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ABSTRACT. The algebraic classification of totally symmetric spinors and of trace-free totally
symmetric tensors in three-dimensional spaces is considered. The geometric properties of a family
oC geodesics in a space with positive definite metric are expressed in terms oí a one-index spinor
that determines a vector field tangent to the geodesics. The usual massless free field equations in
Oat space-time are written as evolution equations for spinor fields in three-dimensional space.

RESUMEN. Se considera la clasificación algebraica de los espinores totalmente simétricos y de los
tensores sin traza totalmente simétricos en espacios tridimensionales. Las propiedades geométricas
de una familia de geodésicas en un espacio con métrica definida positiva se expresan en términos de
un espinor de un Índice que determina un campo vectorial tangente a las geodésicas. Las ecuaciones
usuales para campos libres sin masa en espacio-tiempo plano se escriben como ecuaciones de
evolución para campos espinoriales en el espacio tridimensional.

PACS: 02.40.+m; 03.50.De; 11.10.Qr

l. INTRODUCTION

This is the third of a sequen ce of papers devoted to the spinor formalism in three-
dimensional spaces and its applications. In any three-dimensional riemannian space, a
spinor calculus similar to that employed in the four-dimensional space-time of general
relativity can be developed (see, e.g., Refs. [1,2]). An important di!ference, however, is
that in any three-dimensional space there exists a natural antilinear mapping of the spin
space onto itself [2].
In this paper we consider the algebraic classification of totally symmetric spinors and

that of trace-free totally symmetric tensors by spinor methods. \Ve show that the geo-
metric properties of a family of geodesics in a space with positive definite metric can be
characterized in a form analogous to that found in the case of a family of null geodesics in
general relativity. The massless free field equations are written in terms of SU(2) spinors
and we show that the electromagnetic field determines one or two real vector fields, which
are the spatial parts of the principal null directions of the electromagnetic field (see,
e.g., Re£. [3] and the references cited therein). In Sect. 2 we summarize the necessary
background material of Refs. [1,2] and we consider the e!fect of complex conjugation
on the spinor equivalent of a tensor. In Sect. 3, following the method employed in the
spinor formalism of general relativity, the algebraic classification of totally symmetric
spinors and of trace-free totally symmetric tensors is outlined. In Sect. 4, the geometric
properties of a family of geodesics in a space with positive definite metric are expressed
in terms of a one-index spinor associated with a vector field tangent to the geodesics
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and the geometrical interpretation of sorne of the spin-coefficients is given. In Sect. 5
the usual massless free field equations are written in space-plus-time formo In the case of
the electromagnetic field it is shown that the spinor equivalents of the Poynting vector
and of the Maxwell stress tensor have very simple expressions. Throughout this artic!e,
lower-case Latin indices a, b,... , range over 1, 2, 3 and capital Latin indices A, B, ... ,
range over 1, 2.

2. PRELIMINAIUES

In this section we summarize sorne basic facts needed for this papero A more detailed
discussion can be found in Refs. [1,2]. lf tab...e denote the components of an n-index
three-dimensional tensor relative to an orthonormal basis, the components of its spinor
equivalent are defined by

tABCD ...EF == (.haa AB) ( -.7za
b
CD) ... (~ae EF) tab...e,

where the connection symbols aaAB are such that

The spinor indices are raised and lowered according to

(1)

(2)

(3)

where

and

(4)

if a = b.

if a f- b.

From Eqs. (1-2) it follows that

aa ABab CD9ab = -(EACEBD +EADE/JC),

t ...a ... - -t S ... AB ...
... a ... S - ...AB... .

(5)

(6)

(7)
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In three dimensions there are two inequivalent signatures, which can be taken as (+++)
and (+ + -). Following Refs. [1,2], in the case where (gab) = diag(l, 1, 1) we choose

(¡O)(a2AB) == O ¡ , ( O -1)(a3AB) == -1 O' (8)

which satisfy Eqs. (2) and, under complex conjugation,

-- ABUaAB = -ua , (9)

while in the case where (gab) = diag(l, 1, -1), we choose the solution of Eqs. (2) given by

which obeys the relations

where

(¡O)(a2AB)== O ¡ ,

-- RSaaAB = -'lAR 'lBS aa

(
O ¡)

(a3AB) == ¡ O ' (lO)

(11)

(12)

The mate of a spinor 7/JA, denoted by ;¡,A, is defined by [21

. {7/JA if (gab) = diag(l, 1, 1),
7/JA ==

'1AB7/JB if (gab) = diag(l, 1, -1),

or, equivalently,

• { -7/JA if (9ab) = diag(1, 1, 1),
7/JA ==

-'1AB7/JB if (gab) = diag(l, 1, -1),

where, in accordance with the rules (3), '1AB = £GA£DB'¡GD, ¡.e.,

Note that '1AB ,¡BG = -6f Making use of Eqs. (13-14) we obtain

(13)

