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ABSTRACT. \Ve generalize the geometric structures generated by \vitten's ground ringoIt is shown
that these generalized structures involve in a natural way some geometric constructions from
Self.dual gravity [1,12J. The formal twistor construction on full quantum ground ring manifold is
also given.

RESU~iEN. Generalizamos las estructuras geométricas generadas por el "ground ring" de \Vitten.
Se demuestra que nuestras estructuras generalizadas involucran en forma natural algunas cons-
trucciones conocidas en gravedad autodual [1,121. También se da la construcción tuistorial formal
sobre la variedad cuántica "ground r¡ng".

PACS 04.20; 11.17; 03.70

l. INTRODUCTlON

In recent years, the search for a physical principie to be represented by sorne rnathernat-
ical structure of string theory has beco me essentia!' In this direction, a rnost interesting
proposal sta tes that this theory should be background independent. This idea has been
discussed in a nurnber of papers by Witten and Zwiebach [2,31. A Lagrangian which is
invariant under changes of backgrounds (just the Yang-Mills Lagrangian is invariant \lnder
ga\lge transforrnations) is proposed in a 2-dirnensional toy rnode!' This work deals with
an elernent of "the space of aH 2-dirnensional field theories" [21.
Quanturn gravity in two dirnensions is a systern of integrable rnodels in which some

quantities are cornputed which are very difficult to find in four dirnensions. Liouville
theory of 2d gravity and discrete matrix models are examples of these models with central
charge c ::; I. These rnodels can be characterized for the case c = 1 with usual decoupling
between "rnatter" and ghost as the background,

2D quant\llll gravity <9CFT <9ghost .
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It is very important to study the physical states for these backgrounds (including their
symmetries) in order to understand the structure of vacuum in 2-dimensional string
theory [4,5]. An infinite number of discrete sta tes has been discovered with spin zero and
ghost number equal to one.

In 1991 E. Witten proved that states with spin zero and ghost number zero have in a
natural way the mathematical structure of a commutative ring with generators (in the
uncompactified SU(2) point) 0u.n with u = s -1 E {0,!,1,~, ... } and n E {u,u-
1, ... , -u} [4] (for details see Appendix). Here we have the generators

00,0 == 1,

for s = 1, u = O, n = O and

x == O~,~= (eb + ~(aX - iO,p)) exp[i(X + i,p)/2J,

Y == O~,_~= (eb - ~(aX + iO,p)) exp[-i(X - i,p)/2],

(1.1)

(1.2)

for s = ~, u = !, n = !, -!. Under the product given by the operator product expansion,
the states generate a structure caBed chiral ground ringo The states encode aB relevant in-
formation about the symmetries of the theory, and furthermore they give rise to recursion
relations among the tachyon bulk scattering amplitudes perturbing the ground ring [6,7).
The symmetries involved here are of two types:

a) The group SDiff(A) of diffeomorphisms preserving the are a of a flat two-dimensional
ring manifold. The coordinate functions of A are preeisely the chiral ground ring genera-
tors, A = {x, y}. In other words, if w is a volume form on A i.e. w E íl(A), w = dx!l dy
we have that if ,p E SDiff(A), then ,p"w = W.

