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ABSTRACT. Slavnov- \Vard identities for the ma..%ive Yang-~li1ls thoor)' are considered. They are
associated with infinitesimal gauge-invariance transformations of the action when the vector field
satisfies the Lorentz condition. From these identities it follows that the physical amplitudes vanish
after the insertion of an arbitrar)' Ilumber oí 81lAll operators, when aH their space-time arguments
are different. In order to study, in more detail, the role of the Lorentz condition in the quantum
theory of the system, the Dirac-brackets quantization is recalled. Again, it arises that the mean
value of an arbitrar)' product oí 8óJAll operators vanishes in a physical state. It can also be
argued that the evolution operator should be unaltered by adding terms dependent on 8".4"
to the Hamiltonian. This property allows to obtain a formal derivation of renormalizable Feynman
integrals for the physical amplitndes which should be fnrther investigated for clarifying the question
of unitarity.

RESUMEN. Se consideran las identidades de Slavnov-\Vard para la teoría de Yang-Mills masiva.
Estas identidades están asociadas a transformaciones de invariancia de norma infinitesimales de
la acción, cuando el campo vectorial satisface la condición de Loremz. De esas identidades se
sigue que las amplitudes físicas se anulan después de la inserción de un número arbitrario de
operadores allA~ cuando todos los argumentos espacio temporales difieren. Con vistas a discutir
en más detalle la importancia de la condición de Lorentz en la teoría cuántica del sistema, se
considera la cuantización en términos de los corchetes de Dirac. Dc nuevo se sigue que el valor
mcdio de un producto arbitrario de operadores D¡JA~ se anulan en los estados físicos. Se puede
argumentar, además, que el operador de evolución debe quedar inalterado al añadir térm.inos
dependientes en 8¡JA~ al hamiltoniano. Esta propiC'dad permite obtener una prueba formal de la
validez de una integral de Feyoman renorrnalizable para las amplitudes, la cual debe ser investigada
posteriormente con vistas a esc1arpcer la cuestión oe la unitariedad.

PACS: 11.l5.-q

l. INTRODUCTIO:-;

Massive Yang-Mills theory was the object of intense activity in the literatnre in the hey-
day of unified gange theories [1-91. After the develo¡llnent of the spontaneons-symmetry-
breaking approach to the generation of masses, interest in this model diminished hnt still
existed (see Rel. [101 for a review). In spite of the ahove, it seems that the conclnsion ahout
the absence of unitarity and rcnormalizaLility in any non-symmctry-breaking modifi<>d
theory is a kind of agreement. Taking this fart into acconnt, it is appropriate to put
forward some considerations which conld he usefnl for the analysis of this prohlem. The
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present paper aims at giving sorne elements which, although formal, are closely related to
the above-mentioned matters.
The work starts by noticing the presence of an infinitesimal remaining gauge trans-

formation, which leaves invariant the classical action when the field satisfies the Lorentz
condition. The resulting Ward identities are written. These relations were already found
by Slavnov [8], who also expressed the interest in investigating their effect on the renor-
malization problem. These expressions are of similar simplicity to the ones in the massless
case. Here we write them in terms of the various kinds of generating functionals. Their
use allow us to show that a physical amplitude in which any number of 8"A" operators
are inserted, vanishes when evaluated on mass shell, if the arguments of the operators are
different.
After that, the Dirac-brackets quantization of the system is considered as was also done

by Senjanovic [11]. This is performed in order to discuss in more detail the role of the
Lorentz condition in the quantum framework. We reproduce the results of Ref. [11]with a
minor change in the Dirac brackets among the canonical variables. The results show that
the Lorentz condition is always satisfied when applied to physical states. This fact seems
to allow the modification of the evolution operator when applied to physical states by
adding products of the Lorentz condition to the Hamiltonian. Then the usual reasoning
in determining the functional integral permit us to arrive at a interesting conclusion.
The functional integral action of the massive Yang-Mills theory can be modified, by the
addition of a linear term pa8"A~, when matrix elements between physical states and
vanishing boundary conditions on the auxiliary field pa are considered.
In Sect. 2 the infinitesimal invariance of the action is described and the Slavnov-Ward

identities are used in the study of the insertions of the Lorentz condition in physical
amplitudes. Section 3 presents the classical and quantum canonical procedure and the way
in which the Lorentz condition is implemented. The use of these results for putting forward
formal arguments concerning the modification of the functional integral is described.