(14)

(15)

if (gab) = diag (1,1,1),

ir (gab) = diag(l, 1, -1),
(16)
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and

__ { &Ai3A if (g.b) = diag(l, 1, 1),
nAPA =

A'-& PA if (g.b) = diag(l, 1,-1).
(17)

The mapping 1/JA f-+ ,j;A is antilinear and in the case where (g.b) = diag(l, 1, 1) it is,
exeept for a factor, the .time reversal operation (see, e.g., Refs. [4,5]).

If,j;A = )..1/JA,then ,j;A = X,j;A = 1)..121/JA and, eomparing with Eqs. (16), we see that
only in the case where the metrie is indefinite there exist nontrivial solutions of

(18)

and neeessarily 1)..1 = 1.
Sinee the eonneetion symbols (T.AB can be eomplex [Eqs. (8) and (10)1, the spinor

eomponents tAB ...EF given by Eq. (1) may be eomplex even if t.b...e are real. The eomplex
eonjugate of the n-index tensor t.b...e is defined by

tab ...c = tab ...c' (19)

(Sinee the eomponents t.b...e transform by means of real matrices, the eomponents t.b...e
also eorrespond to a tensor.) Using Eqs. (1), (9), (11) and (19) one finds that the spinor
eomponents of t.b ...e, denoted by tAB ...EF, are given by

{

(_lttAB ...EF

tAB ...EF =
(-l)n1]AR 1]BS .. '1]ET 1]FU tRS ...TU

if (g.b) = diag(l, 1, 1),

if (g.b) = diag(l, 1,-1),
(20)

where n is the number of indiees of t.b...e (ej. Re£. [2]' Eqs. (33) and (42)). Thus, in
general, the spinor eomponents of the eomplex eonjugate of a tensor, tAB ...EF, do not
coincide with the eomplex eonjugates of the spinor eomponents of that tensor, tAB ...EF.

(In fact, with (T.AB given by Eqs. (8) and (10), tAB ...EF and tAB ...EF do not transform in
the same manner under the spin transformations.)

3. ALGEBRAIC CLASSIFICATION

As in the case of four-dimensional spaees, the faet that eaeh spinor index can take only
two values and that the spin transformations are given by unimodular matrices imply
that the irreducible parts of an arbitrary spinor eorrespond to totally symmetrie spinors
and eaeh totally symmetrie n-index spinor rPAB ... L can be expressed as the symmetrized
tensor produet of n one-index spinors [3]

(21)
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where the parenthesis denotes symmetrization on the indices enclosed (e.g., Ci(AI3B) =
4(CiA13B + CiBI3A))' This decomposition is unique except for scale factors. The existence
and uniqueness of the expression (21) is a consequence of the fundamental theorem of
algebra. If (A is an arbitrary spinor then assuming, e.g., e # o,

<PAB...L e(B ... (L = <P1l...I(e t + n<p21...1(e t-Ie + ... + <P22...2(et

= (et{ <P1l...I(e let + n<p21...I(elet-I + ... + </122...2}

hence, (e)-n<pAB ...L e(B ... (L is an nth degree polynomial in ((1 le) which can
be factorized in the form <P1l...I(e le - zl)(e le - Z2)'" ((1 le - Zn); therefore,
<PAB...L e(B ... (L = <P1l...I(e - Zle)((1 - Z2e) ... (e - Zne), which is the product
of n homogeneous first degree polynomials in (A, i.e.,

(22)

which implies Eq. (21). The spinors CiA, I3A, ... , áA, appearing in Eq. (21) are called
principal spinors of <PAB...L. Equation (22) shows that (A is a principal spinor of <PAB...L
if and only if <PAB...L(A(B ... (L = o.
The tensor tab...e is trace-free and totally symmetric if and only if its spinor equivalent

tAB ...EF is totally symmetric (see, e.g., Ref. [6]). Thus, according to Eq. (21), if tab...e is
an n-index trace-free, totally symmetric tensor, tAB ...EF can be expressed in the form

(23)

and making use of Eqs. (13) and (20) it follows that

(24)

As in the case of the spinor formalism employed in the four-dimensional space-time of
general relativity, the totally symmetric spinors of a given rank can be classified according
to the multiplicity of their principal spinors. However, in the case of three-dimensional
spaces, when two principal spinors are not proportional, a further subclassification can
be obtained according to whether one of them is proportional to the mate of the other or
noto
The simplest nontrivial case of this algebraic classification corresponds to a two-index

symmetric spinor, VAB, which is equivalent to a (possibly complex) vector Va [Eqs. (1)
and (5)1. The components VAB can be expressed as

