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ABSTRACT. Alternative nonlinear techniques to the characterization of EEG time series are pro-
posed, which a110wtheir modeling and the prediction of bifurcations due to changes of parameters.
These techniques show clear-cut differences between normal and pathological states which can
be used as diagnostic tools to the evaluation of patient's normality. We also formulate a new
homeodynamical principie of health.

RESUMEN. Se proponen técnicas no lineales alternativas para la caracterización de series tempo-
rales de EEG, que permiten la modelación de las mismas, así como la predicción de la aparición de
bifurcaciones al cambiar ciertos parámetros. Estas técnicas muestran diferencias marcadas entre
los estados normal y patológico del individuo, las cuales pueden ser empleadas como un método
diagnóstico de evaluación de la "normalidad" del paciente. También formulamos un nuevo principio
homeodinámico del estado saludable del individuo.

PACS: 87.1O.+e; 87.90.+y

1. INTROOUCTION

Recent years have witnessed an increase of the interest in the application of non linear
concepts in the analysis of brain activity, mainly through the analysis of the evolution and
dynamics of the electroencephalographic (EEG) recordings (measurements of potential
differences between fixed points in the scalp of the subject vs. time).

Most of the work has been dedicated to the use of the embedding theorem and the
calculation of the fractal dimension of the EEG time series [1-8].

In this paper we propose the use of other alternative non linear techniques to char-
acterize EEG signals. \Ve will also construct sorne analytical models to describe EEG
dynamics, which will allow us not only to reproduce sorne characteristics of the real time
series, but also to predict the appearance of bifurcations under variations of parameters.

Finally it will be formulated a new homeodynamical principIe to describe the healthy
state of the individual.

2. NONLINEAR CHARACTERISTICS OF EEG OYNAMICS

Multilateral studies carried out by our group on EEG signals allow us to state beyond
any doubt that these time series belong to nonlinear, generally chaotic systems.
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This statement is supported by the results of phase portrait analysis, fractal dimension
evaluation, study of the evolution of the distance between initially close phase trajectory
points and the inverse problem of reconstruction of the nonlinear systems which modelates
the series.
These methods were applied to unfiltered and filtered EEG time series corresponding

to normal Q rhythms an to epileptic seizures (Figs. 1-3). As can be seen in the phase
portraits (Figs. 4-6) of the unfiltered data, in spite of chaos and noise, the system shows
patterns which are a proof of the existence of order and a structure within itself.
Figures i to 9, corresponding to filtered data show that the phase portrait of the

epileptic seizure has easily identifiable characteristics, plainly visible to the naked eye,
which turns this techniques into one more diagnostic too! that can be used by physicians.
Note specially the existence of a double loop in the epileptic's phase portrait, which is
absent in normal Q rhythm.
The study of these pictures show also that to seen the fully developed pattern of the

attractor we have to wait sorne time until the transient toward the steady dynamical
system dies out.

3. RECONSTRUCTION OF NONLlNEAR MODELS

Taking only the extreme of the filtered time series we have constructed the return map
(next-amplitude map) of them, selecting it from severa! possible Poincaré section and
stroboscopic maps.
Figures 10-12 show these return maps for Q normal and epileptic seizures. Note the

difference between them. The set of points for the Q normal map is distributed in a
"curve" of roughly dimension 1, while the seizure's set of points of the map are found
in several groups (generally three), of nearly zero dimensiono The total number of points
corresponding to maxima is much higher in the Q signal than in the epileptic seizure signal
for an equal number of initial time series points.

4. ANALYTICAL MODELS

For the data set GPQ310.dat corresponding to an Q normal filtered signal, we constructed
an analytical model to describe the amplitllde series:

(1)

where

(2)

Ca = -4.834485 x 106,

Cz = -!.94458i249 X 103,

Cl = !.6i94695 X 105,

C3 = i.505!.
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FIGURE 1. Unfiltered EEG signa! from normal subject showing normal alpha rhythm.
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FIGURE 2. Unfiltered EEG signa! of subject during an epileptic seizure. Example 1.
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FIGURE 3. Unfiltered EEG signal of subject during an epileptic seizure. Example 2.
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FIGURE 4. Phase portrait oC EEG signal corresponding to normal subject with normal alpha
rhythm. (unfiltered) .
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FIGURE 5. Phase portrait oC EEG signal corresponding to epileptic subject during a seizure.
(unfiltered). Example 1.

