the Motion of Oscillating Clocks or of Pendula Adapted
to Clocks published in 1673 by Huygens [6]. As known, a cycloid is the path described
by a chosen point E from the circumference of a circle —the generating circle— as it
rolls without slipping along a straight line EgE3, called the basis (Fig. 1). To distinguish
between the cases when the circle stays above, as is the case in Fig. 1, or below the
straight line, the curve’s concavity being directed downwards or upwards, we shall speak,
following Huygens, of a downwards-facing or of an upwards-facing cycloid respectively.
Figure 1 shows the generating circle at an arbitrary position K, the chosen point being
at Ey; and at the center D, the chosen point falling on the same circle’s diameter DE,,
called the axis of the cycloid. The arc [EyE) E;E3) is the downwards-facing cycloid. That
the length of the arc [E) K] equals that of segment EpK, follows from the non-slipping
condition. The two main properties of the cycloid may be stated with the help of Fig. 1.
Let E1NGF be a parallel line to the basis EyE3, meeting the generating circle DGE; at
G. Draw the segment GE,.
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FIGURE 1. The two main properties of the cycloid: i) The length of arc [GE;| equals that of
segment E;G. ii) A tangent E1T at any point E; of the cycloid is parallel to GEs.
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1. The length of arc [GE»| equals that of segment E;G. This fact may be shown [6] from
the non slipping condition.

2. To draw a tangent at any point E) of the cycloid, it is enough to draw E,T parallel
to GE2

These two properties were established by Huygens, reasoning along the classical grounds
of geometry [6-7]. However, he also points a “dynamic” argument, which we recall here
because of its brevity: when the generating circle is at K, its instantaneous center of
rotation is precisely point K. This means that E) K (this segment and segment GD, to be
mentioned lated, are not drawn in the figure, since it is a reproduction of the original one)
is the instantaneous radius, i.e., a normal to the cycloid, itself parallel to the segment GD.
Since GE, is perpendicular to GD, and the tangent E;T is perpendicular to its normal,
i.e., to B\ K, it follows that E,T is parallel to GE,.

4. CYCLOID’S MECHANICS ACCORDING TO HUYGENS

4.1 Galileo’s Hypothesis

Huygens develops all the mechanical properties of the cycloid, by adopting three laws
of mechanics, establishing first the laws of accelerated motion along an incline. In this
work we shall not repeat the reasonings which lead him to the establishment of such laws,
but shall restrict ourselves to the discussions directly linked with the cycloid. We shall,
together with Bernoulli [3], ... to avoid ambiguities...” adopt Galileo’s hypothesis: The
speed of a falling body varies as the square root of the height.

4.2 Huygens’ Proposition XXIII

The main mechanical proposition by Huygens, bearing number XXIII in his treatise, is
related to the falling of a body along an arc of an upwards-facing cycloid. Huygens gives
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FIGURE 2. Huygen’s main (local) mechanical proposition. A body, placed at point B of the cycloid,
is to be left under the joint action of gravity and of the cycloid. As the body passes through point
G, it has already attained a certain velocity. Huygens compares the time to go through the segment
MN, tangent to the cycloid at G, moving with the speed attained by falling from B to G, against
the time it would take to go through the segment OP, from the tangent to the cycloid at B , moving
with the speed attained by falling from B to I.

a sharp geometrical description of the experiment to be performed (Fig. 2): A body,
placed at point B of the cycloid, is to be left under the joint action of gravity and
of the cycloid. As the body passes through point G, it has already attained a certain
velocity. Given a pair of horizontal lines QO and RP, Huygens compares the time to go
through the segment M N, tangent to the cycloid at G, moving with the speed attained
by falling from B to G, against the time it would take to go through the segment OP,
from the tangent to the cycloid at B, moving with the speed attained by falling from B
to I. Remark that the time to go through segment OP plays a réle similar to a time-
unit.

