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ABSTRACT. Afler reviewing brieBy the relevant features of Newlonian dynamics, several possible
formulations of special relativistic dynamics are described and the similarities and differences of the
two theories are noted. For various types of interactions, including electrodynamic ones, examples
of exacl solutions of the equalions of motion for two partides are given which illustrate features
that can not occur in Newloninn dynamics. The possible physical relevance of such solutions is
discussed.

RESUMEN. Después de presentar brevemente las características relevantes de la dinámica new-
toniana, se describen varias formulaciones posibles de la dinámica en relatividad especial y se
destacan las similitudes y diferencias entre ambas teorías. Se presentan ejemplos de soluciones
exactas para las ecuaciones de movimiento de dos partículas con diversos tipos de interacciones,
incluyendo las electrodinámicas, las cuales ilustran características que no pueden ocurrir en la
dinámica newtoniana. Se discute la posible relevancia física de dichas soluciones.

PACS: 03.30.+p; 03.20.+i

1. INTRODUCTION

It is of course fundamental for the space-time concepts of the special theory of relativity
that the Galilei transformation must be replaced by the Lorentz one. It was realized by
Einstein from the beginning (and by Poincaré even before the publication of Einstein's
fundamental paper) that while this was consistent with Maxwell's electrodynamics, it did
require a modification of Newton's second law of motion as well as of the description
of partide interactions. However, almost all textbooks and surveys of relativity theory
only discuss the consequences of this modification for the one-body problem, i.e., for
the motion of a single partide in an external field, and almost no work was done on
the n-body problem for many decades, mainly due to the almost universal belief that
relativistic interactions could only be described as being transmitted by a field rather
than as d¡rect-partide ones as in Newtonian dynamics. Similarly, it was thought that the
causality requirements of relativity theory exduded apartide dynamics with Newtonian
causality, a belief not challenged until 19GO [1]. However, mllch work has been done on
rdativistic partide dynamics in the last few decades.

'lnvited leclure al lhe conference on Aspccts o/ General Rclativity and Mathematieal Physies in
celebration of the sixty-fiflh hirthday of Professor Jerzy PlchaIÍski (Mexico City, Juno 19n).
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This paper is concerned with the laws and exact solutions for the motion of n-particle
systems in classical special relativity; unfortunately, absolutely nothing is known for these
problems in general relativity. But before discussing the special-relativistic problem it is
essential to point out sorne of the features of Newtonian dynamics which are well known,
but which are not necessarily maintained in the special theory and thus merit particular
attention.

2. CHARACTERISTICS OF TIIE NEWTONIAN DYNAMICS OF POINT PARTICLES FROM A
RELATIVIST'S PERSPECTIVE

In Newtonian mechanics, a point particle is fully characterized by its (constant) mass m;
its motion is determined by Newton's Second Law

(1)

If F vanishes, the particle moves with constant velocity.
In the following we shall be mainly concerned with the mechanics of a closed system

of n point particles interacting via two-body action-at-distance forces. For such a system
there exist various descriptions, of which the three maln ones are sketched below.

2.1. Newtonian jormalism

Newton's equations of motion, valid in any inertial system, are

i,j=l, ... ,n, (2)

where all quantities are evaluated at the same time t.
For forces which depend only on the mutual separations, one can introduce potentials

v = !:L I>klh¡).
ki'1

(3)

2.2. Lagrangean jormalism

For such a conservative system, Eqs. (2) can be derived from a variational principie

bI = O,
. dx;.-v = --¡¡¡, (4)
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where

L=T-V,

n

T=! ¿mjvJ,
j=1

dr- )
Vj = dt'

(5)

and Eqs. (2) result from Lagrange's equations

aL d aL
L; = - - - -. = o.ax' dt av'

(6)

2.3. Hamiltonian jormalism

These equations can also be derived from Hamilton's PrincipIe, with the Hamiltonian

H =¿Pj . Vj - L, pj = :~. (7)
j )

The features of Newtonian mechanics for this conservative system which are of importan ce
for the later discussion are
a) The equations ofmotion are invariant under the 10-parameter (proper, orthochronous)

Galilei group [2].
While it is possible to formulate equations difTering from Newton's with the same

invariance properties [3], these will not be discussed here.
b) The Newtonian, Lagrangean, and Hamiltonian formulations are equivalent.

e) The motion of the n particles is determined by the laws of motion, the force laws,
and the 6n initial conditions

Ti(tO) = TiO, Vi(tO) = ViO, i = l ...n.

