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A BSTRACT. The purpose of present article is to review a new general approa£h to solid mechanics,
named, fractal solid mechanics. The attention is focused on systematic account of the proposed
basic concepts, as well as on the most important result of fractal solid mechanics. Special attention
is paid to the tbermodynamic tbeory of elasticity of multifractals wbich is effective for modeling
various types of behavior patterns of deformed materials with multifractal microstructure. The
fra£tal concepts in fracture mechanics are considered. It is shown, that the nature of fractal
geometry of fracture of a solid is associated with fundamental phenomenon of transverse strains
of salid (Poisson's effect). This is manifested by the self-similarity of self-affinity of heterogeneous
stresses in irreversibly deformed solids. Sorne of the most useful analytical and computer models
are discussed. The result of theoretical predictions are compared with experimental data. It is
shown that the proposed approach is very effective for adequate description oí various behavior
patterns and sorne other phenomena in deformed solids.

RESUMEN.El presente trabajo se fundamenta en el nuevo método para la física del estado sólido
denominada mecánica fractal del sólido. Se acentúa la atención de un análisis sistemático de
las concepciones y desarrollo de los principios fundamentales planteados por la teoría general
de fractales y una serie de modelos no lineales aplicables a materiales de elevada elasticidad
(elastómerosL plasticidad y fractura de materiales con estructura multifractal. Se demuestra que
la naturaleza de la geometría fractal se basa en el fenómeno de deformación transversal del sólido
(efecto de Poisson). Esto puede ser explicado por la afinidad de los campos de tensión-deformación,
cuando el sólido presenta deformación irreversible. Se analizan una serie de importantes modelos
analíticos y computacionales. Los resultados de los planteamientos teóricos se comparan con datos
experimentales. Se demuestra que el método propuesto es efectivo para describir y explicar una
serie de comportamientos y algunos fenómenos en el sólido deformado, y el disímil comportamiento
de cuerpos deformables.

PACS: 02.50; 62.20.D; 81.40

l. INTRODUCTION

Now it is obvious that the dassical approximation of homogeneous continuum is not
adequate for real heterogeneous solids and, therefore, is not usable as a general mode!.
In the most general case, natural or artificial heterageneous materials consist of domains
of different materials (phases) or of the same material in different states. Furthermore,
crystals and polycrystals, polymers and composites, racks and porous media, grids and
multibar systems can be considered as media with microstructure [1-4]. And final1y, re-
cently, it has been determined experimental1y that after irreversible deformation even
initial1y homogeneous continuous salid exhibits hierarchical block structure [4-6).
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A characteristic feature of all materials with microstructure is the existen ce of scale
parameters L¡ which are related to microgeometry or long-range interacting forces. The
nature of hierarchical block structure of deformed solid is determined by its fundamental
property, namely, its resistance to shear, that causes the difference between the charac-
teristic spatial scales of the regions of localization and dissipation of energy pumped into
a deformed body by an external action [7,8). That is why in recent years, new physical
and mathematical models of material media, which can be considered as far-reaching
generalizations of classical theories of elasticity, viscoelasticity and plasticity have been
intensely developed. The Cosserat continuum [9] was historically one of the first models of
elastic media which could not be described within the scope of classical elasticity. However,
the works of E. and F. Cosserat (1909) remained practically unknown for a long time,
and only around 1960 did the generalized models of the Cosserat continuum began to
be developed. Now, they are known as oriented media, micromorphic, multipolar, asym-
metric, couple-stress, cte. theories [1). Explicit or implicit nonlocality is the characteristic
feature of all su eh theories. The latter, in its turn, displays itself in that the theories
contain parameters which have the dimension of length. These scale parameters can have
different nature such as distance between particles in discrete structures, the dimension oC
a grain or a cell, characteristic radius of correlation, or acting at certain distance forces,
etc. [1-4]. A. Griffith pioneered the use oC characteristic scale parameters in the theories of
plasticity and fracture of solids. Now, various characteristic scale parameters of length's
unit are used in the most of modern theories of irreversible deformations and fracture
of solids [2-4,10]. However, the foundation of these theories, as well as of couple-stress
theories of elasticity, is the euclidean geometry.

At the same time, in the last ten years it has beco me clear, due to efforts of many
scientists (see, for example, Refs. [4,11-15)), that a large amount of objects and processes
in nature most be characterized by non-euclidean geometry and have scaling behavior.
The concept of fractals has recently beco me popular in natural sciences. This concept is
introduced on the basis of Hausdorff-Besicovitch dimension which may exceed topological
dimension of the object and may assume fractional values. The concept of dimensionality,
investigated actively by mathematicians from the beginning of the present century, has
been brought to the attention of physicists in the monograph of B. Mandelbrot [11J,
which appeared in 1975 in French, and then in 1977 in English. This book can be re-
garded as an excellent example of scientific advertising of popularization, in this case
advertising of new concepts and models. This is, in particular, reflected in identification
of special class of objects, which are called fractals, whose metric (Hausdorff-Besicovitch)
dimension is different from its topological dimensiono Another fundamental property of
fractals, distinguishing them from homogeneous euclidean objects, is their scaling in-
variance (self-similarity) [11-15). Fractals found in nature, su eh as colloidal aggregates,
aerogel, polymers, dendritic particles, porous media, sur faces and spatial distributions
of cracks in solids, fracture surfaces, etc., differ fmm regular fractals (Cantor set, Peano
and Koch curves, Sierpinski gasket and carpet, etc.) because they exhibit only statistical
self-similarity in a limited range of spatial scaling lengths Lo < L < LM (see, for example,
Refs. [11-15)). The majority of them can be regarded as an ensemble of fractals of different
dimensions characterized by different weights. Such objects are called multifractals and
have a spectrum of Rényi dimensions Dq with -00 < q < 00 [15]. The self-similarity
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property of multifractals is more complicated than that of homogeneous fractals and is
described in terms of multiscaling [161. A recent thermodynamical formulation of multi-
fractals, that of Feigenbaum el al. [17], maps the multifractal measure into sorne popular
physical models, such as Ising model, etc. [18).

Topology and geometry of natural objects, ranging in size from atomic scale to the size
of universe is central to the models we make in order to "understand" and "describe"
nature. The last decade has seen recognition of the important, and sometimes decisive,
influence of the fractal topology on the elastic and fracture properties of solids [4,19-
30]. The unity of laws governing dynamics of non linear systems, as well as relationships
between the dimensions of phase paths and Lyapounov exponents are among the obvious
reasons for the growing interest in the dynamics of fractals and in the fractal dynamics
of deformed solids. Among these one should mention particularly the topies of elasticity
of self-similar (statistically self-similar, in general case) structures, closely related to the
problems of rubber elasticity of polymers and nonlinear elasticity of composites, and
problems of fractal geometry of fracture of solids.