Let ABC be an upwards-facing cycloid, Fig. 2, whose axis AD is vertical. From any
point B in that curve draw the tangent BI, cutting the horizontal AJ in I and BF,
perpendicular to the axis AD, cutting the circumference D@A in V. Let X be the middle
point of FA and FHA be a half-circle. From any point G of the curve BA draw G,
parallel to BF, cutting the circumference FHA in H, the circumference DA in o, the
segment AV in A and the axis AD in X. Through the points G and H draw tangents
to the corresponding curves, whose segments contained between the horizontal lines MS
and NT be MN and ST. Let OP and QR be the segments cut by MS and NT from the
tangent BI and from the axis DA.

In these conditions, the time tpg(MN) to go through the segment M N, with the speed
it acquires by falling along the arc [BG], is to the time t=+(OP) to go through the segment
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aﬁﬂith the speed acquired by falling the whole tangent BI, as twice the ratio of BT
to QR:

LN _ g 5T (1)

t5;(0OP) QR

Demonstration: Since the time to go through a given segment is proportional to its length
and inversely proportional to its speed we have:

(2)

where Vpa (Vry) represents the speed reached by falling FA (FZ). Since the attained
speeds vary as the square root of the fallen heights (Galileo’s hypothesis, Sect. 4.1), we
may write the speeds ratio as

(2)

since A¢ | NM y AV || OP. The triangle A¢A being similar to triangle AV, we can
write

= (2!!)

Substitution of Eqgs. (2'-2") into Eq. (2) gives:

tsc(MN) _FH , FX _,XH _, 5T

tz{(0P) Hr FH HE QR

Q.ED.

4.8 Huygens’ Propositions XXIV to XXVI

The preceding result is local, being relative to point G (Fig. 2). Huygens works, however,
in proposition XXIV with a finite arc [BE], as can be seen in Fig. 3, copy of the original
one published in his treatise, except for the lettering, changed in order to present the
main ideas of Huygens in a simpler way. In this proposition, the time ¢p(arc [BE]) to
go through an arc [BE], mapped by means of horizontal lines to the arc [FH] of the
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FIGURE 3. Huygen's main mechanical propositions: i) The time tg(arc [BE]) to go through an arc
[BE], mapped by means of horizontal lines to the arc [FH] of the semicircle FH A, is shown to be
directly proportional to the length of arc [FH]. ii) The time to go through arc [BA] is independent
of point B (isochronous property). iii) The ratio of the time tg(arc [BE]) to go through arc[BE)]
to the time tp(arc [EA]) to go through arc[EA], having gone through arc [BE], equals the ration
of the lengths of arc [FH] that of arc [H A].

previously drawn semicircle FHA, is shown to be directly proportional to the length of
arc [FH).

Let, as in Proposition XXIII, ABC be an upwards facing cycloid (Fig. 3), with vertical
axis AD. Having chosen any point B from the curve, draw the horizontal BF, the semicir-
cle FH A and the tangent BQ, cutting the horizontal AQ in Q. Let GE be any horizontal
line below BF, cutting the cycloid in E, the tangent line BQ in I, the semicircle FH A
in H and the axis AD in G.

In these conditions the time tg(arc [BE]) to go through arc [BE], falling from B, is to
the time tpg(BI) to go through the tangent BI with the he speed it reaches by fallmg from

B to Q, as twice the ratio of arc [FH] to the segment F3, that is,

tp(arc[BE]) 531 [FH]
tgg(B) ~ FG

(3)

Huygens’ demonstration of this Proposition is very long, although interesting from the
historical point of view, since it prefigures the techniques of integration, to appear later
in the works of Newton and Leibniz, except that, instead of taking a limit, as in calculus,
the reductio ad absurdum is used. Any way, the influence is clear, since Leibniz chose
Huygens as professor to learn mathematics.

The main ideas of Huygens, however, may be simply sketched by employing indexed
notation.
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Let {O;,i = 0,1,...,n} be a partition of segment FG, whose elements are equally
spaced, with Op=F and O,=G. Draw a set of horizontal lines {£;} through O;, i =
0,...,n, such that £; cuts the semicircle FHA in C;, the cycloid in K; and the tangent
BQ in T;. from C; and K; draw downwards the tangents C;t;, K;0;, to the corresponding
curves.