b) In the case of non-chiral ground ring (or the fuB quantum ground ring) we have a
eombination of left and right movers represented by the ground rings, C(AL) and C(AR)
respectively, where AL = {x,y} and AR = {x, y}. This combination is needed to form the
spin (O,O) quantum field operators Vu,n,n' = Ou,n . Ou,n' and can be considered to be a
tensorial product of rings C(W) = C(ALl0C(AR) with generators x, y, x, y. Again these
generators are the coordinate functions on certain flat four-dimensional manifold W. In a
like manner there is a symmetry group 7i acting on W; this action consists in identifying
the generators of the form x, y, x, y -+ tx, ty, elx, t-1y. The group 7i is generated by the
vector field S = xix + y-f" - x.¡¡ -y&. The quotient space W /7i = Q has the topology
of a 3-dimensional cone. The symmetr~ group that generates the sta tes in 2-dimensional
string theory is just the group of symplectic diffeomorphisms preserving the volume of
this cone. The coordinates of the cone have a natural interpretation in the context of
e = 1 matrix models. [Note that the group of diffeomorphisms preserving a 3-dimensional
volume has been considered by Takasaki [8) in the context of infinite hierarchies, within
Plebanski's approach to 4d self-dual gravity [9]]. Very recently Lian and Zuckerman [lOJ
have shown that for every string background the BRST cohomology has an algebraic
structure known as Gerstenhaber algebra and they suggest that the homotopy Lie algebras
of the Gerstenhaber algebra and the algebra constructed by Witten and Zwiebach [5] are
closely related.
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There exists a nice geometric differential approach to this set of things on the real
flat 4-dimensional ring manifold W as well as on the 3-dimensional algebraic variety Q.
In this paper we intend to make a natural generalization of the differential geometric
methods in 2d string theory by considering, instead of W, a Ricci half-flat (i.e., RÁiJ = O)
Kiihler 4-ring manifold ;'v1, with a chart given by the local complex coordinate functions
{x~} = {x,y,i,y}. Then an open set of ,'v1 will thus look like the complexification of W,
i.e. WC (Notice that we are using the same letter to designe the general manifold and
the C4-plane). WC is the product of two complex 2-ring manifolds: WC = AÍ x A~. It
is remarkable that AÍ and A)/ are symplectic manifolds with symplectic 2-forms given
by w and w, respectively. This fact causes that, automatically, many of the constructions
given in Refs. [1,9,11,12jlead to the self-dual gravity structures in two dimensional string
Iheory.

In Sect. 2 we briefly review some basic results of the \vitten-Zwiebach theory in terms
that can be useful for the search of the self-dual gravity in string theory.

Section 3 is devoted to study self-dual gravity [91in the context of 2d string theory. \Ve
claim that the \vitten-Zwiebach theory finds a natural generalization within the 1t and
1t-1t spaces theory [13,14]. It is also demonstrated that our construction appears to be
exactly that of \vitten-Zwiebach locally.

In Sect. 4, we prove the existence of seH-dual gravity structures on the full quantum
ground ring manifold in a different way as that given by Ghoshal el al. This new method
gives a deeper understanding of their results [15]. Using the construction of Re!. [11 we
re-derive the first heavenly equation from the natural symplectic structure on the chiral
ground ring manifold. Then, we make sorne comments about the curved twistor con-
struction on the ground ring manifold. \Ve first identify the chiral ground ring manifold
with the twistor surface, and then show for the ground ring manifold that any local
information (relevant to 2d string theory) can be completely represented on sorne twistor
space. Finally, in Section 5 some further implications of this work are considered.

2. GENERALlTIES ANO GI/OUNO RING MANIFOLOS

2.1. Generalilies

Jt is well known that at the SU(2)-radius the BRST cohomology classes for spin zero and
ghost number zero are characterized by the operators 0u n, with 00 o == 1, x == O! ! and

, , 2' 2

Y == O! _! [4,5]. These operators generate the chiral ground ring C(AL). The operators
2' 2

Ou,n = Xu+n . yu-n are precisely the polynomial fllnctions on the x-y plane with area
form w = dx 1\ dy. ThIlS, the pair (AL,W) is a two-dimensional symplectic manifold with
the symplectic two-form w. A similar procedllre done for the right side of AL leads to
(AR, w), where w = di 1\dy.

The spin zero and ghost nnmber one sta tes are

Y,;n = eV',n . exp [,,124> :¡: s4>V2J ' (2.1 )

with s 2': O. These sta tes are precisely the polynomial vector fields on the x-y plane that
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generate the area-preserving diffeomorphisms. In terms of the symplectic form w we have

Y+i _ ija-o _ 'V+iu+l,n - W J u,n - Cv u,n' (2.2)

The complementary vector fields are aOu,n with aOu,n(O) = 2~if d: a(z)Ou,n(O), where
a is defined in Re£. [5). Then, the ghost number two states aY, n (8 = U + 1) are the
polynomial bivector fields fx /\ fu on the x-y planeo '

If we denote the tangent bundfe of the x-y plane by TA, with A = AL = AR, then the
corresponding discrete states are precisely the sections of the Ji-th order exterior algebra

(2.3)

for Ji = 0,1,2; we have AOTA = C, AlTA = TA, etc. Here Ji = O corresponds to the
polynomial functions Ou,n; Ji = 1 corresponds either to Y,;n or to aOu,n, and Ji = 2 does
to aY';n' Of course, there exists the dual version of this construction where the exterior
algebra is precisely the Grassmann-Cartan algebra n(T' A) (for details see Re£. [5)).