The system is said to possess 3n degrees of freedom.

d) There always exist ten conservation laws [3,4]

(8)

dE
dt =0,

dP
-=0
dt '

dJ
-=0dt '

dM
di =0,

E =¿Pj . Vj - L,
j

M =¿mjTj - Pt.
j

. aL.-
Pj = a i'vj

(9)
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These, by Noether's Theorem, are a consequence of the invariance (up to a divergence)
of the Lagrangean (4) under the Galilei group [51.
It should be noted that one can define a unique center-of mass coordinate R through

dM&=0, M::MR-Pt, M::¿mj,
j

(10)

e) The two-body problem can always be reduced to a one-body problem and therefore
is always integrable.

J) For n > 2, except for particular force laws (such as harmonic oscillators), the on/y
known analytic solutions are those with homographic motion: The configuration
formed by the n I¡odies at a given time t moves in such way that it remains similar
to itsel£.

The first such solution was given by Lagrange in 1772; an incomplete classification of
the possible types of motion was given in Re£. [61 and a complete one in Re£. [7J.
The main problem to be discllssed here is the extent to which these /eatures remain

va/id, or must be modified, in the specia/ theory o/ relativity. Sorne of the modifications
can be discllssed in general, but others, sorne of the most striking ones, can at present
only be shown through particular examples.

3. FORMS OF SPECIAL-RELATIVISTIC DYNAMICS

Obviously, feature a) has to be modified to

A) The equations of motion mllst be (explicitly or implicitly) invariant Ilnder the 10-
parameter (proper, orthochronolls) Poincaré group.

In the following only explicitly Poincaré-invariant formalism will be discllssed in any
detail. We shall consider the Minkowskian fonr-space with coordinates x" (/, = O, 1, 2, 3),
where xO = t and xl, x2, x3 are the usual Cartesian coordinates, and a metric '1,.v, where

'loo = 1, '1,.v = O if /l i- v. (11)

The particles are described by coordinates z;( Ti), where the Tis are the proper times
defined by

dT" = ('1 dz" dzV)I/21 - J.lV tI' i = 1, ... ,n; (12)

here and in the following, sllmmation over repeated over repeated Greek indices is Ilnder-
stood. Whenever Latin indices are Ilsed, they (and their sllmmation) rlln from 1 to 3.
The four-velocities and four-accelerations

~ _ dzr
Vi =-d '

Ti
(13)
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satisfy

VfVip = 1, Vfai¡J = O. (14)

The following two-body invariants can be constructed from the positions and velocities
of the partic1es [3,8]:

(15)
i,j = 1, ... n.

Other invariants can be constructed involving higher derivatives of the positions and more
than two partic1es, but no such generalizations will be considered here.

Analogous to the situation in Newtonian dynamics, various formalisms are possible.

3.1. "Newtonian" jormalism

The obvious generalization of Newton's Second Law (1) is

(16)

Since from Eq. (14) the four-force F must be perpendicular to the four-velocity, it must
be of the form [1]

F( = :L {(z; - zj + ,,;vn ¡Jij + (vj' - Wijv;l2f;j
Ni

(17)

if we restrict ourselves to two-body forces, and with the further restnctlOn discussed
before, the f;/s will be taken as arbitrary funetions of the two-body invariants (15). Then
the equations of motion most resembling the Newtonian from (2) following from Eqs. (16)
and (17) are