Two fundamentallaws of reversible deformation of statistically self-similar multifractal
structures were proposed in our works [19,20]. A general thermodynamical theory of elas-
ticity of fractals and multifractals was developed in our works [20,21] on the basis of these
laws. It was shown that the transverse deformation exponent of an elastieally isotropic
multifractal is defined uniquely by its me trie dimensiono Theoretieal predictions agree
well with experimental data, and with the results of computer simulations. The model of
irreversible deformations of solids with multifractal microstructure was proposed in our
works [22,23]. Later on we have used these concepts for solving sorne problems of fracture
mechanics [21,24,25]. It was shown that the appearance of fractal topology during fracture
of solids is the consequence of Poisson's effect. Sorne conclusions concerning interpretations
of solutions to the problems of linear theory elasticity and crack problems were obtained
on the basis of fractal concepto Various models were proposed for determination of fractal
geometry, dynamics, and fractal kinetics of the destruction of solids in Refs. [31-40].
General results of these works provide the basis on which the fractal sol id mechanies
could be developed.

This review is focused on systematic account of the basic concepts, fundamental prin-
cipIes and the most important results of fractal solid mechanics. Also sorne of the most
useful analytical and cornputer models of fractal solid rnechanics are discussed.

2. TIIE CONCEPT OF FRACTALS AND TIIE BASIS OF MULTIFRACTAL ANALYSIS OF DE-
FORI>IED SOLIOS

After the introduction of fractal geornetry by B. Mandelbrot the key problern was to
understand why nature gives rise to fractal structures. This implies the forrnulation of
models of fractal growth based on physical phenornena and subsequent understanding of
their rnathematical structure in the sarne sense as the renormalization group has allowed
to understand Ising type models. The rnodels of the lirnited diffusion aggregation and
the more general dielectric breakdown model, based on iterative processes governed by a
Laplace equation and stochastic field, have clear physical meaning and they spontaneously
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evolve into random fractal structures of great complexity. However, from theoretical point
of view, it is not possible to describe them within the framework of usual concepts. Fractal
geometry and multifractal analysis are most widely used in statistical topography, phys-
ical kinetics, statistical physics, fluid mechanics, geology, geophysies, and astrophysics,
polymer physics, and beco me increasingly more important in material science and solid
mechanics, including fracture mechanics. These models are also used in quantum mechan-
ics, rclativistic quantum theory, electrodynamics, relativity theory, etc. Methods of fractal
geometry find increasing use in the description of microstructure of struetural materials,
especially of composite materials. The most adequate deseription of fracture surfaces
can be given in terms of fractals. For the study of physicochemical, electrophysical, and
mechanical properties of disordered, disperse, and porous materials different fractal and
multifractal models are also widely used.
In recent years, it has been established that several physical quantities describing

random systems do not obey conventional scaling laws. Prominent examples are the
probability density of random walks on random fractals, such as pereolation clusters,
voltage drops in random resistor networks, growth probabilities of limited diffusion ag-
gregation, growth dynamics of viscous fingering at high capillary numbers, distribution
of impurities on the sur faces and in the bulk, invariant measure of strange attractors
in chaotic dynamieal systems, and sorne phenomena in deformed media, specifically the
energy dissipation in turbulence, clusters of microscopic defects in deformed solids, cas-
cades of debris generated by explosions or shocks, etc. (see Ref. [4]). All these quantities
have very broad distribution, and their moments cannot be described by a single expo-
nent but an infinite hierarchy of exponents is needed to characterize them. The point
is that this description holds whatever the linear scale is -be it global, on the scale
of meters, or on the microscopic scale. This phenomenon is called multifractality and
was first found in the context of turbulence. Multifractals are fractal sets which are not
self-similar. Multifractal measure are related to the study of distribution of physical or
other quantities on a geometric support. The support may be an ordinary plane, the
surface of a sphere or of a volume, or it could itself be a fractal. Concepts underlying
reeent development of what is now ealled multifractals were originally introdueed by
Mandelbrot in the diseussion of turbulenee and extended by Mandelbrot, Grassberger,
Aharony, Meaking, Anisimov, Feder, Balankin, Hentsehel and Proeaeeia, Grassberger and
Proeaecia, Badii and Politi, Arcangelis et al., Rammal el al., Halsey el al., Feigenbaum el
al., and other authors to many other areas (see Refs. [4,14,15]). Analysis of experimental
data and introduction of the dimension funetion /(0:) by Frish and Parisi and Jensen
el al. gave the most remarkable agreement between observation and simple theoretieal
model of multifraetals. They demonstrated the usefulness of multifraetals in describing
experimental observations. Related works are deseribed by Glazier el al., Bensimon el
al., Halsey el al., Meakin el al., and Nittmann el al. The eonneetion between multi-
fraetality and multisealing was investigated by Coniglio and Zannetti, and Vavriv and
Ryabov [15,161. It has been proposed that multifractals can be eharacterized by an infi-
nite speetrum of generalized dimensions Dq, where -00 < q < -00, also ealled the Rényi
dimensions [12-15J.

In his attempt to generalize the eoneept of entropy of a probability distribution, the
Hungarian mathematician A. Rényi introdueed the following expression based on the
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moments of order q of the probabilities Pi:

N

Jq = (q - 1)-¡lnL Piq,

i=l

(1)

where q is not necessarily an integer. In the limit q --+ 1 this definition becomes the
weB-known information entropy

N

I¡=-LPi1nPi,
i=l

(2)

of a discrete probability distribution, also caBed Shannon entropy. The definition in Eq. (1)
can therefore be considered, as was Rényi's intent, as generalized entropy. For definition
of generalized dimensions Dq, one must choose the portio n of the multifractal with boxes
of size r, and define Pi(r) as the probability of finding the point of structure in the i-th
box. It should be noted that

N(,)

L Pi(r) = 1.
1=1

(3)

The set Il- = {P;} is caBed multifractal probability measure or mass density, of the subset
Fi(r) e F contained inside the i-th covering box with the edge r. Consequently, the Rényi
dimension of order q is given by the expression

{} {

N(,) q }
Dq = lim Jq(r) = _(q _1)-1 lim "" Pi (r) ,

,-o Inr ,-O L... Inr
i=1

(4)

where the parameter q ranges from -oc to oc.
One can readily see that in general case, Do is equal to me trie dimension evaluated by

means of box-counting algorithm, and caBed fractal dimension

Generalized dimension of order q = 1 is equal to information dimension D¡; and dimension
D2 is equal to the correlation integral exponent De, also caBed correlation dimensiono Note
that, generalized Rényi dimensions satisfy the relation

Dq, :o; Dq, for q' > q;

the equality being obtained In the case of uniform sets, i.e., such that the probability
measure is constant,

1
Pi == N(r)'
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TABLE I. Rényi dimension Dq, special values and limits of sequences of mass exponents r(q)
and f(a) curve for a multifractal measure M = {Pol, supported by a set with fractal dimension
Dr = dimHM (dimHM = Hausdorff-Besicovitch dimension), for different moments of order q of
M (see Refs. [12-14]).

Dimension Dq r(q) dr f(a) = q . a + r(q)q ct=--
dq

Fractal dimension
O Dr = Do = dimHM dimHM 0.0 fmax:::: dimH M

Information dimension I(r)
1 DI = DI O 01:::: --- !J = al = 1 •lnr

Correlation dimension
-Dc _ (dDq)2 Dc = D2 -Dc 20.2 - Dc

dq q=2

lnP+ ..
+00 Uper limit Doo ~ -q. O'min -Qmin= --- f~O

In r
InP_ ..