The exterior derivative corresponds to the bo operator which commutes with 6 =
2~;f d:O; i.e., the operator [bo,O] = O is BRST invariant. Only the zero forms (or
bivectors in the dual version) contribute to the central extension [fx, /yJ = , of the
polynomial area-preserving diffeomorphisms of the plane SDiff(A).

If Q E n(T' A), then
(2.4)

As we deal with a f1at and contractible ring (which is very much like as a topological
space), a closed one-form ,\ on the plane x-y is necessarily exact i.e., ,\u,n = dOu,n for
sorne Ou,n' This one-form ,\ corresponds to the vector field

Y+i a _ (a-o ) ij a
u+1 n -a . - - I ti n W -a -,

'Xl 'Xl

which is an area-preserving vector field derived from the hamiltonian function Ou,n'

(2.5)

2.2. Ground Ring Manifold

Given AL and AR we define the full quantum ground ring manifold W to be the product

W=AL XAR.
Which can be shown graphically

where p and ji are the respective projections.

(2.6)

(2.7)
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To construct quantum field operators we have to combine left and right movers. Thus,
for the spin (1, O) and spin (0,1) currents we get

J$ n n' = lV,+n . 6"-1 n'1 , , ,

- _ -r+3" n n' - 0,,-1 n . H /.
I , ''',n

These operators act on the chiral ground ring operators according to the rule

J(O(P)) = -2
1
. i J(z). O(P),
rrl e

j(O(P)) = -2
1

. i j(z) .O(P),
¡r¡ e

(2.8)

(2.9)

and are precisely derivations of the full quantum ground ringo
lt is an easy matter to see that dlle to the fact that both (AL, w) and (AR, w) are

symplectic manifolds and that W = AL X AR, the pair (W, p'w - p'w) is also a symplectic
manifold.

3. SELF-DUAL GRAVITY STRUCTURES 11' 2D STRJ¡';G TIIEORY

Consider the effective topological action for all discrete sta tes of the c = 1 string at the
SU(2) point. This action reads [5)

r vF/lF,
ic'

(3.1 )

where v is a scalar and F is defined by the U(l)-gauge field A on C2 as follows: F = dA.
The U(l) principal bundle p: W ~ Q = W I'H. produces a dimensional reduction of the
action (3.1):

S' (1 v F /1 F) = r v . d1t /1 da,
c'(r iC'((r0U('))

(3.2)

where S is a section of the aboye bundle, C2 Ir represents the Kleinian singularities for
the relevant subgroup r, 1t is a function on the 3-dimensional cone Q and a is the pull
back of an abelian gauge field from Q. In Ref. [151 it is shown that the action (3.1) leads
to the equation of motion, which appears to be precisely the first heavenly equation

with no = fJtJn, or equivalently
no /1 no + 2w /1 w = 0, (3.3a)

(3.3b)

This shows an unexpected presence of self-dual gravity structures in the string contexto
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One finds easily [15] that the elernent of the fuU quanturn ground ring,

o = xi + yy, (3.4)

satisfies the first heavenly equation (3.3b). Moreover if one interprets O to be the Kiihler
function, then the corresponding rnetric is flat.
On the other hand we can see that the elernent of the fuU qllanturn ground ring

On,n,n,(x,y,i,y) = On,n' On,n' does not satisfy the first heavenly equation as it is, but a
"modified" one given by Q-Han Park in Ref. [16]:

(3.5)

with I = 1 and IV = O. This case corresponds precisely to the topological rnodel (W-2
term only). That is,

(3.6)

