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ABSTRACT. An approximation to the photon distribution function, which describes stalistics
oí the mixed thermal-coherent radiation, is derived. This approximation is efficient íor analytic
calculations in numerous problems of interaction between quantum electromagnetic fields and
matter, specially when the steepest descent method is used.

RESUMEN. Se deriva una aproximación a la función de distribución de fotones, la cual describe
la estadística para la radiación térmica-coherente. Esta aproximación es eficiente para cálculos
analíticos en numerosos problemas de interacción entre el campo electromagnético cuántico y la
materia, especialmente cuando se usa el método de fa;se estacionaria.

PACS: 32.80.-t; 32.90.+a; 42.50.-p

1. INTRODUCTION

It is hardly possible to find a domain of physics where coherence is not applied. Such a
fascinating phenomenon as collapses and revivals of atomic population in the system of
independent two level atoms interacting with quantized cavity field was first described in
the Jaynes-Cummings model (JCM) for a cavity field initially prepared in the coherent
state [1,2] (see also discussion in Ref. [3-7)). The phenomenon has recently slarted to be
observed experimentally [8,91. One of the interesling queslions in the Jaynes-Cummings
and in the Dicke [10) models of quantum field inleraction with aloms is how the incoher-
ence of the syslem, parlicularly of lhe electromagnetic field, due to lhe lhermalization
produces collapses and revivals [11-231.
To be more precise we remind here sorne estimations in order to have ciear heuristic

ideas of how the account of thermalily of the field becomes important to compete with
the coherence in quantum phenomena. A priori one can expect significant influence of
thermalily when the photon dislribution function of coherent components of the cavity
field has appreciable overlap wilh that of thermal constituent, i.e., the mean value of
thermalized pholons N, becomes comparable wilh that of coherent ones Ne, the latter
being of lhe arder 1-100 photons. For lhe room temperalure T = 300 K and for the light
of mode frequency 11 = 5 X 1014 Hz one obtains N, = (eX _1)-1 = exp( -80), a negligible
value, where x = hll/kBT, h is the Planck constant and kB is the Boltzman constant. So,
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thermalization of the cavity quantum field appears to be relatively unimportant for visible
frequency band and for room (and even much higher) temperature. Dut the situation will
radically change if we consider far infrared or microwave radiation. Even in the case of
microwaves of the frequency lJ = 3 X !OH Hz at room temperature T = 300 K one has
N, ~ x-1 ~ 20 photons. This estimation clearly demonstrates that there exist nonzero
bands of frequencies and an interval of temperatures when one has to take into account
and evaluate competitive process of coherence versus thermalization.
The experiments in quantum optics are, finally, ones on photon counting. Statistics

(photon number distribution function) of quantum electromagnetic field is what we usually
use to examine the evolution of quantum systems, which describe interaction between
matter and quantized fields, for example, in such extremely popular models as those of
Jaynes-Cummings and Dicke.
Recently studied questions of the existence and correct description of the revivals,

even in the basic and so much investigated JC model, faced with certain mathematical
difliculties to get correct theoretical predictions, when the initial field is a Bose-Einstein
thermal one [11-14,19,20-23) or when a cavity field initially prepared in a coherent state is
subjected to thermalization [12,191. The most promising techniques, which involve integral
transforms, are finally reduced to exploiting the steepest descent method to get final
results in explicit formo This is one of the important reasons to have a photon distribution
function (PDF) in the form which is the most suitable for the stationary phase method
application.
The two of the most important states of a single mode quantized field are a coherent

(more general a squeezed) state and a thermal equilibrillm of the electromagnetic field at
temperature T. However, a perfectly lossless cavity can not of course be built in practice.
That means that a mixed thermocoherent cavity field is of great importance for a realistic
theory of interaction of atoms with a cavity field (see, for example, [12,19)). In this paper
we consider a particular but important, for the use of analytic calculations, question about
functionally simple and compact approximation of PDF, which is fairly precise in a wide
range of parameters, for quantum mixed thermocoherent electromagnetic field.