(18)

which still depend on the velocities, however. Furthermore, unlike the situation in New-
tonian dynamics, une can Bol simply evaluatc aH quantitics at the samc time, since
simultaneity is not a Poinearé-invariant eoncept. Therefore the proper times and must
be related by Poinearé-invariant eonstraints associating one point Zi(Ti) on the i-th world
line with one or more points Zj( Tj) on the j-th one (inc1uding the possibi!ity nf a weighted
integral ovcr thc j-th world linc), and vice versa; tll(,5C constraillts are ('xpr('ssrd by the
funetions 9ij and 9ji of the two-bndy invariants (15). They can be arbitrarily preseribed
(Action-at-a-distllnce theories) or detennined fmlll some partial differential e<}uations
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FIGURE 1. Two world lines i and j with points associated through relativistic functions g.; and
gji.

(Field theories). The force terms Fi derived from field theories may inelude self-action
terms Fii. In the simplest case each of the constraints may only associate a single pair of
points as shown in Fig. 1.
Unfortunately the two pairs of points can only coincide in very exceptional circum-

stances. An example is provided by Fokker's time-asymmetric electrodynamics of two
charges, one acting on the second via retarded fields, the second acting on the first via
advanced ones [9].
Examples of exact solutions which can be obtained either in field theories or in action-

at-a-distance theories will be discussed in detail latero

3.2. "Lagrangean" formulation

Such laws do follow, however, if the equations of motion follow from a variational principie

with

b(I] + h) = O,

00

1¡ == - ¿¿9i9j J J Uij(Sij,Wij, Ki,Kj)dTi dTj,

1<J -00

(19)

(20)

where the Mj are Lagrangean multipliers which have to be determined from the equations
resulting from the variation (19) [3]. This is a generalization of Fokker's variational prin-
cipIe of electrodynamics for time-symmetric interactions [lO] and can describe time-like,
space-like, or light-like interactions depending on the invariants (15); it can not describe
purely retarded interactions, however. (Space-like interactions depending on the Sij'S alone
were also considered in Refs. [11]).
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For conciseness in later use if will be convenient to define "adjunct" potentials Vj by

(21)

in terms of the "kernels" Uij of the variational principie (19), which are not assumed to
be necessarily symmetric in i and j.
The resulting equations of motion are

j = 1, .. , ,n. (22)

There exist many distinct theories with space- as well as time- or light-like interactions
which are relativistic generalizations of the same Newtonian force laws [12].

The speciai case of theories possessing an adjunct jie/d theory can be obtained from the
variational principie (19) provided the adjunct potential (21) can be separated into a sum
of terms which are products of two factors, one of which involves oniy the coordinates Zj
of particle j. This implies that the kernel Uij consists of a sum of terms each of which
contains Wij only in the form wfj' where f is an integer. Such theories are discussed further
in Refs. [31 and [13]; they include Fokker's time-symmetric electrodynamics (f = 1) and
the variational principies of scaiar or vector mesodynamics (f = Oor 1) [14].
In close analogy of Newtonian theory

D) There always exist ten conservation iaws.

Their existence is assured from Noether's Theorem by the invariance of the interaction
ter m (19) under the lO-parameter Poincaré group [3,5,15,16]. The invariance under the
four time and space transiations yields the iaws uf conservation of energy and momentum:

OP"-O =0,
Tj

(23)

(1~l' l' 1~)ou1 _' a)/ dTi dTj.

Ti -00 -00 Tj f]
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Similarly, invariance under the 6-parameter subgroup of rotations yields [3,121

8£1W
--=0,
8Tj

L~V(Tl ..• Tn) == ~ { {Pj + 9j [:0+ Vjp (Vi - vj :0 )]w~} zj

(24)

where the spatial components Lmn are the components of the angular momentum J and
the components LmO are those of the vector M of the center-of-mass theorem analogous to
that of Eq. (9). For certain forms of Uij additional conservation laws can existo However,
unlike the Newtonian situation, where the conservation laws involve only partide variables
evaluated at the same time t, the laws (24) depend on the n proper times of the partides
and involve integrals over their n world lines.
If the interactions are such that an adjunct field theory exists whose field quantities