4. SELF-DUAL GItAVITY STRUCTUItES al' GROUND RING MANIFOLDS

In the previous section we have obtained the first heavenly equation of the self-dual gravity
from the action 115)

r v.FI\F.lc.
In this section, we re-derive the sarne structure in a different way rnaking ernphasis

only on the fact that the fuU quantllrn ground ring manifold W is merely the product
manifold AL x AR, and that the chiral ground ring manifolds are symplectic rnanifolds
with symplectic two-forms w = dx 1\ dy and (;¡ = di 1\ dy respectively. For this end we use
the constructioll of Refs. [1,12].
Consider the flat chiral complexified ground ring manifolds Ai and A~ and the corn-

plexified fuU ground ring manifold WC = A~ xA~. Since (Ai,w) and (A~,(;¡) are syrnplec-
tic rnanifolds it is very easy to show that W is also a syrnplectic manifold with syrnplectic
forrn p'w - p'(;¡ (p: WC ~ Ai and p: wC ~ A~ are the respective projections).
Now, let Tr Ai, Tr A~ and TrwC be the r-th order hoJomorphic tangent bundles of

Ai, A~ and WC, respectively. Then we have the foUowing sequence of projections for Ai:

TrAC Tr-IAC T1Ac TOAc - AC'---+ L ---+ L -+ ... --+ L ---+ L = Ll (4.1 )

and similarly for A~ and WC

FoUowing Rcfs. [1,12] one can define functions 0~'\2,O('\'~and V(,\) ,; vector fields'U," ti,n,n

y+(,\) }':+(A') as weU as J(,\) J-(,\') and differential forrns w('\) (;¡(,\) (with A =",n , ",n u,n,n" ti,n,n" , 1
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0,1,2, ... ,r) on the r-order holomorphie langent (or eotangent) bundles Tr .4i, Tr.4~
and TrWC For example,

1 d),(O 0.1,) Id),) (' 0.1'(0)) = _ u,n 'i'
u.n Jr 'i' ,\! dt), 1=0

1 d),(V ' o ",) 1V(),) (' 0.1'(0)) = _ u,n," 'i'
u,n,n,)r IV .\1 dtA 1=0 '

where jr(1/J) is the r-jet of the holomorphie <:urveljJ. '1'hen,

, 1 8),(0 0.1,) 1 1 8),'(0 'o 1/J) 1d),)(' .1(0)). d),)(' 0"'(_)) = _ n," 'i' . _ n."
U," Jr o '1-) u,n' Jr 'f'.... .\! as>" A'! at>"

s=O t=z

(4.2)

(4.3)

From '1'heorem 2 of ReLII] one can see lhat (Tr .4i,"'(),») and (Tr .4~,¡j(),») are symplee-
tic manifolds. '1'herefore, wc can define anolher sympleelie manifold TrWC wilh sympleelie
two form p"",(r) - p"¡j(r). 11 is vcry easy lo eslablish the bundle diffeomorphism

'1'he following diagram summarizes our eonstruetion:

(4.4)

- p"T2.4i 6l p"T2 .4~

1 pi
p"T2Ai (4.5)

In order to show the cxistenee of self-dual gravity struetures on the full quantum ground
ring manifold we restriet ourselves lo the case r = 2. As it is mentioned in Ref. [12]
(p"T2 .4i, p"",(2) - p"¡j(O») and (p"T2 .4~, p"",(O) - p"¡j(2») are also sympleetie manifolds.
Here

",(O) = '" = dx Á dy,

¡j(0) = ¡j= di Á dfj,

",(2) = dx Á dy(2) + dx(1) Á dy(1) + dr(2) Á d.r,

¡j(2) = di Á dfj(2) + di(l) Á dfj(l) + di(Z) Á d.T.