(25)

hence

(26)
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(ej. Eq. (7)). The vector Va is real if and only if Q(Af3B) = -Ó(A~B) [Eqs. (23-24)) which
leads to the following two possibilities:

• 1
f3A = -r f3A, (27)

which can be satisfied only if the metric is indefinite, with IAI = 1, and

(ii) ÓA = Af3A, (28)

By combining Eqs. (28) one obtains,

(29)

When the metric is positive definite, only the case (ii) is viable and comparing Eqs. (16)
and (29) we see that A must be real. If A is positive, from Eqs. (25) and (28) we have
VAB = Q(AA-1ÓB) = A-1/2Q(AA-1/2ÓB); hence, absorbing the (real) factor A-1/2 into QA
we find that

(30)

If A is negative, Eqs. (25) and (28) give VAB = -A~(Af3B) = (-A)-1/2~(A(-A)-1/2f3B),
which is also of the form (30).
On the other hand, when (gab) = diag(l, 1,-1), in the ease (i) A must be of the form

eíO; then, from Eq. (27) we have (eí(~-~)QAY = e-í(~-~)eiOQA = i(eí(~-~)QA) and,

similarly, (e-í(~-~)f3AY = i(e-í(~-~)f3A)' By rewriting Eq. (25) in the form VAB =

eí(~-~)Q(Ae-í(~-~)f3B) and absorbing the factors e"i(~-~) into QA and f3A, we find that
in the case (i) VAB can be expressed as

(31)

Using Eqs. (17) and (26) one finds that the vectors of the form (31) are such that vava ;::O.
In the case (ii), Eqs. (16) and (29) give A = :J:iIAI; then, from Eq. (28), we have

IAI1/2f3A = :J:iIAI-1/2ÓA. By expressing Eq. (25) in the form VAB = IAI-1/2Q(AIW/2!JB)
and absorbing the factors IAI'f1/2 into QA and f3A, we conclude that in the case (ii) VAB
can be expressed as

(32)

From Eqs. (17) and (26) it follows that Eq. (32) corresponds to a real vector such that
vQva ~ O.
In the special case where VaVa = O, Eq. (26) implies that VAB must be of the form

VAB = QAQB and VAB corresponds to a real vector if and only if QAQB = -ÓAÓB, which
amounts to ÓA = :J:iQA; therefore, the spinor equivalent of a real null vector is of the form

(33)
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As a second example we consider a four-index totally symmetric spinor <I>ABCD which is
equivalent to a trace-free symmetric tensor <I>.band, according to Eq. (21), can be written
as

<I>ABCD = G:(Af3B1ClíD).

Making use of Eqs. (23-24) one finds that <I>.bis real if and only if

(34)

(35)

In the case with signature (+++), condition (35) severely restricts the possible multiplic-
ities in the principal spinors of <I>ABCD. In fact, it is easy to see, with the help of Eq. (16),
that the only possible algebraic types are

(36)

By contrast, when the metric is indefinite, the solutions of Eq. (35) are of the form

<I>ABCD = iG:(Af3B1C'YD),

<I>ABCD = :l::G:(AQBf3C&D),

<I>ABCD = G:(AG:Bf3C1D),

<I>ABCD = :l::iG:(AG:Bf3C&D),

with ÓA = iaA, &A = if3A, 'YA = hA,

with DA = iQA,

with ÓA = iQA, &A = if3A,

with QA = iG:A' (37)

Making use of the identity

and Eq. (6), a straightforward computation shows that if VAB = G:(Af3B) and WAB =
1(Alía). then Eq. (34) amounts to
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or, equivalently,

(40)

where v. and w. are the vector equivalents of VAB and WAB, respectively.
In the case of the tensors represented by Eqs. (36), the only combinations of the

principal spinors that produce real vectors are :!:<>(AÓB) and :!:/3(APB)' Therefore, in a
three-dimensional space with positive definite metric, at each point where it does not
vanish, a trace-free symmetric tensor field 4>.b determines at least one and at most two
real directions. Since any two-index symmetric tensor can be expressed as the sum of a
trace-free symmetric tensor and a multiple of the metric tensor, the same conclusion holds
for any two-index symmetric tensor (cJ. Secl. 5.2).