2. DERIVATlON OF THE APPROXIMATED PDF

It is known [12,24,251 that the diagonal elements of the density matrix in the Fock (oc-
cupation number) representation for the single mode quantized thermocoherent electro-
magnetic field is given by the following expression:

P(n) = 1: Nt exp ( 1 ::V.) [1 :~J\n( N,(l~ N,))

= 1+
1

N, exp ( -1 ::V.) [1 :~J~~!(~) CV,(1N~N,)r (2.1)

where N, and Nt may be loosely interpreted as the mean values of coherent and thermal
photon numbers, correspondingly; Ln is the Lagllerre polynomial of n-th order, here
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L,,(O) = 1. The calculations of the mean photon number and the deviation for the distri-
bution function, Eq. (2.1), lead to the values

(2.2)

(2.3)

where a+ and a are photon creation and annihilation operators. At zero temperature (or
at N, - O) the Eq. (2.1) tends to the Poisson distribution with the mean value equal to
Ne:

(2.4)

At "high" temperatnre (or at Ne - O) the Eq. (2.1) gives the thermal (black-body) photon
number distribution with the mean number of photons equal to N, = [(1 - e-,)-I - 1) =
Z -1:

(2.5)

where Z is the partition function of a single mode field in thermal equilibrium, and, as
usual, x = hw/kBT, with the temperature T and with the single mode field frequency w.
It can be shown that the distribntion, Eq. (2.1), has a peak, which is centered near

n '" Nc> even for the case of Ne not too large and N, not too small . Hence, for the
saddle point technique application, we are interested in a region near n '" Nc> which
contributes significantly. For example, in the case of quite large ñ the main contribution
to the Jaynes-Cnmmings sum (or to the appropriate integral) comes from sorne region
close to n '" Ne. This consideration gives us the reason to use the asymptotic expansion
of Laguerre's polynomials for large order n [26-28],

(2.6)

to find out the suitable approximated photon number distribution. Substitution of the
Laguerre polynomial into the Eq. (2.1) as its asymptotic expression Eq. (2.6) with the
argument u == Ne/(N,(1 + N,)) leads to the following sequen ce of relations:

L,,( -u) _ (1r)-1/2 e-u/2 e-i./4u-I/4n -1/4 cos [i2( nu)I/2 - 1r/ 4]

= (1r)-1/2e-u/2e- •• /4u-I/4n-l/4

X T1/2 [cosh(2(nll)I/2) + isinh(2(nu)1/2)]

_ 2-1 (1r)-1/2 e-u/2u -1/4n-l/4 exp(2( nu)I/2), (2.7)
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where u == Nc/(N,(1 +N.)) > Oand the Laguerre polynomial's arder n is supposed to be
large (Eq. (2.7) is valid asymptotically). Straightforward substitution of the approximated
expression Eq. (2.7) for Laguerre's polynomial into the Eq. (2.1) gives the function

P(n) = Kn-I/4 exp( n In v + 2(nu)1/2),

K = 1 exp (_ Nc ) r1(rr)-1/2e-u/2u-I/4
l+N, l+N,

=r1(rr)-1/2 1 exp (_Nc) u-I/4,
1+ N, N,

N,
v = 1+ Nt'

Ncu-----
- Nt(l + N.)'

(2.8)

where Nc and N, are the parameters of PDF. However, the last expression Eq. (2.8) is
only in qualitative agreement with the original PDF [Eq. (2.1)1.
To achieve not only qualitative but quantitative agreement with the exact distribution

one can parameterize, in general, an expression of the kind of Eq. (2.8) and then equate
the zeroth, first and second order moments calculated with the exact distribution [see
Eqs. (2.2), (2.3)1 and with the approximate parameterized one. But this way is hardly
performed analytically .
The simplified version, which deals with the O-th order moment equality, is in fact

a normalization procedure and leads to the following expressions (C is a normalization
constant):

00 00

1=LCP(n) = CK Ln-I/4 exp(n In v + 2(nu)I/2)
n=O n=O

(2.9)

The last integral being evaluated with the steepest descent method gives us the normal-
ization constant

and finally leads to the approximated photon distribution function (APDF) as follows:

v= < 1,

¡.t = -lnv. (2.10)
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The Eq. (2.10) is a good approximation for the thermocoherent photon numher distribu-
tion Eq. (2.1) in a wide range of parameters Nc and N, (see computer simulations below).
However, it can be hardly used for the limit cases of very large or very small values or
u, especially in the vicinity of n :::= +0. Both limit cases have to be investigated more
carefully.
Quite a si,?ple analytical form (exponential with respect to the argument n) of the

distribution P(n) [Eq. (2.10)1, enable us to use it for analytical investigation of the atomic
inversion time evolution in the Jaynes-Cummings and Dicke models.