2. INFINITESIMAL GAUGE INVARIANCE AND WARD IDENTITIES

The Lagrangian for the massive Yang-Mills fields can be written in the following form:

2

.c(x) = -tF:v(x)F:v(x) - ~ A~(x)A~(x),

F:(x) = 8"A~(x) - 8vA~(x) + g¡abc A~(x)A~(x),

in which the conventions are

A~(x) = (Aj(x), iAg(x)),

x '" x" = (Xi, ixo) = (x, it),

/l = 1,2,3,4.

(1)

(2)
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The symmetry group is SU(N) with completely antisymmetric structure constants ¡abe,
and 9 is the gauge coupling.
The classical equation of motion of the system is given by

(3)

where the action and the covariant derivative are

s= J £(x)dx,

'V~b(X) = óaba~+ gA~b(x),

A~b(x) = ¡aebA~(x).

(4)

Let us now consider that A~(x) is not on the mass shell, i.e., it does not obey Eq. (3),
but it satisfied the Lorentz condition

a~A~(x) = O.

Then, after performing an infinitesimal gauge transformation in the following way:

with Aa(X) arbitrary but infinitesimal, it follows that

óS = _m2 J dx (A~'V~b Ab) = _m2 J dx A~a~Aa

= m2 J dx Aa(a~A~) = O.

(5)

(6)

(7)

This means that the action is invariant because of the Lorentz condition. This conclusion
is also valid in the Abelian case, and again in both cases (Abelian and non-Abelian) after
the inclusion of gauge-invariant coupled matter fields. AIso, it follows that in all these
cases the condition a~A~(x) = O is implied by the equations of motion. Therefore, it
seems interesting to investigate the role of these relationships in the quantum theory.
A speculative idea that comes to mind from Eq. (7) is related to the bad behaviour of

the propagator of the model. Could such a property be a consequence of the "remaining"
gauge invariance, in a similar way to that in which the singularity of the propagator in
the massless case is produced by the full gauge independence? If such is the case, could
there exist a way of using this fact to help in the renormalization? These questions were
the motivation for this paper. Below, in this section, we shall derive the Slavnov-Ward
identities arising from the aboye transformations.
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The generating functional Z will be taken in the form

Z[j] = J D(A) exp (s + J dXj;A;) , (8)

where j;(x) is the source of the gauge fieId. For Z the following Schwinger equation holds:

(9)

After applying to Eq. (9) the operator

(10)

which is equivaIent to performing the transformation (6) as a change of variables in Eq. (8),
the following identity arises:

28 ÓZ (ab [ Ó ] ) .b(O = m ~Ój~(x) + V' ~ ój(x) Z J~ x), (ll)

which is the one given by Slavnov [8]. Defining the generating functional of connected
Green functions

W[j] = In Z[j],

the express ion (ll) becomes

28 óW 8 .a() ¡acb óW .b( )
m ~Ój~(x) + ~J~ x + 9 Ój~(x)J~ x = O.

(12)

(13)

The simplicity of the mass term allow the relations (ll) and (13) to beco me as simple as
the corresponding expressions in the massIess case. The invariance-breaking term is just
proportional to the mean valuc of the Lorcntz condition.
Let us now introduce the effective action by the usual Legendre transformation:

r[A] = W[j]- J dxj;(x)A;(x),

a() ÓWA~ x = ~( ).vJll X

Then, after expressing Eq. (13) in terms of r, it follows that

28 Aa ( ) Ór ¡acb e () Ór
m ~ ~ x - 8~ óA~(x) - 9 A~ x -óA-~-(x-).= O.

(14)

(15)
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That is to say that the lP-irreducible n-point functions of consecutive order are as
tightly linked as in the fully-gauge-invariant theory. It seems curious that this fact is a
direct consequence of an infinitesimal "remainder" of the gauge invariance at the field
values obeying the Lorentz condition.