obey partial differential equations analogous to those of the standard field theory, one
can obtain ten "local" conservation laws, involving both the partid es and the adjunct
fields, which have the same structure as those familiar from field theory. However, they
too involve integrals over the world lines.
Many of the equations and results discussed hcre can be generalized to encompass

interactions which involve transfer of electric charge (in addition to energy, momentum,
and angular momentum) between partides [13,171,and partides with an intrinsic angular
momentum, but can not be considered here.
Unlike the l\'ewtonian case, in the "l\'ewtonian" and "Lagrangean" formalisms no gen-

eral statement analogous to e) can be made; at present, the problem of the specification
of appropriate initial conditions can only be discussed through examples of exact solu-
tions, which wil! be taken up latero Their study, ho\Vever, is mnch more difficult than in
Newtonian theory since in general

E) The two-body problem can not be reduced to a one-body problem
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due to the non-instanteneity of the interactions. This difficulty is related to the fact that
the "center-of-mass theorem" contained in Eq. (24) does not allow the definition of a
unique center of mass.

3.3. "Hamiltonian" formalism

It might appear that these difficulties can be overcome through a "Hamiltonian" formalism
which by definition involves only quantities evaluated at the same time and for an n-
particle system specifies the motion by 6n quantities. However, the early attempts at such
a formulation led to various No-Interae/ion Theorems [18] showing that such a formulation
with non-vanishing interactions is incompatible with the "world line condition" requiring
that the particle coordinates have the proper transformation properties under the Poincaré
group. The various attempts to circumvent this difficulty can not be described here; several
of them were discussed at a recent conference [19].

However, even before the formal recognition of this difficulty, Thomas [20] gave up the
concept of invariant world lines in relativistic dynamics, and Bakamjian and Thomas [21]
showed how this allowed the introduction of interactions in a "center-of-mass system"
in a "Hamiltonian" formalismo This, however, introduced a new problem, that of cluster
separability [22]. The interaction of two particles did not become independent of the
other n - 2 particles if these two subsystems were widely separated. This difficulty was
overcome first by Sokolov [23] and then in a more direct and elegant manner by Coester
and Polizou [24]. Although this was done in a quantum mechanical formalism, the results
are equally valid in a elassical one. But the fact that the world line condition is not
satisfied is more disturbing in a classical context than in a quantum mechanical one and
therefore this approach will not be pursued here. However, this condition is satisfied in
a certain approximation [25] and therefore the Hamiltonian approach is of interest for
motions which do not deviate too much from Newtonian ones, although not for the study
of exact relativistic solutions which are our main concern here, many of which do not even
possess a Newtonian limito

It is clear from the aboye that a fundamental distinction between Newtonian and rel-
ativistic dynamics is that in the latter

E) The "Newtonian", "Lagrangean", and "Hamiltonian" formalisms are not equivalent

in general. In particular, no known field theories (or their adjunct analogues) lead to an
n-particle dynamics allowing a "Hamiltonian" formulation. The "Newtonian" one allows
a "Lagrangean" formulation only in the special case that the force terms [the right hand
side of Eq. (18)] are of the form of those of Eq. (22).

4. EXACT SOLUTIONS

In the following only the "Newtonian" formalism will be considered, since it ineludes the
"Lagrangean" one as a subcase, and the "Hamiltonian" one, as discussed aboye, is IlOt
suitable for the study of the motioIlS of interest here.
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FIGUnE 2. Hyperbolic motion of a charge in a constant electric field.