4. CONGRUENCES OF CURVES

In this section we shall restrlct ourselves to spaces with a positive definite metric. Then,
as shown in Eq. (30), any real vector t. can be expressed in the form

(41)

Proposition. The vector field (41) is tangent to a geodesic if and only if

Note that <>AóBV' AB = -t.V'a is real and, according to Eqs. (13-14), the complex con-
jugate of Eq. (42) is

Proof. Using the identity (38) we see that for an arbitrary spinor ~A,

hence,

A.B..., 1 (. D A.B..., .D A.B..., )<> <> v AB<>C = ----¡¡;:- <>c<> <> <> v AB<>D - <>C<> <> <> v AB<>Do QR

and, similarly,

A.B • 1. D A-Jj • .D A.B .)<> <> V'AB<>C = ----¡¡;:- (<>c" <> <> V' AB<>D - <>C<> <> <> V' AB<>D .
<> <>R

(44)
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Thus, the spinor equivalent of tavatb is given by

-tABVABtCD = -OAÓB(O(CVABÓD) + Ó(D VABoC»)

1 { _ E A- BM - - E A- BV -= --¡¡::- O(COD)O O O v ABOE - 0CODO O O ABOE
O 0R

1 { A- BM (E - ) - E A- BM -= --¡¡::- tCDO O v AB O 0E - 0CODO O O v ABOE
O OR

- - E A- BM }+OCODO O O vABOE , (45)

which is proportional to tCD if and only if Eqs. (42-43) are fulfilled.
From Eqs. (45) it also follows that (41) is tangent to an affinely parameterized geodesic

if and only if, in addition to Eq. (42), oAÓA is constant along the geodesic.
Given a congruence of curves (¡.e., a family of curves such that through each point

there passes one curve in this family) we define a spinor field 0A such that

tAB = O(AOB)

are the spinor components of a tangent vector to the congruence and
A- 1° °A= .

(46)

(47)

Note that tata = ~ [Eq. (26)) and that Eqs. (46-47) define 0A up to a factor of the form
ei~.Making use of the definitions

" = oAoBoCV °- AB C,

A -B CM
Q == o o o v ABDe,

or, equivalently,

(3 A B -CM A B CM -== o o o v ABDe = o o o v AnDe,

A B-CM -
P == ° ° ° v ABoC,

A-B-CM A-B CM -~ == ° ° ° v ABoC = ° ° ° v ABOC,

- _ -A-B-CM -
1\, = -o o o V ABDe,

- A -B -CM -
Q == o o o V ABDe,

-(3 -A -B CM - .A -B -CM== ° ° ° v ABOC = ° ° ° v ABoC.

- .A.B CMP ;; -o o o vABDe,

- A-B CM' A.B,CM
é == -o o o v ABDe = -o o o V AuDe,

(48)

(49)
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which amount to Eqs. (31a-c) of Ref. [1)with

D A-Ba= -o o AB, -ó -A -Ba= -o O AH, (50)

from Eq. (42) we see that D = taaa = -tABaAB is tangent to a congruence of geodesics
if and only if a = O.
Using Eqs. (47) and (48) one finds that under the transformation 0A >-> eiO/2oA, where e

is a real function, which preserves conditions (46-47), the spin-coefficients (48) transform
according to

p>-> p,

I
£ >-> £+ "iDe,

(51)

which are precisely Eqs. (39) ofRef. [1).Therefore, choosing e in such a way that De = 2i£
the new £ vanishes. In particular, if D is tangent tú a congruence of geodesics, a = Oand
we can always make £ = O.Equations (44) and (48) show that a and £ vanish if and only
if °A (and hence oA) is covariantly constant along the geodesics,

A -B'<7 O° ° v ABoC = .

This last condition implies that the triad D, Ó and ti is parallelly transported along the
geodesics.
Given a system of coordinates x" (/1 = 1,2,3), the functions x"( u, v) define a one-

parameter family of geodesics if for a given value of v, the curve x"(u) = x"(u, v) is
geodetic. The vector field (" '" ax"(u, v)/av measures the displacement of neighbor-
ing geodesics and ti' '" ax"(u, v)/a" is tangent to the geodesics. Then, tl'a(" /ax" =
a(" /a" = a2x"/a"av = at" /av = ("at" /ax" or, equivalently,

[t,(] = O, (52)

where t and ( are the differential operators (or vector fields) t = t"a/ax", ( = ("a/ax".
Any vector field (a satisfying Eq. (52) is said to be a connecting vector of the congruence.
(Equation (52) means that the Lie derivative of (a with respect to ta vanishes.)
Writing t = D and ( = ID + wÓ+ wti, where I is a real function and w is a complex

function, making use of Eqs. (33) of Ref. [1] and the properties of the commutator (or
Lie bracket) one finds that