(4.6)

\Ve need only to eonsider lhe manifold p"T2.41,'
'1'0 show the existen ce of a self-dual gravity strlleture in the 2<1string lheory we use

the argllments of Refs. [1,12].
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Consider the sequen ces

(4.7)

where N is a horizontal lagrangian submanifold of both TWc and p.T2 A1.
Let a:5 - T2WC, 5 e WC, be a holomorphic section such that i(N) = a(5), where

i:N - T2WC is an injection.
Let .c(5) be the set of all holomorphic sections of T2WC _ WC such that "1 o i(N)

and p2 o i(N) are horizontal lagrangian submanifolds of TWc and p.T2 A1, respectively.
Thus .c(5) is defined by the equations

a;(w(l) - w(1») = O, on 5 e WC

ai(w(2) - w(O») = O, on 5 e WC
(4.8)

[notice that we have omitted the pull-back p. and p. in these formulas], where w(1) =
dx!l dy(1) + dx(1) !I dy, w(1) = di!l dy(1) + di(1) !I dy, al = "1 o a and a2 = p2 o a.
Now the problem arises of how a E .c(5) determines a self-dual gravity structnre on

the open sets 5 of the full quantum ground ring manifold Wc.
The solution of this problem is given by the following theorem.

TllEOREM [1,12]. Let a:5 - T2WC, 5 e WC, be a holomorphic section. The triplet
(w,w,!lo) = (a.w(O),a.w(O),a.w(1») defines a self-dual structure on 5 if and only if there
exist a choice of a holomorphic section a such that a.(w(l) - w(1») = O and a.(w(2) -
w(O») = O (for the proof see Ref. [1,12]).

Thus, the desired self-dual gravity structures arise in a natural manner from the math-
ematical structure of the quantum states in 2d string theory.
Taking !lo = a;[dx!l dy(1) + dx(1) !I dy) we arrive at the first heavenly equation,

!lo !I !lo + 2w !Iw = O.

This can be extended to the cases with T ::>: 3. Then, by using the projective limit one
can formulate the problem in terms of the infinite-dimensional tangent bundle TooWc =
p"TooA1 ffip.TooA~ (for details see Refs. [1,12]). 1t can be proved that given (Wc,p.w-
p.w) a symplectic manifold (TOOA1,W2(t)) turns out to be a formal symplectic manifold,
where W2(t) = 2:;;:0 "kw(k)tk; t E e, and "k: TooA1- TkA'i is the natural projection.
By the Proposition 2 of Ref. [11we observe that (TooWc,w(t)) is a formal symplectic

manifold with

(4.9)
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where t E C' == C - {O} and TooWC = TooA x TOOA~ = TOO(A x A~) = p'TOOA x
¡)'TOOA~.

4.1. Curved twistor construction on full quantum ground ring manifolds

Consider the formal symplectic manifold (TOOWC,w(t)). Since AÍ and A~ are diffeomor-
phic, we have TooWc = TOOAÍ x Too A~. Define the holomorphic maps

iJ = (D,I):Too Al x C' ~ TooAl xC',
where I(t) = ¡-l and the graph of the diffeomorphism D, gr D, can be identified with
sorne local section gr D = a': S ~ TooWc such that a"w(t) = o. From Eq. (4.9), this last
relation holds if and only if

(4.10)

Consider now a local section a" of the formal tangent bundle TooWc ~ WC on a open
set S e WC such that a'''w(t) = o. For t E C'

(4.11)

Assume that wA(t) and .jrB(t-l) converge in sorne open discs Uo and Uoo (O E Uo and
00 E Uoo) respectively, such that uonuoo i- <p. Consequently, the functions wA: t >--> wA(t)
and .jrB: s >--> .jrB(s) define local holomorphic sections of the twistor space T. Due to the
condition (4.10) defining the self-dual structure on the quantum ground ring manifold
WC we get the transition functions for a global holomorphic section W E [,(T). Thus one
can recuperate the Penrose twistor construction [17].Of course the inverse process is also
possible (see Refs. [1,12]).