Before investigating motions involving two or more partides, however, we have to con-
sider sorne examples of one-partide motions beca use sorne of their features are relevant for
various two-partide motions. The first one is the motion of a single charge in a constant
electric field E, the well-known "hyperbolic motion" shown in Fig. 2. It is actually the
first exact solution obtained in relativistic dynamies, discovered by Max Born in 1909 [261
and described by

with

Zo = asinh(r/a), Z¡ = -acosh(r/a), Z2 = Z3 = O

M
a= eE'

(25)

(26)

As was later shown by Sehott [271, this is also the only solution of the "Lorentz-Dirae"
equation in whieh the radiation reaetion terms have no effeet; however, for this to be true,
the eleetrie field has to extend over all spaee.
The next example is the motion of a point partide of mass 111earrying an eleetric charge

e and a mesic eharge g, moving in an external eleetromagnetic field F"v and neutral vector
meson field G"V whose equation of motion is [281

111' 2( 2 2)(" .2) 2 2 vj' s"vv(r') - svv,,(r') ( )d' '(" ) vv,,-;¡ e +g v"+v,,v -g X V 2 J2 XS r = eF"v+gG"v v ,
-00 s

(27)
if the field of the partide is assumed to be purcly retarded. 1£ it is assumed to be half-
retarded, half advaneed, one has instead

(28)
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Here a dot denotes a derivative with respect to the proper time r, J is the Bessel function,
X is a constant (equal to l/h times the meson mass in the quantized theory), sl'(r') =
zl'(r) - zl'(r'), and s = (spsP)I/2.
If the partide is a singularity of a neutral scalar meson field FI' (with potential U)

rather than a vector one, one has instead

(29)

in the retarded case, and

. 1 2 2100 sI' ( ) d' 1 2 d [ 100 1 ( ) ,]
Mvl' + 2g X _oo;¡h xs r + 2g X dr vI' -00 -;J1 XS dr

in the time-symmetric one. If 9 vanishes, Eqs. (27) and (29) reduce to the "Lorentz-Dirac"
equation.

In aHof these cases, the partide can perform a hyperbolic motion described by Eq. (25)
in a constant electric field E. However, for a singularity of a neutral vector meson field
obeying Eq. (27) the amplitude must satisfy the relation [28]

M 2 2-- + 9 X !¡(ax)J(¡(ax) = -eE,
a (31)

where 1 and J( are the modified Bessel functions of the order indicated. Similarly, a
singularity of a neutral scalar meson field obeying Eq. (29) can perform such a motion
provided the amplitude a satisfies the relation

(32)

Unfortunately, Eqs. (31) and (32) cannot be solved analyticaHy for a. It is convenient to
introduce an "effective mass" Me. ¡.e., a quantity taking the role of M in the hyperbolic
motion (25), by

(33)

For weak ficlds, ¡.e., smaH E and thllS large a, Me approaches M - !g2X and jV[ + !g2X,
respectively. Its general behavior is shown in Fig. 3, dcrivcd from Eq. (31), and in Fig. 4,
dcrived from Eq. (32), as a fllnction ofaX. Thus, llnlikc Ncwtonian mechanics, thc inertial



676 PETERHAVAS

.I/-.lf,
,.. M, -Al

"' -.,-, -M-

" "

"'
,.

"' "

'"

FIGURE 3. "Effective mass" behavior oí a
singularity of a neutral vector meson field
with retarded self-interaction in hyperbolic
motion.

FIGURE5. Circular motion of a singularity
of a neutral vector meson fielddue to its re-
tarded self-force.

FIGURE 4. "Effective mass" behavior oC a
singularity of a neutral scalar meson field
with retarded self-interaction in hyperbolic
motion.

v,

FIGURE6. Examplesofcircular motionwith
the same initial position and velocity.

property of a mass point is not necessarily characterized by a single constant in a field
theory. However, no such anomalous behavior can occur for the time-symmetric cases of
Eqs. (28) and (30), Or for either the retarded Or the time-symmetric equations of motion
of an action-at-a-distance theory of mesic interactions [14,17]. On the other hand, for the
field theoretical time-symmetric case of a singularity of a neutral vector meson field an
even mOre unusual situation can arise even in the absence of an external field [29): The
self-force implicit in Eq. (28) permits a circular motion of the partide with certain radii
and velocities depending on M, g, and X, as showing in Fig. 5. Furthermore, since the
initial velocity Vo shown there dearly is not sufficient to determine the plane of the cirde,
infinitely mallY circular motions are possible with the same vo, as illdicated in Fig. 6 [30).
This however, still does not exhaust the possible motions of the partide. As viewed

form a frame of reference movillg with a velocity of a magnitude equal to that of the
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FIGURE 7. The motion oí Fig. 5 viewed (not to sacale) írom a particular írame oí reíerence
perpendicular to vo.