3. COMPUTER SIMULATIONANO COMPARISONOF TIlE APPROXIMATEO PDF ANO TIlE
EXACT ONE

Sorne asymptotic formulae and approximate equalities have been used aboye for derivation
of P(n) [Eq. (2.10)], but the range of the applicability of the latter can hardly be evaluated
analytically [26-291. For this reason, in order to give more evidences and to see restrictions
of the approximation, we made a computer simulation in a wide and interesting range of
parameters of PDF. Here we give a comparative analysis of the fonr groups of computer
simulations.
In the first series we keep constant the mean number of thermal photon Nt = 1 and

change the number of coherent photons Nc = 5, 10, 15, 20, 30, 40.
Figures 1a-f represent comparative plots of the exact PDF P(n) (thick solid line) and

the approximated one P(n) (thin solid line) for the parameters N, and Nc given aboye.
The accordance of the curves is rather convincing, the only small quantitative discrepancy
observed is a shift to the right of the peak of the approximated PDF with respect to that
of the exact one. In this range of the parameters PDF keeps qualitative resemblance with
the Poisson distribution function [Eq. (2.4)] for it has a clearly seen crest.
In the second series, we keep constant the mean number of coherent photons Nc = 10

and change the number of thermal photons Nt = 1, 3, 5, 10, 30 (see Figs. 2a-d, lb). The
quantitative accordance of the approximated PDF Í'(n) (thin solid line) with that of the
exact one P(n) (thick solid line) is rather good, with a small right hand shift of the APDF
with respect to the exact one.
However, the APDF has certain problems in the limit case N, - O. Computer analysis

of the series {Nc = 5 and Nt = 0.03, 0.05, 0.1, 0.2, 0.3, 0.5, 1, 3, 5, lO} and {Nc = 3
and Nt = 0.01, 0.05, 0.1, 0.3, 0.5, 1, 3} has clearly demonstrated that the approximation
[Eq. (2.10)], cannot be considered as the satisfactory one for the very small values of Nt
such that {N, ~ O.lNc and Nc ~ S}. One needs another approximation in this range of
parameters N, and Nc•

4. CONCLUDlNG REMARKS

The APDF works well in the range of moderate values of parameters Nc and Nt: the
values of Nc are quite arbitrary, and Nt ?: 0.1 Nc if Nc ~ 5. This is the transient and the
most difficult range for the analytical study of the interaction of quantum electromagnetic
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FIGURE 1. Comparative plots of the exact PDF P(n) (thick solid line) and the approximated PDF
P(n) (thin solid line) for the given N, = 1 and different Nc = 5, 10, 15, 20, 30, 40.

field with matter. Moreover, it has quite good accordance with exact PDF for the limit
case of strong thermalization of the radiation. The only significant shift of the crest of
approximated PDF with respect to that of the exact PDF is observed in the limit N, ~ 0,
while keeping the strong resemblance in the formo However, for this case one does not
really neeed to use thermocoherent PDF [Eq. (2.1)), but can directly use Poisson PDF
[Eq. (2.4)), for the coherent field, which quite adequate and simple for applications.
Even if we mainly referred to the Jaynes-Cummings model to discuss applicability of

APDF, it has a much broader variety of applications to the problems of quantum field
interaction with matter, since in arder to have analytical results in a closed form ane often
has to use steepest descent method. Moreover, one can readily extract approximation
to the Laguerre polynomials Ln(u) by means of comparison of the Eq. (2.1) with the
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FIGURE2. Comparative plots of the exact PDF P(n) (thick solid line) and the approximated PDF
É'(n) (thin solid line) for the set of parameters N, = 10 and NI = 3, 5, 10,30.

Eq. (2.10). This approximation of the Laguerre polynomials is valid for values of the
argument u = Nc/(NI(1 + N.)) in the interval determined by the restrictions on the
parameters Nc and NI for the APDF to be valido
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