Further, we shall consider the identities for reducible Green's functions. Taking a num-
ber n of functional derivatives of Eq. (11) with different indices (Xi, /li, ai), i = 2, ... , n+ 1,
and replacing (x, /l, a) by (Xl, /ll, al), the following expression can be obtained after setting
j = o:

ón+l Z

rrn+l ó .a, ( )
r=l )J.lr Ir

n+l

+LapI (I)Ó(Xl - Xj)ÓPIP;Óala,

j=O j=2

ón-l Z

rrn+l < .a, ( )
i=2,(i"j) uJp, Xi j=O

+

n+l

g L Ó(Xl - Xj )j"lca;
j=2

ónz
Ó.a;( )rrn+1 Ó.a,()Jp; Xl i=2.(i"j) Jp, Xi j=O

= O,
a

ap(l) == a-Y'xp
(16)

Equation (16) indicates that the divergence of any Green function over an arbitrary
external leg vanishes whenever all the external variables have different values.

Let us now consider that the mass shell for asymptotic sta tes determined by the one-
particle propagator is defined and has a mass m. Then, after putting the n + 1. n, n -
1, .. , , n + 1 - N external legs on the mass shell by applying the operators

(17)

f(kl)k~ = O,

to Eq. (16), the following relation for the resulting function G of this transformation on
Z arises:

1

'" a (1)«x x .)"1a;Ga' .... ,a' a' ( 1)1 +L ¡.Jj u 1 - 1 U /-J'l •... ,/J¡ j.ll X2, ... , Xi, ... XI ms (i:¡é-j)
j=2

1

"'g/alca; « _ X)Gc.a' •...•a' a' ( . 1)1, . - o~ u Xl ) 1JjJl2, ...• J.l¡ J.J1 Xl,X2,""X." .. ,X¡ ms (1"#:;) - ,
j=2

(18)

where Ims) stands for the mass shell of N legs, 1= n + 1 - N,
In relation (18) aH those terms in Eq. (16) in which one of the variables (associated with

the legs settled on the mass shell) enters into the ó-function have vanishing contributions.
This is so, beca use it is possible to integrate by parts in at least one of the operators (17)
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in these terms. After that, taking the divergence over the i = 2, ... , I variables for the
insertion of n out-of-mass-shell a~A~operators, we can write

m2a~1 (1) ... a~I(l)G~~',:.:::(Xl, ... ,xdms) +

1

L a~j (1)a~j (j)Ó(Xl - Xj)óa1aj a~, ... a~; ... a~¡
j=2

Ga' a; a¡ ( x 1)1
. JJ2, JJ¡ J.J¡ X2, ... , i, ... , Xl rns (iij)-

1

Lgr¡caja~¡ (I)Ó(Xl - Xj)a~" ... a~; ... a~m
j=2

Gc.a' ....a;..,~¡ (x x x x Ims)1 - O
. j.ll,JJ2, ... J1¡".J11 1, 2" .. ¡ ... 1 (ijéj) - . (19)

Then, the physical amplitud e after the insertion of m divergences of A~ operators
(taken outside mass shell in an arbitrary on-shell amplitude) vanishes whenever all its
external variables are different. The recursive character of Eq. (18) may be used to further
determine the spatial dependence of the first term in Eq. (19). For m = 1, it follows that

(20)

(22)

For m = 2, relation (19) reads

m2a~¡(I)a~,(2)G~~~;(xl,x2Ims) = [a~¡(I)a~¡(I)ó(Xl - X2)]Óa¡a'G(ms)

+ gr¡ca'a~l (l)ó(x¡ - X2)G~¡ (xdms). (21)

In the next section we shall discuss the classical and quantum canonical versions of the
model in order to study the realization of the Lorentz condition in more detai1.

3. D1RAC-BRACKETS QUANTIZATION

The application of the classical canonical procedure for constrained systems to the La-
grangian (1) leads to the following total Hamiltonian [11]:

H =Jd3 {P'tP't +lyaFa+lm2AaAa_iAa\7abpb+Aapa}T x 2 4 tk ,k 2 ¡.t Jl 4 t l o 1

where Aa are Lagrange multipliers and the canonical momenta are given by

a() óL = O, (23)Po x = óAo(x)

a( ) óL = iF4j, (24)Pj x = óA~(x)
J
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with

(25)

Imposing the consistency condition on the primary constraint (23) leads to the following
set of second-class constraints:

Fa = Po(x) "" 0,

Ga = m2 Ao(x) - V'fbp~(x) "" 0,

with the determination of the multiplier Aa(X) through

0= m2Aa(x) + m28iAf(x) - ig¡acbGC(x)A~.