FIGURE 8. Examples of possible cycloida1 molions oí Fig. 7 wilh lhe same inilia1 position and
(zero) velocily.

inilial velocity vo, but perpendicular lo it, lhe circular motion of Fig. 5 becomes the
cycloid of Fig. 7. But in this frame of reference the turning points of the cycloid have
zero velocity. Thus at any such point the plane of motion is doubly undetermined. Sorne
possible motions in one plane are indicated in Fig. 8; this plane, however, could still be
rotated about any axis within that plane passing through the cenlral point of the motions
shown [301.

Thus, while in Newlonian theory a particle at rest would remain al rest, in the particular
case under consideration it could perform a doubly infinite set of relativistic motions! This
with initial conditions which are as "Newtonian" as they could possibly be. To select one
of these motions, one would have to specify an acceleration of the magnitude appropriate
for lhe circular molion of Fig. 5 and of an arbilrary direction. Furthermore, clearly none of
lhese molions could be oblained by an approximalion method which uses the Newtonian
initial motion, i.e., no motion at all, as the first approximation.

The aboye one-particle solutions are helpful in the study of various two-particle solu-
tions. First, let us consider two unlike charges in a constant electric field, each performing
a hyperbolic motion, as indicaled in Fig. 9. Bul for the motions shown lhe lwo charges
are outside each other's light canes during their entire motion. Therefore this figure also
represents a solulion of the electrodynamic two-body problem, whether the charges were
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FIGURE 9. Two unlike charges in hyperbolic mol ion in a conslanl eleclrie field.

meant lo inleract via retarded, advanced, or time-symmetric fields [311. Clearly a solution
of this character can not arise in Newtonian lheory wilh its instantaneous interactions,
and can not be obtained slarting from a Newtonian solulion as the lowest approximalion.
11 was discovered in 1949 and is the first example of a motion having event horizons
(allhough lhis lerm was invented much laler). \Vhile lhe case shown in Fig. 9 represenls a
one-dimensional mOlion, dearly molions of similar characler can be obtained for partides
moving along parallel lines rather than along lhe same one.

The examples involving hyperbolic molion required the presence of an external field.
An example of a one-dimensional inleraclion which permils molions wilh sorne properties
similar to those considered, but withoul the need for an external field, was given by
Slaruszkiewicz [321. In lhe nolalion used here, it amounts to laking 11 in Eq. (19) as

(34)

where () is lhe step funclion. Then a possible solution is shown in Fig. 10; if the partides are
wilhin each other's lighl eones, they interact with a constant force and therefore perform
hyperbolic motions, if they are outside, there is no interaction. Thus in the example shown
there is a time interval in which both partides are at resto \Vhile Staruszkiewicz originally
thought that his solution was specified by initial positions and velocities, it was pointed
out thal within the time interval just considered no such specification was possible; on the
contrary, at times such as ti or t2 not only the velocities, but also all of their derivatives
vanish. Therefore the conditions al these two times are indistinguishable and thus no
specification by initial conditions is possible at al!. Only a knowledge of the past motion
would allow the prediction of the future one.

The interaction (34) was chosen in Re£. [321 because its adjunct field theory is that of
the electrodynamics of one spatial dimensiono If this (physically meaningless) requirement
is dropped, one can introduce four-dimensional interactions of the form 1331
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FIGURE 10. A possible motion of two partides witb one-dimensional interaction described by
Eq. (34) (Staruszkicwicz).

z,

el

T

FIGURE 11. A possible motion oC four particles with three-dirnclIsional interaction described by
Eq. (35).

or

11 = ¿¿9;9j J J lJ(s¡j)W;jdT;dTj,
.<]

(35)

which have properties similar to that of (34). Gne can then have a motion of two partides
in ane dinwllsion as in Fig. lOor of fOUTparticles in two spatial dimcnsiolls a..'~shown in
Fig. 11; fmther generalizations lo more than two pairs of partic1," art' ¡""sibIl'. It shonld
be noted that al! theS(' solntions as wel! as that of Starnszkiewicz an' 1101/.1I110/9Iic.
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FIGURE12. Circularmolionof lwounlikechargeswilh lime-symmelricinleraclion (Smilh, Schild).