-00 Lower limit D_oc I"V -q. 0max -+ omax:::: --- f~O
In r

'The measure M has entropy 1 = -lim I(r)/lim r = !J, which is the fractal dimension of the set
of concentration for the measure M (here I(r) is the entropy of partition of measure Mover boxes
ofsize (r)).
"Here P+ and P_ are the largest and the smallest probabilities in boxes of size r.

and the generalized dimension Dq equals the metric dimension DB = DI! for all q. Specifi-
cally, for an homogeneous object all dimensions Dq are equal to its topological dimension,
;.e.,

Dq == DI! = dT;

and for self-similar fractals the definition in Eq. (4) gives

dT ::; Dq == Do = DB ::; d

for all values of q. A related dime nsio n function D(,) was introduced by Badii and
Politi [15]. It was shown that Rényi dimensions are related to the sequen ce of mass expo-
nents r(q), to the dimension F(o) curve, and to the dimension function D(¡) in general
ways that is useful in applications (see Refs. [4,12]). The Rényi dimension Dq, special
values and limits of sequence of mass exponents r(q), and f(o) curve for a multifractal
supported by a set with fractal dimension Dr, for different moments of order q are given
in Table I. These concepts form the basis of mathematical formalism of the theory of
multifractals.

3. TI!EORY OF ELASTICITY OF FRACTALS

In the majority of investigations of elasticity of fractals the elastic behavior of self-similar
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TABLE Ir. Comparison oI Poisson's ratio Y, calculated using analytical relationship, with the
computer values, based on two-dimentional elastie random networks and with experimental values
oI aerogel 5i02.

Two-dimentional random network oí size
L x L near the percolation threshold

Properties ({c - correlation length) Aerogel Si02

L/{c - 00 L/{c - O

Elasticity oI network Bonds, determining
Connectedness oI is determined by elasticity oI network
random network dangling bonds are multiduplicated Fractal cluster

DF, measured by
small angle neutron

Dimension oí Random walk scattering and
Fractal dimension oI geodesic Hne dimension Dw = 0.67 molecular adsorption
elastic backbone DF De = 1.1 io 0,02 [22J [22J 2.3 io 0.1 [44J

y'= DF/(d - 1) - 1 0.1 io 0.01 -0.33 0.15 io 0.05

Poisson '8 ratio
(results oI numerical
simulation and
experimental data) 0.08 io 0.04 [20] -1/3 [20] 0.12 io 0.08 [44]

structures is studied by computer simulation methods [19-22]. It is usual to consider two
limiting cases of isotropic and central forces governing elasticity. It is shown in Re£. [22]
that problems of elasticity of statistically sdf-similar networks considered in these limits
belong to two different dasses of universality. Moreover, numerical experiments [19,20]
show that elastic random percolation networks on aplane (d = 2), whose dimensionality
is L < 0.2~c (~c is the correlation radius), have characteristic negative values of the
Poisson ratio, Y, whereas for networks of size L > 0.2~c this ratio is positive. The limiting
values of y(L/~c) are universal in the limits L/~c -> O and L/~c -> 00 (see Table lI),
i.e., they are independent of the ratio of the local elasticity parameters used in numerical
calculations of the elastic properties of random percolation networks.
The second approach to simulation of elasticity of multifractals is the dassical concept

of the entropic nature of the elastic behavior of multifractal polymer networks [41,42].
Finally, there have been frequent references in the literature of the analogy between

elastic behavior of multifractal polymer networks and random springs, whose size exceed
certain characteristic scale of length LF [43,44]. This analogy has been used by Web-
man [15] to propose a heuristic picture of elastic deformation of fractals, according to
which application of force F causes deformation of fractal only over distances exceeding
the characteristic scaling length LF, which depends on the force F. Therefore, an external
force F acting on an elastically dcformed fractal crea tes a new characteristic scaling
length [15]. Elsewhere [29-31] we used this picture to develop thermodynamical theory
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of elasticity of multifractals and explain certain features of the elastic deformation of
self-similar structures. Below we consider this theory.

It is well known that classical theory of elasticity of solid is based on two experimentally
established faets [431:

1) Hooke's law, aeeording to whieh relative strain '11 is proportional to the aeting stress
all:

'11 = all/E.
2) Poisson's law, postulating the effeet of transverse strains

In developing the theory of elastieity of fraetals we have also started with two postulates:

1) When an elastieally isotropie multifraetal is deformed by an external force F, a unique
new eharaeteristie sealing length LF appears and the force obeys the following rela-
tion:

(5)

where U is the internal energy amI S is the entropy.

2) In the reversible deformation case, an elastieally isotropie multifraetal retains self-
similarity, ¡.c., the law deseribing the ehange in density p as a result of elastie defor-
mation is similar to the law describing the ehange in p due to geometrie ehange in
the dirnensionalities of a multifraetal strueture:

= (DLF') -o = A-oDLF, F '
where DF is the metrie dimension of strueture.

Q = d- DF, (6)

In the case of uniaxial deformatioll it follows from Eq. (6) that the ehange in the
dimensionality of a fractal along the direetion of the force F, whieh is Ax = Lx/I" is
aeeompanied by a ehange in its transverse dirnensionality in orthogonal direetions of the
surrounding d-spaee Ai = L;/I" where i = x, y, .... These are related to Ax = AF by the
following relations:

i = 2,3, ... 1 d, (7)

where Q = 1 - (d - I)VF, so that

In A.1 DF
VF = --- = ---1In AF d - I . (8)
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Equations (7) and (8) are satisfied in the general case of n-dimensional deformation of a
multifractal structure in a d-space. For example, in the case of biaxial deformation of a
fractal (1 ::; DF ::; 3) in three-dimensional space (d = 3) it follows from Eq. (6) that

(9)

where l/F and DF are still related by Eq. (8), which is satisfied also in the case of triaxial
deformation of a fractal in three-dimensional space when

(la)

and the law (6) is valid; here, p ex A¡'o. Note, that the coefficient oftransverse deformations
of multifractals l/F = In AJj In AF is equal to the Poisson's ratio l/ = -[(A; -l)/(AJ -lW/2

only in the limit of infinitely small strains ,= IA2 - 111/2 « 1.
Therefore, it follows that when the conditions (5) and (6) are valid, the transverse

deformation factor of an elastically isotropic multifractal is defined uniquely by its metric
dimension of Eq. (8). It is clear from Table n, that the value of l/ calculated from Eq. (8)
agree well with the results obtained in Refs. (191 and [20] by numerical modeling of the
elasticity by percolation networks on aplane (d = 2) and with the experimental value of l/

for aerogel Si02 reported in Ref. [44) and obtained by study of propagation of longitudinal
and transverse elastic waves.
It follows from Eq. (9) that the condition of incompressibility (e> == O) is satisfied for

multifractals, whose metric dimension is the same as the dimension of the surrounding
euclidean space (DF = d), from which it follows that

1
Vmax = -d--'- 1

(11)