(26)

(2i)

(28)

The Poisson brackets among the constraints (26) and (27) turns out to be (all the time
arguments of the quantities coincide)

{Fa(x), Fb(y)} = 0,

{Ga(x), Fb(y)} = m2ÓabÓ(3)(x _ y),

{ Ga(x), Gb(y)} = g¡aeb [GC(x) - m2 A3(x)] Ó(3)(x _ y).

(29)

(30)

(31)

In Eq. (31) lies the small difference from the results of Eq. (11), in which the ter m
proportional to Ao is absent. Let us define Dirac's brackets in the usual way:

(32)

where cpf, i = 1,2 are the Fa and Ga constraints for i = 1,2, respectively. Then the Dirac
brackets among the canonical variables become:

{Aflx), A~(y)}D = 0, {pf(x),P~(y)}D = 0,

{Po(x),P~(y)}D = O, {Po(x),p~(y)}o = 0,

{Po(x),A~(Y)}D = 0, {Ao(x),P~(Y)}D = 0,

{Ao(x),A~(Y)}D = - ~4 ¡acb(Gc(x) - m2A3(x))ó(3)(x - y), (33)

{Ao(x), A~(y)}o = --;V'fb(x)Ó(3)(x - y),
m

{Ao(x),P~(y)}D = - ~2pfb(x)Ó(3)(x - y),

{Aflx),p~(y)}D = óabó(3)(x - Y)Óij.
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The quantization can be introduced now by replacing in the total Hamiltonian (22) the
canonical variables by operators in the following way:

Af(x) -+ Af(x),

Ag(x) -+ Ag(x),

pf(x) -+ pf(x),

pg(x) -+ pg(x),

where the operators satisfy the commutation rules obtained by assigning the commutators
to the classical Dirac brackets through

[pf(x),p~(y)] = [Af(x),A~(y)] = O,

[Af(x),p~(y)] = ióabóijlPl(x - y),

[Ag(x), Ag(y)] = - ~4¡aeb(eC(x) - m2 Aó(x)), ó(3l(x - y),

[Ag(x),A~(y)] = -';Vfb(x)ó(3l(x - y),
m

[Po(x),pg(y)] = [Po(x),Ag(y)] = O,

[Po(x),pg(y)] = [Po(x),A~(y)] = o.

(35)

(36)

(37)

(38)

(39)

(40)

(41)

The constraints pa and ca commute with all the magnitudes as a consequence of these
rules. Also in ca the operator-ordering problem is absent due to

ea(x) = m2Ao - (ó"b8i + g¡aebAi(x)p~(x))

(42)

as follows from the commutation rules (36). Moreover, the absence of ordering problems
is also valid for the Hamiltonian operator, which turos out to be

The following constraints can be imposed in a strong sense:

pa(x) =' O,
ea(x) =' o.

(43)

(44)

(45)
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Now, we can study the way in which the Lorentz c~ndition arises in the theory. For
this purpose, we calculated the time derivative of the Aa coordinate operator. It results
In

Therefore, after applying both sides of Eq. (46) to any state 11), it follows that

(éJoA(j(x)+ 8iAi(x)) 11) = 0,

8~A~(xlll) = 0,

(46)

(47)

a relation firstly obtained by Salam [121.
Then the Lorentz condition should annihilate the physical states. For any matrix ele-

ment of a product of 8~A¡,factors it should also follow that

(48)

Relation (48) shows that the possibility of non-vanishing results for the insertions con-
sidered in the previous section should be related to the time-ordering operator associated
with the functional integral. This is also indicated by the fact that a non-vanishing result
could exist only for coinciding arguments in Eq. (19).
Expression (48) also suggests various formal reasonings which we think have sorne

interest. They are connected with the possibility of modifying the evolution operator. Let
us consider the modified time evolution of an arbitrary state in the way

i:t I'l'(t))p = { N - J d3x Ipa(x)8kAk(x) - A(j(X)éJopa(x)]} ,

I'l'(t))p = {N + NI(t)} I'l'(t))p, (49)

in which space-time dependent and classical auxiliary scalar fields pa(x), a = 1,2,3, are
introduced. The following p--dependent evolution operator now can be considered:

Úp(L, -L) = Texp { -i1:(N + NI(t)) dt}, (50)

which corresponds to evolutions from an initial instant very far in the past t = - L to a
final one very distant at future t = L.
After considering that the fields pa(x) satisfy the following boundary conditions at the

initial and final times t = :l:L:

pa(-L, x) = pa(L, x) = 0, (51)
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it follows that