If the number n of intervals is large enough, we can safely identify the time tp(K;K;,1)
to go through arc [K;Kj1], starting from point B, with the time tg, (K;6;) to go through
segment K;0; with the speed reached by falling from B to K;. According to Eq. (1), we
have

tek, (Ki0:) " Cit;
T.Ti1) 0i0i11’

tm(

which may be rewritten as

' tm(TiTiﬂ)

. t5g(BI)
0;0;41

tpk. (K;0;) = 2C;t; e
Bk, (Kibi) =0

=2C;t; (4)

The last equality being due to the equal speed with which both segments 7;T;, and BI
are gone through. By summing Eq. (4) from ¢ = 0 to i = n — 1 we get Huygens’ result,
since the sum of segments C;t; approaches the length of arc [FH].

Huygens’ Proposition XXV states the cycloid’s isochronous property: The time to go
through arc [BA] (Fig. 3), is independent of point B. This result follows both from Eq. (3),
which gives tg(arc [BA]) / tw(m) = 2.7, and from the fact that the time tﬁﬁ(m) equals
the time tm(m). This last assertion may be established using Galileo’s hypothesis,
noting that BQ is a cycloid’s tangent.

Huygens’ Proposition XXVI, which is the basis of Newton’s theorem on cycloids, states
that the ratio of the time tp(arc[BE]) to go through arc[BE] to the time tp(arc[EA])
to go through arc|EA], having gone through arc[BE], equals the ratio of the lengths of
arc[FH] to that of arc[HAJ:

tp(arc[BE])  arc[FH]
tp(arc[EA])  arc[HA]

()

This Proposition may be established algebraically from proposition XXIV, noting that
tp(arc [BA]) = tg(arc [BE]) + tpg(arc [EA]).

We may now follow, having thus established this geometrical properties of the cycloid,
the works of Leibniz, Bernoulli and Newton.

5. THE SOLUTION OF GOTTFRIED WILHELM LEIBNIZ

Leibniz, who signs GGL because of his Latinized name, presents a solution [5], whose
main assertion is not justified. He even explains that Bernoulli wished to publish his own
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FIGURE 4. Johann Bernoulli’s and Leibniz’ figure to establish that a cycloid is a brachistochrone.

method, thus indicating, by the way of contrast, that he did not. This seems to mean it
optional to explain the mathematical details, a fact which may be confirmed by reading
Newton’s solution, as shown later in this paper, which also lacks information on the leading
mathematical criterions. Remark that Leibniz explains carefully the steps following his
main assertion:

... calculus has given me the sought curve to be the figure representing the circular segments
(lineam quaesitam esse figuram segmentorum circularium reprasentatricem). . .

This is his main assertion, about whose origin he indicates only to be the calculus. He
continues:

... Certainly, if the curve ABK, [Fig. 4], is of such nature that, having drawn the circle, it
cuts its lower point K, that it ‘touches’ at G the horizontal straight line through A and,
having drawn normally the intersections with the vertical axis AC in C, with the curve at
M, with the circle at L, and with its vertical diameter GK at O, that its ordinates CM are
proportional to the circular segments and that the rectangle formed by the circle’s semiradius
and the ordinate CM equals the segment enclosed between arc [GL] and the cord GT, then
AB, the arc intercepted between the two given points, is the curve along which a body, under
its gravity, may come fastest from A to B.

... That this curve is a cycloid may be easily shown: Since the segment OC equals the
semicircle GLK, and the segment LM equals the arc [LK], the sum of segments OL + CM
will be equal to the arc [GL]. From the circle’s center N draw NL. It is obvious that the
rectangle under the semiradius and OL + CM equals the circular sector GN LG, and that the
rectangle under the semiradius and under OL equals the triangle GNL. Then the rectangle
under the semiradius and under CM equals the segment GLG, that is, to the difference from
the circular sector and the triangle GNL.