\Ve can easily see that if d = 2 and 3, the equality (12) is identical to the conditions
of incompressibility of two- (l/m.x = 1) and three-dimensional (l/m.x = 0.5) elastically
isotropic solids derived in the classical theory of elasticity (see Ref. [431).
Using linear relationship between entropy and information [45], and the definition of

the information dimension DI of multifractals, we can represent the change in the entropy
as a result of elastic deformation of multifractal in d-dimensional space with law (6) valid,
by the following expression:

d

6S = -B ¿Afi - d,
i=l

(12)

where the parameter B is independent of A; and can be determined, for example, using
the approach of Ref. [461.
According to the definition of correlation dirnension De, the change in the internal

energy UtA;) of multifractal during the reversible deformation can be written as follows:

6U = -C(A;C - 1), e>e = d - De, (13)
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where e is constant. Substituting (8) and (12), (13) into (5) and using thermodynamic
equation [30]

D¡(d - DF) = Dc(d - Dc)

with the condition F = o for Ai = AF = 1, we have

F = e{ D¡Af,-1 - D¡[DF - (d - l)IA~DdDF-(d-I)J-¡ - Dc(d - DC)A~-Dc-l}. (14)

In the case of regular fractals, we have

(14)

where DH is Hausdorff-Besicovitch dimensiono Then it follows from Eqs. (8) and (14) that

(16)

The true stress O"¡ is related to F by

which allows for the change in the area of the (d - 1)-dimensional cross section of a
deformed fractal in aplane (hyperplane) orthogonal to the direction of force F.
Similarly, using Eqs. (5)-(15), we can obtain the relation O"ii(Ajj) for n-axial deforma-

tion of an n-dimensional fractal in the d space. \Ve can easily see that in the limit of
infinitesimally small strains le;! = lA; - 111/2 « 1 these relationships can be represented
by the classical form of generalized Hooke's law for d-dimensional solid:

( d-I)
eii = ~ O"ii - 11I:O"jj •

J=I

(18)

This allows us to find the relationships between the elastic moduli (j.e., Young's mod-
ulus E, shear modulus G, bulk modulus B, longitudinal elastic modulus ell) of fractals,
which are derived by analogy to the derivation of corresponding relationships in the theory
of the elasticity of solids:

G = Ed -1 B E
2DF ' = d(d - Dr)'

e _ G 1+ (d - 2)(d - Dr)
11-

2 (d-1)(d-DF).

(19)

(20)

Substituting Eq. (8) in the system (19), (20) for d = 2 and 3 we can see that these
expressions are identical to those for two- and three-dimensional elastically isotropic solids
(see Ref. [43]).
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Notice that, in contrast to the transverse strains in solids, which according to Poisson's
law occur when a.l = O, the transverse deformation of fractals, which ensure that the
law (6) is satisfied, occur under the action of stresses that appear due to the fine structure
of a fractal, which can be demonstrated in a clear manner by considering the process of
elastic deformation of the Koch curves (DT = 1, 1 < DF < 2, d = 2).

4. FRACTAL THEORY OF THE RUBBER ELASTICITY OF POLYMERS

Experimental data on the reversible deformation of elastomers are usually interpreted
in terms of classical theory of rubber elasticity (see, for example Refs. [41,42]). Classical
theory of rubber elasticity was developed in the 40's independently by a number of workers
(see Refs. 42]). The main simplification of the classical theory is the assumption that
the subchains of a polymer chain (i.e. chains betweell two neighboring crosslinks) can
take on with egual probability an arbitrary conformation comparable with the given
distance between the ends of the subchain, i.e., between the crosslinks that limit the
subchain. The elasticity of polymers chain is in this case of purely entropic nature. It is
easy to understand, considering that the network is deformed, that the distance between
crosslinks are correspondingly altered thus decreasing the set of possible conformations for
the aggregate of subchains. Now it is obvious, that the success of classical theory does not,
in itself, imply that the chains of polymer networks obey Gaussian statistics, which lies
at the basis of this typical mean-field theory. It is well known [46) that Gaussian statistics
is characteristic only for networks prepared by the coalescence of concentrated solution
of chains when they are compressed or weakly (~ < 1.2) extended. Such structures are
characterized by information dimension DI = 2 and the general relationship of Eg. (12)
red uces to the classical form

so that if the 1I = 0.5 (the second assumption of classical theory of rubber elastic-
ity [41,42]), we have a classical expression for FI(~¡) in the form

where E is the Young modulus proportional lo the temperature for which the expression
in terms of the parameters of polymer structure has been subjected to repeated refine-
ments 142,46). Relation (21) agrees well enough with experimental data in the compression
region (~ < 1), but at ~ > 1 considerable deviations appear right away [42). If 1 < ~l < 2,
the graph of relation (21) usually lies aboye and for ~I > 2 well below the experimental
curve F(~¡), which in the range ~l > 4 is usually described by the asymptote F1 oc~¡
(see Fig. 1).

Traditionally, the refinement of the relation (21) is made by phenomenological modifi-
cations of the entropic theory, the main progress in which is summarized in Refs. [42,47).
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FIGURE 1. Function F(A¡) for uniaxial stress of rubber: 1) Calculation using Eq. (25) for E =
0.36 MPa (v = 0.5); 2) calculation using Eq. (24) for E = 0.34 MPa and v = 0.48; 3) calculation
using c1assical formula (21) for E = 0.4 MPa (v '" 0.5). (Points represent experimental data from
Reí. [48]).

The required preCISlOn in matching the calculations to experiments is attained by the
use of additional etching parameters, which are essentially of the fitting type [42). In
this approach of Re£. [48), which is based on the use of empirical relation of the elastic
potential on the invariants of strain and temperature, which ensures any desired preci-
sion of approximation to the experimental data if sufficient number of the fitting-type
matching pararneters is selected. Apart from the large number, and not always clear
physical meaning of the matching parameters [41,42,47), the main shortcoming of both
such phenomenological modifications of the entropic theory and the empirical models of
the elastic potential is the need to use different values of the same elastic parameters such
as Young modulus to describe the experimental data obtained under different loading
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conditions and also to describe the same data, but within the frameworks of different
modifications of the entropic theory or of the elastic potential [47). This is due to the
indeterminacy of the absolute values of the elastic parameters and of the relationships
between them, which do not satisfy the expressions of Eqs. (19), (20) even in the limit of
infinitesimally small strains.

Below we consider problems of rubber elasticity of the elastomers. Elastomers, in par-
ticular polymers, are known to have random seU-similar multifractal structure [11-15). It
is natural, therefore, to describe rubber elasticity by using the results of the theory of
elasticity of multifractals discussed aboye.