Inslead of these unfamiliar interactions of unknown physical significance let us now
return to the case of electrodynamics. In the following, only time-symmetric interactions
will be considered to avoid the complication introduced by the possible presence of radia-
tion reaction terms in the equations of motion. Such interactions do not pose any difficulty
concerning causality here or in any other examples considered in this paper since we are
only concerned with elosed systems of partieles [34].
The simplest two-body solution for unlike charges of equal magnitude of e/m is one

where both charges move along the same cirele at opposite ends of a diameter [35,361,
as shown in Fig. 12. However, this is not the only possible circular motion. As shown
by Chern and Havas [29]' two unlike, or even two like, charges can also move in parallel
cireles in two planes separated by a distance d if certain relations between the masses,
charges, radii, and d are satisfied. Here only the case of equal radii will be illustrated.
Qne can have synchronous motion with the two charges on the same side of the cireles as
shown in Fig. 13 (not to scale) both in top view and in perspective, or antisynchronous
motion with the two charges at opposite sides of the cireles as shown in Fig. 14.
However, the top view of the synchronous motion is identical with that of the circular

motion of a single partiele of Fig. 5, and therefore, as seen in a frame of reference moving
perpendicular to the initial velocities with the appropriate speed it will appear as in Fig. 7,
with both charges at rest at the cusps of the cyeloids. Then the figure can be rotated about
an axis passing through a cusp and joining the two charges, yielding possible motions as
in Fig. 8. Thus for two charges at rest an infinity of motions is possible in which they
move in parallel planes at right angles to the line joining them [291. In addition, of course,
there exists a further possible motion along the line joining them just as in the Newtonian
case. However, no motions as in Fig. 6 are possible except for the mirror image of Fig. 8
(not shown for darity) since, unlike the case of a single partide, there exists a privileged
planeo
The case of antisynchronous motion is more complicated and permits at most one addi-

tional circular motion, that of Fig. 12 in the plane containing the velocities of the charges
of Fig. 14; conversely, the case of the circular motion of Fig. 12 may permit two additional
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VD

FIGURE 13. Nonplanar synchronous mol ion of lwo charges wilh lime-symmelric inleraclion.

e,

FIGURE 14. Nonplanar antisynchronous motioo of two charges with time-syrnmetric interaction.

circular motians with the same initial condition, both of which are antisynchronous [30],
as shown in Fig. 15 in perspective and in side view (not to scale).

Generalizations of both the synchronous and the antisynchronous motions to more
than two particles are possible [29]' bul will not be considered here. Al! of the motions
considered aboye show that in general

e) For given laws of motion and force laws, to determine the motion of n particles
requires more than 6n initial conditions; lhere may even exist motions described by
nonanalytic functions which in some range of the variables can not be specified by
initial conditions al al!.

These motions were chosen precisely lo show that relativistic motions wit h properties
fundamental!y different from those of Newtonian dynamics are possible. man)' of which
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FIGURE15. Three possible motions oC two charges with time-symmetric interaction and the same
initial positions and velocities (in side view and in perspective, not to scale).

do not even posses a Newtonian limit, ¡.e., a non-trivial limit if one lets ego to zero in
the expressions describing the orbits.