Op(£,-£) = Texp {-i1:[H - 1d3X(paa"A,,)] dt -i 1:1ao(paAg) dtd3x}

= T exp { -i1:H dto }

= 0(£, -£), (52)

where the Lorentz condition (46) and boundary conditions (51) have ben used after in-
tegrating by parts in the time integral appearing in (50) for H¡. The operator O is the
original evolution operator of the theory, thus, (52) says that Op is independent of pa.
Therefore integrating over the fields pa (52) with a gaussian weight defined by the

differential operator Q, the following relation for the matrix elements of O can be written:

(21011) = ~o J PIpa) \ 21Texp [-i1:dt Heff] 11) exp (J dx 2~paópa) , (53)

with

No = J dxp[pa(x)]exp [j dx 2~pa(x)ópa(x)] ,

(54)

The functional integral version of Eq. (53) can be obtained as usual, by partitioning
the interval (tI, t2) into N small pieces and decomposing the exponential into a product
of infinitesimal evolutions. Then, denoting by ta any of the time values in the partition,
the unit operator is introduced for each value of ta in the usual way

j = J D[Af(x, ta)ID[Pf(x, ta)1 J¡¡ exp { -i J d3x Ai(X)Pf(X)}

x ipf(x,ta»)(Ai(x,ta)l, (55)

where D indicates integration over space dependent functions at a fixed time slice, M
is a normalization constant and 1Af( x») and Ipi( x») are the eigenfunctions of the spatial
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components of the fields and their respective momenta. After going to the limit N - 00,

Eq. (53) transforms into

(2IÚI1) = ~T iD[Ai(X2, 12)]D[A~(x¡, 1¡)](2IAi(X2, 12)) [jV[Af(x)J V[Pf(x)] V[pa(x)]

{.jL d d3 [a( )A.a() pj(x)pj(x) lFaFa m2AaAax exp 1 _ L I X P. x • x - 2 -:1 ik ik -""2 k k

(56)

where NT represents al! the normalization constants. In order to circllmvent the presence
of a Ó(3)(O) in Eq. (56) arising from the term V'jbpfV'jCpi, a smal! "point splitting" in the
three space coordinates of the V'jbpf operators was assllmed. Expression (56) coincides
with the known canonical fllnctional integral in the physical phase space when the p field
is not introdllced [l1J. The form of Eq. (56) corresponding to the canonical theory with
constraints fol!ows after introdllcing Ilnity in the fol!owing two ways:

i V[Ag(x)] ó (Ag(x) - ~2 V'jbpf(x)) = 1,

i V[pg(x)] ó(pg(x)) = 1.

They permit Eq. (56) to be written as

(2IÚI1) = ~T i D[Aj(X2, L)] D[A~(XI, -L)]

x (2IAf(x2, L)) [jV[Aj(x)] V[pf(x)) V[pa(x)] D[Ao(x))D[Pg(x)]

x eXP{i jL di d3x [pa Aa _ paAa _ pjpi _ lFa Fa
1 1 O O 2 4 tk tk

-L

2
m (AaAa AaAa) Aa..,ab b a" Aa Aaa a-""2 k k - O O - O v. Pi - P Vk k + O oP

(57)

(58)
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In Eq. (59) it is possible to represent the 6-function, which depends on Ag, as a Fourier
transform over an auxiliary variable .xa. Then by performing a change of variables Ag _
Ag _.xa as well as the integration over the momenta and .xa, relation (59) takes the form

(2[0[1) = ~TJ D[Ai(x2,t2)ID[A~(xI,tl)1

x (2IAi(i2, L) [jV[A~(x)l V[pa(x)]

(60)

where it was again necessary to integrate by parts using pa = O at ti and t2.
Then, the aboye formal reasoning leads to Eq. (60), which indicates that the matrix

elements of the evolution operator between physical states should not be affected by the
introduction of the ¡r-dependent terms. In arriving at Eq. (60) it was important to take
into consideration the vanishing boundary conditions for the p field at the initial and final
times. This fact should playa role, but we do not yet have a ciear idea of it.

To conciude, it can be expressed that the formal analysis presented here could have
sorne useful implications for the discussion of the renormalizability versus unitary problem
associated to massive "Yang-Mills" theory. In order to ciarify this possibility, further work
is needed to explore the connections of the arguments with perturbation theory. Results
of the investigation of this problem will be presented elsewhere.
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