Since in the case of seU-similar structures we always have De ::::DI, it follows from
Eqs. (12) and (13) that these shortcomings of the entropic theory of rubber elasticity of
polymers are due to the conflict between the two main assumptions of the classical theory:

1) the Gaussian statistics of polymer chains, which is valid in the case of structures
whose information dimension is DI = 2;

2) the incompressibility of elastomers, which according to Eq. (6) is satisfied when DF =
d = 3 = DI'

The former assumption is valid in the case of long polymer chains and networks formed by
cross linking of concentrated solution of chains (DI = 1, DF = 2, md = 3) (see Refs. [14]
and [15)) for which the Poisson ratio is -according to Eq. (8)- zero (v = O), which implies
constancy of the transverse dimensionalities in the surrounding space when a chain is
subjected to uniaxial deformation. This can be easily described by considering elongation
of strongly twisted nondeformable filament (dT = 1, DH = 2, d = 3). Substituting DF = 2
and v = O into Eq. (16), we have

F = E(.\l - 1), (22)

which is identical with the classical result for a long polymer chain [41,42].
Networks which swell in a good solvent are strongly non-Gaussian [46), so that the

dimension of the structure of real polymers formed by interpenetrating blobs [15,41,42) is
within the range 2 < DH < 3, and in general we have

(23)

Assuming in the first approximation that De = DI = DF and substituting Eq. (8) into
Eq. (16), we obtain the relationship between the nominal stress F and the strain factor
.\1 in the case of uniaxial tension (compression) of an elastomer:

F = E {.\1+2v _ 2v.\-1-2v(l+v) _ (1 _ 2v).\-2v}.
1+ 6v + 4v3 I 1 I

(24)

This expression differs from the classical expression (21) even in the limit of incompressibly
deformed material, when Eq. (24) reduces to

F = 3:....(.\2 _ .\-2.5)
4.5 I I '

(25)
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obeying the asymptotic express ion F oc~¡,when ~l » 1, which agrees well with experi-
ments.
It is clear from the graphs in Fig. 1 that the calculation based on Eq. (24) is in good

agreement with the experimental data right up to ~l = 7, when cracks appear in the de-
formed material and the effective value of the transverse strain factor of Eq. (24) becomes
larger then 0.5.

5. FRACTAL FRACTURE MECIIANICS

A solid body responds to extreme loading by undergoing large deformation and/or frac-
ture. This phenomenon ¡.e., loss of contact between parts of the body, is a problem that
our civilization has faced for as long as there have been manmade structures. The prob-
lem actually is worse today than in the previous centuries, because more can go wrong
in our complex technological society. At the same time, the nature of processes which
determine crack formation and growth in materials is far from being understood. The
failure of materials under stress is a complex process involving a broad range of physical,
chemical and sometimes biological processes. It was found that fracture surfaces are of
fractal character in a wide range of spatial scales [11,23-25]. Moreover, it was shown that
the fractal dimension can be regarded as a measure of fracture toughness in solids [25].
Now, quantitative analysis of fracture surfaces has beco me an important feature in the
process of obtaining better knowledge of the microstructural processes involved during the
deformation and rupture of materials. Sorne simple models of fractal geometry of failure
and crack growth were proposed in works of P. Meaking el al. [26]' H. Herrmann [27]' M.
López-Sancho el al. [37]' A. Balankin [50]' and other authors.
Most real failure processes of practical importance exhibit rich phenomenology extend-

ing over a wide range of length scales from the atomic level to the overall size of the
sample or structure. Because most failure processes involve complex interaction between
large number of processes, it has in most cases been difficult to develop understanding on
fundamental level. Nevertheless, considerable advances have been made towards develop-
ing satisfactory understanding of mechanical failure processes on phenomenological and
statistical basis. Even in ideal homogeneous materials, a complex nonlocal stress-strain
field develops as the material begins to fail and an understanding of the evolution of
the stress-strain field is an important ingredient in developing better understanding of
material failure [4). The self-similar character of evolution of defects at various scales
allows to use new methods of the analysis in terms of fractal theory.
The causes and laws of formation of the fractal geometry of fracture of initially homoge-

neous solids have been studied by A. Balankin [31-35). He proposed a quantum-statistical
approach to solid mechanics in which fractal nature of fracture follows from fundamental
principies as a result of the collective excitations of the atoms in crystal lattice [4). It was
shown that from the topological standpoint, the difference between ductile and brittle
fracture is that in brittle fracture, the crack front (crack has a smooth surface), whose
metric dimension Hes in the range froIll 1 to 2, is fractal (at stresses a > ac cla..'isical
Griffith's crack with a smooth front and surface propagates), and in ductile fracture the
surface of crack s whose metric dimension Hes in the range from 2 to 3 is fractal. This
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difference is attributable to the difference in the kinetics of self-organization of dissipative
structures coming from the inherent presence in materials of defects of different dimension
such as point defects, dislocations, disc1inations, etc. Sorne conc1usions concerning inter-
pretations of solution to the problems of linear theory of near crack edge were obtained
on the basis of fractal concept in the works of A. Balankin et al. (see Re£. [4]). It was
shown that th'e phenomenon of fractal topology of fracture of solids is a consequence of
Poisson 's effect of transverse strains. Sorne new effects in the phenomena of fracture have
been predicted by using methods of fractal mathematics.
Now it is obvious that fractal concepts and multifractal analysis are very useful in

understanding nature of the fracture phenomena. However, since, obviously, it is still too
early to speak about the structure of fractal fracture mechanics, it seems preferable to
develop partial theories, describing the behavior of certain c1asses of phenomena by using
fractal concepts. Below we consider the foundations of the fractal approach to fracture
mechanics. The most important experimental and theoretical results of fracture analysis
which were obtained by using fractal mathematics are presented.

5.1 Fractal dynamics of fracture of model elastic ¡aUices

Various fracture models have been suggested and in these the edge, the surface, or the
distribution of cracks were found to be self-similar [25-29,35-39]. A fundamental relation
between fractal geometry an the self-similarity of the fracture processes was pointed out
in Refs. [31,34].
Fracture of planar lattices was consider in works [15,19,20,50].Their dynamics has been

described by equations of elasticity of continuous media

(26)

where J1.i are the components of the displacement fieid and Oi is the partial derivative
with respect to the i-th component of the position vector r. The description of the crack
propagation after breaking the first bond yields the rule according to which the probability
of breaking of the bond between adjacent sites i and j is propor tion al to the m-th power
of the stress acting on it,

(27)

It was established in Refs. [15,19,20,50] that the fractal dimension of self-similar configu-
rations of cracks is independent of the nature of loading which is modeled by specifying
the relevant boundary conditions, and is governed by the values of Poisson's ratio (see
Fig. 2a) and probability exponent m (see Fig. 2b and Table !II).
We can see from the graph in Fig. 2a that the dependence of the fractal dimension of

cracks DF(II) on Poisson's ratio 11is linear for m = 1 and it is governed by the dimension
of the field of inhomogeneous strains DF = (d - 1)(1+ 11) = 1+ 11 (see Refs. [4,31]). We can
easily see that the last relationship is identical with Eq. (8), describing the relationship
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FIGURE2. Fractal dimension of crack configurations as a function of parameters of the stochastic
model (26), (27) for fracture of elastic laHice: a) Dr(v) calculated assuming that m = 0.5 (curve 1),
m = I (curve 2), m = 2 (curve 3); b) Dr(m) calculated assuming that v = 0.2 (curve 1), v = 2/3
(curve 2), and v = 0.9 (curve 3). (Continuous curves are calculated using first Eq. (31), and the
points are the results of computer sirnulations using Eqs. (26), (27) frorn Refs. (23.24) (.) and 1321
(.).)

between metric dimension and coeflicient of transverse deformations of the multifractals.
This result is a refiection of the feasibility or representing the equations of the linear
theory of elasticity at small values of 'ij in the form of Eq. (5) and (6), where the role of
LF is played by the characteristic inhomogeneity scale of the strain field.
In view of shear rigidity of solids, we can expect heterogeneous fiuctuations of density