From this text, we may remark that Leibniz shows a cycloid to fulfill his main assertion
but that he does not indicate how to choose the right cycloid which solves the problem.
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6. THE METHOD OF JOHANN BERNOULLI

Between the solutions of the brachistochrone problem published by Leibniz that year, only
one, the longest, written by Bernoulli, is provided with explanations as to the mathema-
tical principles followed. In the paper [8] “Curvatura radii in diaphnis non uniformibus,
Solutioque Problematis a se in Actis 1696, p. 269, propositi, de invenienda Linea Bra-
chystochrona, id est, in qua grave a dato puncto ad datum punctum brevissimo tempore
decurrit, et de curva Synchrona seu radiorum unda construenda”, Bernoulli makes use
of Fermat’s principle, adapted to the motion of bodies, and the calculus of Newton and
Leibniz. Two points should be remarked from the following excerpt: first, the asymmetrical
statement of Fermat’s principle, and second, the assertion of Bernoulli about the geometric
nature of Fermat’s demonstration:

-..Fermat established, in a letter addressed to De La Chambre, that a light ray, going from
a rarer to a denser medium, must refract towards the normal, so that the ray, supposed to
advance from the illuminating to the illuminated point, (qui a puncto luminante ad punctum
illuminatum successive procedere supponitur) follows the path of shortest time. From this
principle, Fermat established that the sine of the angle of incidence is to the sine of the angle
of refraction as the direct ratio of the media’s rarities, or as the inverse ratio of the media’s
densities, that is, in the direct ratio of the speeds with which the ray penetrates the media (id
est, in ipsa ratione velocitatum, quibus radius media penetrat). This principle was concisely
shown later to hold by the keen Leibniz in Acta Eruditorum Lipsie, 1682, p. 185. and, more
recently, by the celebrated Huygens in his treatise De lumine, i.e., Concerning light, p. 40.
They established, in a sounder basis, the physical principle, or rather metaphysical of Fermat,
who was satisfied with his geometric demonstration. . ..

Bernoulli adapts then Fermat’s principle to the mechanical motion of bodies, mapping
their changing velocity with a stratified optical medium:

... If now we do not consider the medium of uniform density, but composed of a large number
of horizontal layers, whose interstices are filled with a transparent material, of increasing or
decreasing rarity according to a certain law, it is evident that a light ray, which we consider as
a particle, will not go along a straight line, but along a certain curve (a fact already pointed
out by Huygens in the same treatise, de Lumine, but without determining the curve). This
curve is of such nature that the particle goes through the arc between any two of its points
in the shortest time, while its speed continually increases or decreases according to the rarity
changes. ..

... It is also clear, since the sine of the refraction angle varies in each point as the medium’s
rarity, or as the particle’s speed, that the curve is such that The sines of the angles of
inclination measured from the vertical vary everywhere in the same ratio as the speeds. Having
established these facts, no difficulty remains: The brachistochrone curve is the path followed
by a light ray going through a medium, whose rarities are in the same ratio as the speeds of
a vertically falling body. ..

...In this general manner may be solved our problem, for any acceleration law that we
might establish. It has been reduced to determine the curvature of a light ray going through
a medium whose rarity varies arbitrarily. Let FGD, [Fig. 4], be the medium, limited by the
horizontal FG; A, the radiating point; AD, the vertical; AHE, the axis of the given curve,
so that HC stands for the medium’s rarity at depth AC, or the speed of the light ray or of
the particle at M, and AM B, the sought path. Let z stand for the distance AC; ¢, for HC,
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y, for CM:; dz, for the differential Cec; dy, for the differential 7m; dz, for the differential Mm;
and a, for an arbitrary constant. The arc [Mm] will be taken to represent the curved light
ray; mn, the sine of the refraction angle, that is, of the curve’s inclination meaﬁu_red from
the vertical. For the previously indicated reasons, im is directly proportional to HC, that is
dy : t = dz : a, implying this equation: ady = tdz or aady® = ttdz* = tt dz® + tt dy?, which
reduced gives the general differential equation dy = t dz/v/aa — tt for the sought curve. ..