However, it is also possible to have a relativistic dynamics with properties which al-
low a variety of solutions like those of Newtonian dynamics, as shown by Havas and
Plebanski [1]. In the equations of motion (18) we chose for the functions gij

gij = K{.
Then Eqs. (18) reduce to

mia; = L::{(z; - zj')fij(S;j)} K;=O'
jf:.i •

Prom the definitions (13) and (15) the vanishing of ,,; is equivalent to

in three-dimensional notation, and similarly the spatial components of Eq. (3) are

(36)

(37)

(38)

mi d Vi (ti) ~[ ()] [( )2 2( )21 ()JI _ 2/ 2 dt JI _ 2/ 2 = ¿ ri(ti) - ri tj f;j ri - rj - e ti - tj. 39
Vi e t Vi e jii

For motions such that at aH times t

[ri(t) - rj(t)1 . Vi(ti) = O,

one gets from Eq. (38)

i,j=l ....• n, (40)

tI = t2 = ... = tn = t, (41 )
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and therefore Eq. (39) reduces to

mi d Vi

JI - vl!c2 dtJI - V[ /c2
=¿rijf;j(rij),

Ni
(42)

where the right hand side is identical to that of Eq. (6) except for notation. Similarly, the
right hand side will differ from that of Eq. (6) only by a constant factor, provided only
that the motion is such that

v; = consto (43)

Then Eq. (42) becomes identical to Eq. (6) with a modified, but constant, mass. Therefore
any motion which satisfies Eqs. (42) and (43) is a solution of the relativistic equations
of motion (37) as well as of the Newtonian ones (6) or, equivalently, any such solution
of (6) is also a solution of a relativistic n-body problem, provided only that the additional
restriction

i = 1, ... , n, (44)

holds at all times. In particular, this is true for all homographic motions satisfying Eqs. (42)
and (43). As noted in f) aboye, these have been fully classified in the Newtonian case in
Re£. [71; it was also shown there that of the various Newtonian types possible four different
types of solutions are also possible for the relativistic case of Eq. (42) for very general
forces, and additional types of such motions can be obtained in special cases.

All the solutions of the two- and many-body problems for relativistic equations of
motion other than Eqs. (42) considered aboye are also homographic, However, unlike the
Newtonian case e), the relativistic result E) holds. Therefore, instead of f), in relativistic
dynamics one has

F) For n > 1, the only known exact solutions are those with homographic motion; sorne
of these are nonanalytic.

While the solutions just discussed of the equations of motion (42) are analogous to
the Newtonian ones, this by itself does not assure that there are no other solutions with
the same initial conditions. Unfortunately, the conditions (36) render these equations
verO' difficult to integrate for motions which are not homographic. OnlO' in the case of
the motion of two particles along the sallle straight line has it been possible to show
that under certain conditions Newtonian initial conditions are sufficient to determine the
motion [1].

5. CONCLUSJONS

The particular features of ""ewtonian dynamics emphasized in Sect. 2 were described
in the statements a) through f), and the corresponding [eatures of special relativistic
dO'namics were investigated in Sects. 3 and 4 and sumlllarized in the statelllents A)
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through F). Particular attention needs to be deyoted to the fact that in special relatiYistic
dynamics, including electrodynamics, in general the specification of initial positions and
yelocities is not sufficient to determine the motion and that solutions may exist which
haye no Newtonian ana/ogue and no Newtonian /imit; in such solutions, charges which
in Newtonian theory will always attract or always repel each other depending on their
signs, may attract or repel each other, or not interact at all, depending on the oyerall
character of the motion. The fact that there may not exist a continuous transition to such
motions from Newtonian ones may not be releyant physically once quantum analogues are
considered because quantum theory, of course, allows discontinuous transitions. Thus one
might arrive at new physical phenomena just as one arrived at the quantum phenomenon
of pair creation from the apparently irrelevant classical special relativistic result that
for the same momentum a particle could have either positive or negative energy, but
where negative energies could be excluded since they were not accessible classically by a
continuous transition from states of positive energy.

Thus special relativistic dynamics reveals many, possibly physically important, features
not encompassed by Newtonian theory. The question arises naturally whether such fea-
tures and possibly even more unexpected ones could also arise in the general theory of
relativity. Unfortunately, we seem to be quite far from being able to attack this problem.
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