(both spontaneous -quantum and thermal- and those induced by an external agent,
by a change in boundary conditions, and by bond breaking, as in the model described by
Eqs. (26) and (27» to be always accompanied by the appearance of shear stresses; since
the minimum scale of stable inhomogeneous fiuctuations of density considerably exceeds
the interatomic spacing, the spatial distribution of heterogeneous fiuctuations of density
and shear deformations in a deformed sol id is scale-invariant. Therefore, the distribution
and the configurations of cracks in adiabatic fracture should have self-similar structure.
This is confirmed by the results of numeraus investigations [19-20,501 and is illustrated
by the data shown in Fig. 2.
It should be noted that modeling of critical fiuctuations in the case of a one-dimensional

harmonic or anharmonic crystal [51]' which is characterized by v = O because there is no
effective transverse strain, yields a smooth (DI! = d -1 = 1) fracture surface, whereas the
model of noninteracting anharmonic oscillators placed in a thermostat ¡52) corresponds
to the opposite Iimit v = VM = I/(d - 1), which ensures constancy of the volume of a
deformed medium, leading to a homogeneity (DI! ex d) of the distribution of microcracks
over the volume of the sample.
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TABLE111. Comparison of fractal dimensions of cracks calculated using analytical equation d¡ =
1 + vm with those computer hased on two-dimentional network (d = 2) with A = ¡J. (v = 2/3).

Effective fractal dimensions obtained from the crack
growth models

Typical crack
The value o[ (broken bonds)
m-parameter oC generated hy
bond. breaking means of the Results of numerical simulation for
probability stochastic different boundary conditions
exponent Pi - l"i fracture model (v = 2/3) [23)

Dilatational Analytical value
strain (1 Shear strain <5 1 + vm

Dispersion
fracture o[ elastic

~1 lallice 2.00 2.00 2.00

Dispersion
fracture o[ elastic

0.5 lallice 1.9 :!: 0.1 1.9 :!: 0.01 1.82

Multiple fracture
1.0 o[ elastic lattice 1.66 :!: 0.05 1.65 :!: 0.05 1.67

Growth o[ [ractal
2.0 crack 1.45 :!: 0.05 1.40 :!: 0.05 1.44

Propagation o[
00 the smooth crack 1.00 1.00 1.00

In the dilalional model of fracture [531 the fluctuation volume I~, which occurs in
Zhurkov's expression for lhe lifelime.under.load T, is governed by the critical dimension
of dilation Id' Obviously, Id is the natural lower limit Lo of the self.similarity of fracture
surface. Comparison of an estimate of Id [53) wilh the values of Lo obtained in fracto-
graphic investigations [23,491 shows that, with satisfactory degree of precision, we can
assume that Lo = Id'

In the course of fracture the effective value of the transverse strain factor "eff changes
because of the accumulation of damage and beca use of relaxation of stresses on rough
crack faces and during plastic deformation. This is the reason for the formulation of
multifractal self-similar crack configuration and their surfaces, and for the distribution
of their sizes. The fractal dimension of the main crack (depending on the mechanism of
fracture, we can speak either of the size of the surface or of the coufiguration) is governed
by the effective value "off and in the case of fracture of three.dimensional solids it is given
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by

(28)

where lIeff is a functional of the fracture process [541.
Thrning back to the stochastic model of fracture described by Eqs. (26) and (27),

we shall consider the process of formation of cracks in the presence of uniaxial strain
('U = const, '.L = O) in a model of elastic lattice under the action of a stress aU' \Ve
shall assume that propagation of crack can be described as a sequen ce of mappings of
the state of lattice in the phase space [4,30]. Since in the stochastic model of fracture the
cracks are known to have an irregular rough surface (configuration), it follows that the
mapping, describing propagation of crack, is of the compressive type. This happens due to
the dissipation of energy of the elastic strains on a rough surface of the crack. This energy
dissipation by relaxation of stresses at broken bonds has been established in the model
described by Eqs. (26) and (27) by numerical modeling [15,19,201. Theoretical relaxation
of stresses on a rough (although not self-similar) crack surface has been discussed in detail
in Ref. 1551.
lt was shown (see Ref. [43]) that, in the course of crack propagation llnder self-similar

conditions, the fraction of energy of the elastic strains sto red by a solid and 10st in relax-
ation of stresses on self-similar crack surface, is

'1 = [ - ,,-li, f3 = DF - (d - 1), (29)

(30)DF=(d_J)_ln(I-r¡),
In"

where" = L¡+d Li is the self-similarity parameter representing the hierarchy of the spatial
scales L¡ of the structural levels of the fracture process [4-61.

In the case of uniaxial deformation of an elastic lattice we can expect transverse stresses
al. = lIaU' where i = 1,2, ... , (d - 1). It follows from the distribution (27) that, when
a crack propagates, breaking of bonds llnder the action of stresses (aiih OCCllrson the
average (d - [)lIm times less than llnder the action of stresses (aiilu' Here, the symbol
(... ) denotes averaging over the states of the lattice. Averaging is essential because of the
redistribution of the stresses at the remaining unbroken bonds taken place in the course of
crack propagation. Using the expression for the fractal dimension of a phase path in terms
of the characteristic numbers A+ and A- of compressive mapping between the states of
the lattice in the "coordinate + energy" space, and bearing in mind that

where <> = 1 - (d - 1)lIm, we obtain the following expression for the fractal dimension of
self-similar configuration (d = 2) or for the surface (d = 3) of crack formed in accordance
with the model described by Eqs. (26) and (27):

(31)
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These results are valid for d = 2 and 3, respectively. It is clear from the data presented in
Fig. 2 and in Table III that the calculation carried out on the basis of (31) is in a good
agreement with the results obtained by numerical modeling of the fracture dynamics.

The propagation of fractal Griffith crack was considered in Refs. [31,54]. It was shown
that near the tip of fractal Griffith crack, stresses are described by the following asymptotic
expression:

a ex n-a, d - Dr
a=

2 (32)

where R is the distance from the crack tip and Dr is fractal dimension of a self-similar
crack surface of Eq. (32) or the dimension of the fractal line at the front of a smooth crack
equal to Dr = (d - 1)(1 + Velr) - 1.

\Ve have considered self-similar Griffith crack in the model described by Eqs. (26) and
(27) in order to determine Veff and Dr of Eq. (28). In the d = 2 case the number of bonds
in a crack of size F obeys Al ex R2, whereas the number of bonds in a crack of size R is
proportional, according to Eq. (27), to J( = AlP(R), where, bearing in mind Eq. (27),
we have P oc am ex:R-ma! i.e.

(33)

On the other hand, by delinition we have J( ~ RDF, so that comparison of Eqs. (32), (33),
and (31), shows that in the model of Eqs. (26), (27) fractal Griffith crack propagates if

m=2, I,e., _ 2
Veff - v . (34)

This allows us to express the dependence of the stress intensity factor J(¡ on R obtained
in Eq. (32) for d = 3 in the form

(35)

The lirst of the relationships in Eqs. (35) corresponds to the propagation of crack with
self-similarity and the second corresponds to the propagation of smooth crack, the front
of which is fractal curve. Notice, that the relations (35) agree well with the results of
experimental investigations reported in Ref. 1251.