Bernoulli applies next such results to the falling bodies, under Galileo’s hypothesis:

... The given curve AHE is a parabola, that is, tt = az & t = y/az, which after substitution

into the general equation gives dy = dz+/z/(a — ), from which I conclude that the sought
curve, the brachistochrone, is the cycloid. Let the circle GLK of diameter a be rolled along
AG, beginning at point A. The circle’s point K will describe a cycloid, which is found to
have the same differential equation dy = dz+/z/(a — z), after substituting z for AC and y

for CM. This may be discovered a priori and analytically in the following manner:

T rdz —adzr + 2z dx adzx

d = = + i
g (a—z) +ar—zz 2vax — zx 2vy/az — zz

however, a dz—2z dz / (2y/ax — zz) is a differential quantity whose sum is given by vaz — zz,
that is, LO, and 2 da:/(2\/a:c — zz) is the differential of the arc [G L] itself, so that the summed
equation from dy = dz\/z/(a —z) will have y or CM = arc[GL] - LO, that is, MO =
CO — arc[GL) + LO. But CO — arc[GL] = arc[LK], since CO equals the semicircle GLK,
so that we have MO = arc[LK] + LO, and having subtracted the common LO we obtain
ML = arc[LK], showing the curve KM A to be a cycloid. ..

... We still have to show, so that the problem is completely satisfied, how to describe from
the chosen point, the brachistochrone or cycloid, passing through the other given point. This
is solved as easy as this: Draw [Fig. 5] through the given points A and B a straight line AB,
and, along the horizontal AL, any cycloid beginning at A, intersecting the straight line AB
in R. In the same ratio as AR is to AB, take the diameter of the generating circle of cycloid

ARS to a fourth, which will be the diameter of the generating circle of the sought cycloid
ABL, which must pass through B...

This last detail, published in May 1697, should be compared with Newton’s solution,
published the previous January.

7. SIR ISAAC NEWTON AND THE BRACHISTOCHRONE PROBLEM

There is no record of the method followed by Newton to face Bernoulli’s challenge and
solve the problem, although we believe that he reasoned along geometrical, non-analytical
techniques, since not only he sent his solution, established in such terms, but also wrote
a theorem (3], closely connected with our problem, recorded in a especial chapter from
his Collected Papers [3] entirely devoted to the Bernoulli problems “De problematibus
Bernoullianis”. In this theorem he already gives the name of shortest to the time to fall
along an arc of cycloid. Another reason favoring our hypothesis is the natural reaction
against the contention of Leibniz, to be presented later, that the solution may only be
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FIGURE 5. Bernoulli’s figure to choose the cycloid going through the given points A and B.
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FIGURE 6. Newton’s Theorem on Cycloids: About the ratio of time to slide along a straight line,
drawn through the given points A and B, to the shortest, of sliding by the force of gravity, from
one of these points to the other along an arc of cycloid.

obtained through the calculus, which he, GGL, had discovered. In the following two pa-
ragraphs, the previously mentioned theorem, related to Fig. 6, and his solution to the
brachistochrone problem, related to Fig. 7 are presented.
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A P & Z
FIGURE 7. Newton’s figure to choose the cycloid going through the given points A and B.

7.1 Newton’s theorem on cycloids

The next excerpt has been directly translated from Newton’s work [3]. The results on
geometrical and mechanical properties of the cycloid, previously presented in Sects. 3 and
4, allow us to follow his reasoning, without difficulty:

About the ratio of the time to slide along a straight line, drawn through the given points, to
the shortest, of sliding by the force of gravity, from one of these points to the other along an
arc of cycloid,

Theorem

... Ifin a cycloid AV D, whose basis AD is parallel to the horizon, the vertex V being directed
downwards, any straight line ' AB is drawn from A, intersecting the cycloid at B, and from

line BC. It follows that BM equals EF and EM equals BF; which, because of the cycloid,
equals the arc [V F]; and hence, AN equals the arc [EHV F).