5. FINAL REMARKS

In this work we have looked for self-dual gravity structures in 2d string theory. This
was motivated mainly by the works of Witten and Zwiebach [51as well as Ghoshal et

al. [15].These papers provide a "physical" approach that shows an unexpected presence of
self-dual gravity structures in string theory. Goshal et al. [151have found these structures
by looking for the solutions to the equations of motion derived from the action (3.1).
One class of solutions in particular implies the existence of self-dual gravity structures.
Here we have proposed the purely geometric ("mathematical") approach based on the
symplectic geometry of the chiral ground ring manifold. As we have shown, this geometry
leads directly to seU-dual structures in 2d string theory. Now, the natural question arises
about what is the relation between the "physical" and the "mathematical" approaches.
lf Ghoshal et al. conjecture [15]' which states that the dynamics of the states in 2d string
theory is given by the seU-dual gravity structure, is true, our geometric approach might
be more convenient.
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ApPENDlX. THE CIIIRAL GRüUND RING STRUCTURE

In this appendix, we review the basic arguments which lead to the chiral ground ring
structure, as proposed in [4). This structure arises in 2d string theory. The bosonic string
theory with 2d target spacetime involves Liouville gravity coupled to some conformal
field theory (CFT) with central charge e = 1. In the absence of a cosmological constant,
Liouville gravity and the CFT decouple resulting the world-sheet Lagrangiau

here L: is a Riemann surface, h the world-sheet metric, X a bosonie field, <P a Liouville
field and R(2) is the Ricci scalar.
The Lagrangian (Al) contains an infinite number of discrete states in addition to the

taehyonic state Vp = exp( ipX) being X a free field. The presence of the additional states
appears for the first time in the study of c = 1 matrix models.
Introducing a SU(2) symmetry on the states of (Al), these discrete states arise in a

natural way. Concretely, using the theory compactified at the SU(2) radius, the momenta
p of X take the diserete values p = n/V'i, n E Z.
One can see that the conformal operator exp(isX/V'i) belongs to a multiplet of a SU(2)

representation corresponding to the highcst weight. Thc other members of this multiplets
are the operators Vs,n such that V", = exp(isX/V'i) and V,,_, = exp( -isX/V'i). The
opcrator with s = Inl corresponds preciscly to the tachyon operator. (some states remain
for Inl < s)
Now, introd ueing the ghost fields b and e of spin 2 and -1, respectively, one can

construet the spin O BRST invariant primary fields of ghost number 1:

(A2)

from the spin 1 fields

(A3)

The operators W,"n have momentum (n,i(-l:l: s)). V'i.
The eomposite' states Y,"n with Inl < s have partners at an adjoining value of the

ghost number O or 2. Here ~e would like to consider only those of ghost number O. These
will be partners of the positive part of (A2) V/n. Redefining s = u + 1, these partner
states are Ou,n and have momentum (n, iu) . V'i: The u's take the values O, t, 1, etc. and
n = U,U -1" .. ,-u.
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The correspondence between sta tes with ghost number 1 and spin 1 and those with
ghost number O and spin O is

Y3+ I {o} X == 01 I = (cb + H8X - i81») exp[i(X + i1»J2]' (A4)
2'2 2'2

Y~+_! {o} Y == 0_,1. __,1 = (cb - ~(8X + i81») exp[-i(X - i1»J2].,. ,
These sta tes can be constructed using the BRST analysis.
Combining the operators (A3) and (A4) one can define the quantum fíe/d operators of

spin (1, O) and (0,1) to be, respectively,

- + -J.."n,n' - ~V.'J,n.Os-l,n"

- - +:1,,0,0' = O"-l,n . ~VSn"
(A5)

where the bar represents complex conjugation.
These operators genera te a Lie algebra of symmetries, namely the Lie algebra of vo/ume

preserving dijJeomorphisms of a 3 dimensional algebraic variety defined by

(A6)

where al = xx, a2 = yy, a3 = xy and a4 = xy.
The chira/ ground ring AL structure come from the pair {x,y} (similarly for the right

part taking {x, y}). AL defines a ring structure under the usual operator product expan-
sion [4). The chiral symmetries of the Lagrangian (Al) form the group of diffeomorphisms
preserving the area ofthe plan e generated by {x, y}. This group is denoted by SDiff(AL).

In this way, the existence of both the set of states (A4) and the chiral graund ring
structure implies the existence of a IVoo-symmetry in 2d string theory.

Further, the discussion in Ref. [51 shows that the above results can be put into a
geometrical setting. There, it is also shows that the pair (AL, w) is a symplectic manifold,
with symplectic 2-form w = dx ti dy.
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