5.2 Fracture of materials with multifmctal microstructure

The failure of materials and structures under applied load is a snbject of both practical
importance and conceptual difficulty. Microscopic failure play fundamental role in many
systems of industrial importance ranging from aircraft structures and pressurized nuclear
reactors to cracks in underground oil reservoirs and in ceramics and liber composites.
Analysis of fracture of strongly heterogcncous matcrials (acrogcls, composite, quasialloys,
amorphous and porous materials, rocks, geophysical mcdia, ctc.) is usually complicated
by many factors: heterogeneity and anisotropy of mechanical properties, redistribution
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of stresses linked to the gene ratio n and growth of rnacroscopic discontinuities, etc. AlI
these factors have different effect on fracture processes and correct description of failure
transition frorn microscopic to macroscopic level is possible only on the basis of adequate
procedure, also taking into the account the stochastic nature of mechanical properties of
a real material. Usual treatrnents based on continuurn elasticity theory do not provide
simple too15 for discussing essential nonlinearities of this problem.

Many physical systems are being manufacture which have fractal or multifractal struc-
ture in the wide range of space scales. Three exarnples of physical systems for which this
discussion is of interest are: 1) random composite material, 2) colloidal aggregates such
as gold and silica aggregates, and 3) geophysical media. These structures are made up to
units that are considerably larger than atomic size and remain stable in the configurations
in which they are prepared. Other materials to which the theory discussed below could
be applied are microscopically disordered network materials such as gels, polymers, and
glasses. The majority of them can be regarded as an ensemble of fractals of different
dimensions characterized by different weights.

When a solid body fractures, crack propagation over distance tJ.L is ensured by the
release of elastic energy U(tJ.L), which is spent on the formation of fracture surface. When
smooth (dr = 2) crack propagates in three-dimensional (dr = 3) linear-elastic medium,
the asymptotic forms of the distribution of stresses aij(r), and displacernents of crack
edges u;(r), as a functions of distance r to its moving tip are given by [10)

K¡
aij = .¡r rp(O), Ui = Kr/4 /(0),

E (36)

where K¡ is the stress intensity factor. The specific energy, therefore, is

U(tJ.L)
Uo = tJ.L = consto

A fundamentally different situation arises during fracture of materials with multifractal
microstructure. \Ve describe crack propagation in rnultifractal structure within the frame-
work of nonlinear fracture mechanics, utilizing J and r invariant integrals (see Ref. [10)).
After almost literal repetition of the operations of Ref. [lO) we obtain the asymptotic
forms

where

(37)

dF - DF
Q=n----

n+ 1 '
f3 = 1+ n(DF + 1 - dF)

n+ 1 '
(38)

and n is the exponent of unit strains (ij ~ ¡¡In as a function of stress

(39)
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It is easy to see that in the case n = 1, in the limit

dF = d = 3,

the asymptotic forms (37), (38), and (36) are identical. In the case dF = d = 3, DF =
dT = 2, but for n '" 1, from (37) and (38), we obtain the well known result of Re£. [101
for a smooth crack in non linear elastic medium. When n = 1 and dF = 3, but DF > 2,
Eqs. (37) and (38) become asymptotic expressions obtained in Ref. [561for fractal crack in
linear elast.ic solido We note that (37) and (38) suggest that brittle (quasibrittle) fracture
of materials with multifractal structure is possible only if the metric dimension of fracture
surface DF is less or equal to the metric dimension of multifractal structure dF.
Using probability fracture criteria (27), and literally repeating the operations described

aboye, we obtain

(40)

which coincides with the expression (28) for the fractal dimension of the surface of a crack
in solido In particular, m = 2, corresponds to Griffith fractal crack, within the limits of
self-similarity Lo < ÁL < LM' Therefore, the specific density of elastic energy released
when the crack length increases abruptly by ÁL increases:

(41)

The comparison between the prediction by using Eq. (41) and the experimental data, from
Re£. [57], is given in Fig. 3. We can see that theoretical calculations are in a good agree-
ment with experimental evidence. The increase in UF(ÁL) must be taken into account
when predicting the functionality of actual structures made of materials with multifractal
microstructure and when simulating geodynamic phenomena.

5.3 Fractal kinetics of ductile and brittle fracture of solids

Fracture of solids belong to the class of processes in which complex behavior at the
microscopic level is behind the macroscopic effects. Behavior of deformed solid subjected
to mechanical action in governed by the formation and evolution of dissipative structures,
which provide optimal conditions for dissipation of energy flowing into the body from
the outside. Many factors play relevant role: grain, boundaries, microcracks, particles and
impurities, temperature, etc., leading to rich phenomenology ranging from cleavage to
ductile fracture.
Traditionally, the analysis of processes that control failure of solids on microlevel has

been confined to the consideration of models that take into account only paired interatomic
bonds (see Re£. [10]). At the same time, strong correlation of the relative position of atoms
at distances Lo that significantly exceed the interatomic distances rij, i.e., the correla-
tion that ensures shear stability of solids, is characteristic of sta tes of condensed matter.
Therefore, rheological behavior is determined by the dynamics of collective excitations
governed by an external factor [4]' and a failure is a collective, essentially nonequilibrium
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FIGURE 3. Dependence of surface fractal energy UF on the characteristic scale of fracture. Solid
lines are the results of calculation using Eq. (41) for m = 2 and v = 0.23 (curve 1) and v = 0.1
(curve 2). Points represent experimental data from Reí. 1571.

process, whose kinetics is governed by self-organization of dissipative structures that en-
sure optimal (for specified loading) level of dissipation of energy of the external action [4].
Consistent allowance for collective effects in fracture kinetics, including effects at the
atomic level, is possible within the framework of quantum-statistical approach which is
being developed [7], for synergetics of deformed so lid .

As a consequence of shear rigidity of condensed media, significant difference appears in
the characteristic relaxation times for the energy T" and impulse Tp « T, of atoms and
structural elements of the deformed medium [4,7]. Therefore, in the inelastic deformed
solid, mechanical energy accumlllates in self-localized, highly nonequilibrium regions that
form an open subsystem (which exchanges energy and matter with regions ofthe body that
are in a quasiequilibrium state) in which the energy of elastic deformations is dissipated.
It is precisely this effect that gives rise to the localization of plastic strains and fracture
regions in solids. lt has been shown elsewhere 131,501 that as a result of the effect of
transverse strains, self-organizing dissipative structures during irreversible deformation
of the media with shear rigidity have scale-invariant multifractal structure. The fractal
dimension of dissipative strllcture, which determines the rate of energy dissipation upon
irreversible deformation of a solid, corresponds to the effective vallle of the transverse
strain coefficient Veffl which is the functional oC the process of irreversible deformation.
Statistical self-similarity of configurations of cracks and the multifractal nature of the
fracture surfaces of solids, which are a sort of cOllnterparts to dissipative structures that
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are superposed on the original strueture of the material, serve as graphic reflection of
the scale invariance of dissipative structures [35]. It has been found that well-defined
values of the fractal dimension of crack profiles and fracture surface are characteristic for
different samples of given material that has been put through analogous thermomechanieal
treatment [4,34).
In the process of irreversible deformation of metals, the energy accumulated in self-