-+ According to Proposition XXV, from the second part of the book Horologium Oscilla-
torium [6] by Huygens, the time for a body to go through AV, starting at rest, is to the free
fall time along EV as the semicircle is to the diameter, and according to the last Proposition
of the indicated part, the time to go through VB, after going through AV, (which certainly
equals the time to go through KV after going through AK) is to the time to go through | AV

along EV as the arc [EHVF]is to the diameter EV. But the free-fall time along EV is to
the free-fall time along LB (or EG) as EV is to EF. Then, from the equality, the time to go
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is to the time to go through the straight line AB, as LB is to AB. Then, the ratio of the
time to go » through AV B to the time to go through AB is composed from the ratios AM to
MB and LB to BA, and for this reason equals the ratio of AM x LB to MB x BA. But
AM x LB equals MB x AC, since both are equal to twice the area of the triangle ABM.
And then, the time to go through arc [AV B], starting from rest, is to the time to go through
AB, as MB x AC to MB x BA, that is, as AC is to AB. Q.E.D.

... Similarly proceeds the demonstration if the point B lies between A and V.

7.2 The solution of Isaac Newton

The anonymous solution which Newton sent to Charles Montague was published in En-
gland in the January Issue of 169—?—, in the Philosophical Transactions. It was also published
later, according to Bernoulli’s promise, in the May issue of 1697, in the Acta Eruditorum
Lipsie [4]. There is still another copy in Newton's Collected Papers [3]. The solution runs
in the following terms (Fig. 7):

From the given point A draw the infinite straight line APCZ, parallel to the horizon, and
above this line describe any cycloid AQP, intersecting the straight line AB, produced if
necessary, at point @, as well as the cycloid ABC, whose basis and height are to the basis
and height of the first cycloid as AB is to AQ. An the last cycloid will pass through point
B and be that curved line along which a heavy body will reach most quickly the point B by
the force of its gravity. Q.E.L

Remark that Q.E.I. means what was to be found.

8. GEOMETRICAL SOLUTION TO THE BRACHISTOCHRONE PROBLEM

A geometrical solution of this problem is given, as a natural reaction against the contention
of Leibniz [5], that the solution may only be obtained through the calculus which he had
discovered. It is adapted from that of Bernoulli and depends thus on the previously men-
tioned least-time principle of Fermat. It does not depend, then, on calculus, since Fermat
died in 1665 and Leibniz began taking lessons of mathematics in 1672. Furthermore, recall
that Bernoulli calls that work geometric (8], underestimating Fermat’s demonstration. Our
starting point is Bernoulli’s assertion: The sines of the angles of inclination, measured from
the vertical, vary everywhere in the same ratio as the speeds. This may be written

sinf = kC, (6)

where 6 is the inclination angle, measured from the vertical, k, a constant and C, the
speed of the falling body, which varies as the square root of the height, according to
Galileo’s hypothesis. First, we must write the square root of the height using geometrical
means. Let us represent the fallen heights GO along the diameter GK (Fig. 8). Draw the
horizontal OL through O and the cords LG and LK. Since the triangles LGK and LGO
are similar, we can write LG/GK = GO/LG 1t follows that

=)

IG® = GK GO. (7)
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G

K

FIGURE 8. Geometrical representation of the speed of a falling body. Segment GO stands for the
fallen height while its speed is proportional to segment GL (Galileo’s hypothesis).

Equation (7) establishes that the segment LG varies as the square root of segment GO.
We identify thus the body speed C' with segment LG. We must now impose that sin 6 is
directly proportional to the segment LG. This means according to Fig. 8, that we should
identify the angle § with the angle LKG. The physical interpretation of Fig. 8 is very
easy: When the body has fallen the distance GO the inclination angle should be LKG,
while the straight line LK should be parallel to its instantaneous tangent. According to
the second property, concerning the drawing of tangents to a cycloid, mentioned in the
IIT paragraph of this paper, we may conclude the figure to be a cycloid. This fact does
not solve completely the problem. A criterion must be given, to choose the right cycloid.
This, however, is given by Newton's solution.