FIGURE 6. Phase portrait oC EEG signal corresponding to epileptic subject during a seizure.
(unfiltered). Example 2.
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FIGURE 7. Phase portrait oC EEG signal corresponding to normal subject with normal alpha
rhythm. (filtered).
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FIGURE 8. Phase portrait oC EEG signal corresponding to epileptic subject during a seizure.
(filtered). Example 1.
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FIGURE 9. Phase portrait oC EEG signal corresponding to epileptic subject during a seizure.
(filtered). Example 2.
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FIGURE lO. Return map of filtered alpha normal EEG signal and interpolation with polynomial
fitting of the data.
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FIGURE 11. Return map of filtered alpha normal EEG signal and interpolation with polynomial
fitting of the data. (Example l.)
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FIGURE 12. Return map of filtered alpha normal EEG signal and interpolation with polynomial
fitting of the data. (Example 2.)
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The results of this modeling can be seen in Figs. 10-12 on that data and also in epileptic
EEGs.
Using Eq. (1) we can reproduce the sequence of amplitudes of the original series.
These reproduced sequences are shown in Figs. 13-15. It can be seen that the sequences

for epileptic signal correspond to limit cycles of period 1 and 2, while it can be shown
that the sequence for the a signal is chaotic and forms a strange attractor.
The fixed points for system (1) are

Xl = 85.964809, X2 = 86.068942, X3 = 87.068617.

The points Xl and X3 are unstable. Any Xo outside the interval Xl < Xo < X3 lead to
trajectories that space away from that interva1. If the initial value lies inside the interval,
then the systems falls into an attractor.
If we take as Xo a value which is not in the vicinity of the set of experimental values

of the return map series of the epileptic signals, then it can also lead to sequences with a
high degree of chaoticity, as can be seen in Fig. 16, for the same map of Fig. 14.
In principie it is now possible to take the parameters Ci as variables and study the dif-

ferent bifurcations of the system, by varying one parameter with the others held constant.
The map (1) presents period doubling bifurcations like the well known cubic map, until

transition to chaos is stablished.
The chaotic states are identifiable by the value of the Lyapunov's exponent:

(3)

We have found that slight variation of C3 can produce Thom's elementary-catastrophe-
type bifurcations. IF C3 goes aboye, or below certain limits, two of the fixed points (either
Xl and X2 of X2 and X3 can disappear. The surviving critical point is unstable and the
system must jump to another regime.

5. HOMEODYNAMICAL PARADIGM OF HEALTlI

Several authors [81 have noted shortcomings in the so called principie of homeostasis,
which states that any physiological variable must return to its normal stationary state
(in dynamical systems concepts that state would be a stable critical point) after being
perturbed.
These have been also sorne discussions [8] about certain homeodynamical principie

which postulates the existence of multiple metastable states for every physiological vari-
able.
The erra tic behavior of healthy physiological systems must be associated with a new

paradigm of health. From our point of view, the "normal" state of a physiological variable,
more than to a stable critical point, or a stable limit cycle, must be associated to a strange
attractor. (The attractor is stable as a whole, but with an intrinsic variability due to
instabilities in the phase trajectories.)
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FIGURE 13. ReconstruetioD of the sequenee of points in the returo map of alpha normal EEG
signal with the use of the polynomial fitting.
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FIGURE 14. Reeonstruetion of the sequenee of points in the returo map of the epileptie subjeet's
EEG signal with the use of the polynomial fitting. Example 1.
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FIGURE 15. Reeonstruetion of the sequenee of points in the returo map of the epileptie subject's
EEG signa! with the use of the polynomial fitting. Example 2.
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FIGURE 16. Reconstruction of the sequence of points in the return map of the epileptic subject's
EEG signal with lhe use of the polynomialfitting usinga differentstarting point for the sequence.

The physiological variable, after a perturbation must return to a normal state, but not
necessarily to a stable fixed value, and instead will oscillate chaotically around it.
There seem to be an interval of values of the fractal dimension which is optimum for

the paradigm of health. Any bifurcation which takes the system out of that intervalleads
to sickness of aging of the physiological system.
Specially a transition to more orderly states can indicate the presence of sorne diseases,

even if generally authors relate chaos with specific pathologies [8]. A great increase in
chaoticity, too, is a sign of abnormality. There are sorne data related to this in cognition
studies, schizophrenia and several other pathologies of high fractality [13].

6. CONCLUSIONS

The possibility of writing equations of dynamical system which inelude attractors that can
be used to reprad uce characteristics of EEG time series is another proof of the existence
of nonlinear coherent structures which describe different brain states.
We have also found that EEG time series have a somewhat long transient before entering

into the attractor which describes them.
There are several unstable points in the vicinity of the attractor. An initial condition

outside the normal interval of values can lead the system to unstablities that can drive it
to another stable regime outside the previous interval of values.
Therefore there is probably multistability in the dynamical system which describes the

EEG signa!. This multistability reflects in the existence of multiple stable states and the
coexistence of several types of attractors.
In many cases, small variations of parameters can produce Thom's catastrophe-type

bifurcations which produce the appearance and disappearance of pairs of stable-unstable
fixed points. In the case the system passes to another stable regime with another attractor.
The existence of multistability and nonlinear spatio-temporal interaction leads to the

possibility of the existence of spatio temporal coherent structures which can be soliton-
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like [9,10) (not necessarily of the time-independent shape, travelling wave type, but pul-
sating time dependent solitons or even chaotic solitons [11,12)). These structures can be
responsible for the transmission of different perturbations from a focus to the whole brain.

Our research shows the possibility of the existence of an optimal interval of chaoticity
(fractal dimension) in the healthy individual. This could solve the controversy existing
in literature about the significan ce of chaos in physiology and the characterization of
normality.
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