localized, highly nonequilibrium regions in the form of potential energy of elastic strains
dissipates through stress relaxation during plastic deformation. It is consumed on the
formation of micro-, meso-, and macrodefects, and consequently is being released on the
rough surface of the cracks formed. If the critical density of the potential energy of dilata-
tion (corresponding to the bifureation point of the original structure of the solid being
deformed [49]) Wcv = (j~/2E or form changing Wcd = Tcl2G (where E and G are Young
modulus and shear modulus Te and (je are the critical shear stress and the critical stress
of microseparation), builds up, self-organization of the dissipative structure that ensures
subcritical growth of a main crack oecurs. Fracture during subcritical growth of cracks is
related, in general, to the cooperation between two competing mechanisms governed by
different types of dissipative structures that are responsible for crack formation through
microshear or microseparation [35,49]. Every event of crack advancement is associated
with the formation of critical nucleus by the mechanism of microshear (if Wd » Wcd)
or microseparation (if Wv » Wev). The nuclei of cracks formed by microshear are asso-
ciated with the attainment, in the slip plane, of the critical density of dislocations, and
those formed by microseparation are associated with the attainment of critical density
of disclinations in an element of the volume that has undergone the extreme plastic
deformation. If failure is controlled by microshear associated with a low-energy-intensity
pileup of dislocations in the slip plane, local brittle or quasibrittle fracture initiated by
translational instability oeeurs. In this case, shear or cleavage faces appear revealed on the
fracture surfaee. But if microseparation associated with high-energy-intensity pileups of
disclinations is the controlling micromechanism of fracture, then ductile fracture initiated
by rotational instability occurs. A fractographic feature of local ductile fracture is the
presence of ragged microrelief (Ilnder cyclic and static loadings) [49].

From topological standpoint, the difference between ductile and brittle fracture is that
in brittle fracture crack front, whose metric dimension lies in the range

(42)

is fractal (at stresses (j ~ (je a classical Griffith crack with a smooth front, whose metric
dimension equal to topological dimension of the line dT = 1 propagates), and in ductile
fracture the surface of cracks whose dimension is

(43)

is fractal. This difference is attributable to the difference in the kinetics of self-organization
of dissipative structures from defects of different metric dimensiono
To determine the peculiarities of the kinetics of clusterization of elementary defects

responsible for the topological difference between brittle (quasibrittle) fracture and ductile
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(quasiductile) fracture, let us examiue the Smolukhovskii equation with a multiplicative
kernel <f>(i,j) ~ (i,j)w:

(44)

where ej is concentration of clusters of j elementary defects, and the parameter w is the
fraction dimension Dr of the dissipative structure:

I 2+0w= D- = --,
r 2DF

(45)

where DF is metric dimeusiou of t'leml'ntar)' deft'cts, aud O is the l'xponl'nt of thl' anoma-
lous diffusion coefficieut on thl' fractal D ~ r-6 (Sl'e TIds, [12-15]),

The metric dimension of dislocation pilt'ups iu the slip plane, as of ell'mentar)' ddects
during failure through microsht'ar, obviousl)' dol's not excet'd the topological dimension
of the plane, ¡,e., dH :s 2, Thl'rdotl" in this cast' w ~ 0.5, ,inre it is always in tht' case
that O ~ O (for percolation clustt'rs, DF = 4/3 and w = 3/4 > 1/2), It is kuown [15]lhat
in the case w > 0.5 the as)'mptotic solution of Eq. (44) describes the growth of the onl)'
"surviving" cluster, which ma)' be identified with the main crack in tlw cast' in qut'stion.
The dependence of growth rate of the main crack on its sizl' R

De
Z = I + (2w - I)De = 1+ (2+ 11)- - De,

dll
(46)

has the form of Paris equation l' ~ l\í' ~ Rua (see TIefs. [10,49]), wht're a = 0.5(2 - DF) is
the exponent that definl's tlll' asymptotic bebavior of the stress intensity faclor l\¡ ~ R-a
for cracks with fractal front, and De is tlw correlation dinH'nsion of the cluster (main
crack). Setting Z = na, we ha"l'

n = 2 [_D_e_(_2_+_II_)__ DF - 1] .
dH(2-dFl 2-DF

(4i)

It thus follows in the case DF = De < 2, that 11 > 2 (this is in agrl'eml'nt with the rl'sult
of numerous experimental studies); hert', if DF = dll = 2[1 - (1 + 0)/(11 - 2)1, then,

n = 2 [1 + I + O ] ,
2 - dll

11l = n [1+ _11_] ,
2 - dll

(48)

where m is the exponent in the \\'eibull distribution (see TIef. [49]).
In general case where DF = De, the climt'nsion of the crack front fornll'd cluring brittle

and quasibrittle fracture is

DF = dH(1I - 1)
2 + O + (0.511 - I)dll

(49)
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The metric dimension of fracture surface is d~ = 2 in brittle and d~ = DF + 1 > 2 in
quasibrittle fracture.
The dimension of defects responsible for rotational instability (disclinations, etc.) that

leads to fracture via the microseparation mechanism is dH > 2. If the stronger condition
dH > 2 + 0, which ensures that w < 0.5 (i.e., DF > 2), is satisfied here, then according
to Eq. (44), there is simultaneous increase in the set of equal clusters (cracks) that form
the main crack in accordance with percolation mechanism [8,341. The dimension of the
ductile fracture surface is determined by the fraction of energy dissipated as a result
of elastic stress relaxation during plastic deformation and on the rough surface of the
cracks (r¡). Ductile (quasiductile) fracture due to rotational instability of the lattice is
accompanied by a cascading of energy transfer from elastic deformations on larger scales
Li+1 to smaller scales Li, down to the microscale Lo, where the residual energy of elastic
deformations goes to the formation of new discontinuity surface (the process is similar to
cascade breakup of vortices during the turbulence of fluid f1ows).lf the fraction of energy
of elastic deformations consumed in dissipative processes upon the transition from one
structurallevel to another is independent of Li (i.e., if r¡= const), then the law of energy
conservation

where Ni is the number of fragments of the crack of the ¡-th scale Li and tlR; is the
increase in the linear dimensionality of a crack, yields the relation

dS = 2 _ ln(1 - r¡) > 2
F In" -, (50)

Here " = const is the self-similarity parameter, which defines the hierarchy of spatial
scales of the structural levels of failure. Since d~ ::::3, we have TI :::: 1 - ,,-1. At large TI,
fracture is impossible.
In quasielastic fracture, the primary mechanism of dissipation is the relaxation of elastic

stresses on the rough fractal crack face. Here the r¡-th part of energy of elastic deformations
is dissipated (the remainder goes to the formation ofnew surfaces during crack formation):

During propagation of classical Griffith's crack, we have (J = Oand r¡ = O in agreement
with the classical resulto
Mechanisms of fracture of solids imitated in the stochastic model (26), (27), of fracture

of elastic lattice for various values of m-parameter and topologically equivalent classes of
the kinetic and percolation models of fracture of solids are listed in Table IV.
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