9. FINAL COMMENTS

Although Bernoulli calls this problem new (novum) [1], his friend Leibniz writes that
it was originally stated by Galileo [5] and explains that he, GGL, had discovered the
calculus, that Galileo, in spite of being a very clever man (Fuit sane Galilee us Vir ingenii
judiciique maximi) had not been able to solve it, for the art of analysis was not developed
in his time, and even less its superior discipline, the calculus (quod ipsius tempore Ars
Analytica nondum satis promota esset, pars autem ejus superior seu infinitesimalis adhuc
in tenebris jaceret, solutiones hujusmodi sperare non debuit) but that Bernoulli had done
it, (Sed Dn. Jo. Bernoullius, meo calculo profundius inspecto, ejus ope optatam solutionem
obtinuit).
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It is not difficult to identify the work of Galileo alluded by Leibniz. It is the scholium
of Theorem XXII, Proposition XXXVI, of his book Discorsi e Dimostrazione matema-
tiche intorno a due nuove scienze, which states “...from the facts already shown, it
seems possible to infer that the fastest motion from one end to the other does not take
place along the shortest line, but along a circular arc...”. This scholium, according to
C. Solis and J. Sddaba [10] has been interpreted as statement of the Brachistochrone
Problem. Galileo, however, states a different fact. To see it, let us recall his Theorem
XXII, Proposition XXXVI [10] “If a cord is drawn from the lowest point of a vertical
circle, so as to embrace an arc not larger than a quadrant, and if from the ends of
such a cord two additional ones are drawn to any point of the corresponding arc, the
descent along these two cords takes less time than along the first cord only”. After the
theorem’s demonstration, in the mentioned scholium, Galileo continues his reasoning.
He starts with an inscribed polygonal-line in the circle’s arc and continues the process
started in the theorem, i.e., substituting any fixed segment (cord) of the polygonal line,
by a pair of cords, drawn from its ends to any common point of the arc, building thus
a new polygonal-line, which not only is closer to the arc, but also, whose descent takes
less time. It is from this result that Galileo, comparing the time along a polygonal-line
against that along the circle’s arc (not along any arc!), —obtained by continuing this
process indefinitely— establishes the mentioned assertion. We see that Galileo stated a
very different result

In the above mentioned text [5], Leibniz repeats five times that Galileo had identified
incorrectly the ‘catenary’, only once that he made the mistake of taking the brachis-
tochrone to be an arc of circle, only once that he had mistaken both problems. On the
other side, he prizes three times the infinitesimal calculus and its possibilities, not without
recalling that he, GGL, had discovered it. These observations are particularly interesting,
especially after reading the beginning of his text: “...The proposal of problems to the
geometricians, nowadays customary, is certainly useful, provided that it is not made for
jactation, (cum non sit animo suos profectus jactandi) but to stimulate others, so that,
as each one applies his methods, the art of discovering grows...”.

The key to understand the assertions of Leibniz is his enormous need to declare, by
all means, that the calculus had been discovered by him, and that it is the fundamental
tool to solve the problem, so as to be favored by the public opinion. This need is enough
to understand his assertions concerning Galileo, and the very especial situation, which
not only prevented him to identify Newton’s solution, but also allowed for the implicit
assertion that Newton had not solved the problems.

There is still another fact which should be remarked: In the Acta Eruditorum Lipsie,
the Journal which published the different solutions of the brachistochrone problem, there
is a page out of text, where all the geometrical figures are collected. Both Leibniz and
Bernoulli present their reasonings using the same figure, which we have reproduced in
our Fig. 4. However, Newton not only asserts the solution to be a cycloid, but indicates
also how to choose the right cycloid, using the figure which we have reproduced in our
Fig. 7, first published in the January issue of the Philosophical Transactions Journal. We
think this to be the reason for Bernoulli to add, not only a second figure, which we have
reproduced in our Fig. 5, identical to Newton’s, but also, to include the same method to
choose the right cycloid.
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