[t,(1 = (DI + 2aw+ 2aw)D + (D¡¡¡+(2£ - p)w -KW)Ó

+ (Dw + (-2£ - p)w - ,,¡¡¡lb,

hence, assuming £ = U, ( is a connecting vector for a congruence of geodesics with tangent
vector D if and only if

DI =0 (53)
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and

Dw =pw+KW. (54)

Equation (53) implies that if ( is orthogonal to D at sorne point of a geodesic, then it
is orthogonal to D along that geodesic. (Note that D = (1/Y2)d/ds, where s is the are
length.) In what follows we set f = O; therefore, ( is orthogonal to the congruence of
geodesics everywhere and we can write

(= x81 + y~,

where 81 = (6+8)/Y2, ~ = i(8 - 6)/Y2 form an orthonormal basis of the normal planes
to the geodesics and

W = ~(x + iy). (55)

In order to find the geometrical interpretation of the functions S == Re p, w == 1m p
and K, we consider first the case where K = O and w = O, then substituting Eq. (55) into
Eq. (54) one finds that Dx = Sx, Dy = Sy, which means that as one moves along a
geodesic, any connecting vector ( orthogonal to D expands (S > O) or contracts (8 < O),
maintaining its orientation with respect to the axes 81 and 82, ¡.e., the congruence is
expanding (S > O) or contracting (S < O). In fact, using, e.9., Eq. (42) of Ref. [11 it
follows that div D = 2S.
When K = O and S = O, Eqs. (54-55) give Dx = wy, Dy = -wx, which corresponds

to a rigid rotation of the connecting vector relative to the axes 81 and ~. If p = O
and K is real, from Eqs. (54-55) we get Dx = KX, Dy = -KY, which correspond to a
volume-preserving shear with principal axes 81 and ~. When K is complex then, at a
given point, K is of the form K = IKoleixo and from Eqs. (51) one finds that under the
transformation 0A •....•e-ixo/40A (which preserves the condition é = O and corresponds to
a rotation through an angle -Xo/2 about D), K •••••• IKol at that point. Therefore, Eq. (54)
with p = O and K complex corresponds to a volume-preserving shear with principal axes
that form an angle -(arg K)/2 with respect to 81 and ~.
Thus, D is tangent to a shear-free congruence of geodesics if and only if a = K = O

which, according to Eqs. (48), is equivalent to the condition

(56)

Similarly, the vector field (41) is tangent to a shear-free congruence of geodesics if and
only if

(57)

even if nAÓA is not constant. Indeed, assuming that QA is different from zero, we
can define OA == (oRóR)-1/2(Q, which satisfies Eq. (47), then oA oC '\7ABOC =
(oRón)3/2oAoC'\7 ABOC = O, where we have marle use of Eq. (56).
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5. MASSLESS FIELDS

In this section we consider the usual massless free fieId equations in f1at space-time. These
equations are written here in terms of SU(2) spinors, in a form that is manifestly covariant
under spatial rotations only.

5.1. Weyl neutrino field

The Weyl neutrino equation for the two-component neutrino field, !/J, is given by

1 a
-;; at!/J = u . \1!/J,

where the aa are the Pauli matrices [7,8] or, equivalently,

mB lav 2 \1 A!/JB = -- -a !/JA'e t

(58)

(59)

Making use of Eqs. (14) and (20) one finds that the complex conjugate of Eq. (59) is

mB' la,
v2 \1 A!/JB = - -a !/JA.c t

(It may be noticed that -$A satisfies the equation for the antineutrino [7,8].)
Equations (59-60) lead to the continuity equation

which is of the form divJ + aPn/at = O,with

(60)

_ A'
Pn =!/J !/JA. (61)

(Using Eq. (26) we obtain Ja!" = c2pn2, ¡.e., IJI = PnC; hence, the four-vector (Pnc,J) is
nul!.)
Looking for plane wave solutions of Eq. (59) of the form!/JA = QAei(k.x.-wt), where the

xa are cartesian coordinates, and ka and QA are constant, we get

m B Wv2k AQB = -QA,
C

(62)

where kAB are the spinor components of ka. Since ka is real, from Eq. (30) it follows that

(63)

(The minus sign appearing in Eq. (63) corresponds to the fact that, for a neutrino with
positive energy, the spin and the momentum are antiparalle!.)
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5.2. Eledromagnetie field

As shown in Re£. [1]' the souree-free Maxwell equations in vaeuum can be written as

mc la
v2V' (A FB)c = e at FAB, (64)

where FAB are the spinor eomponents of the eomplex vector field F _ E + iB (eJ.
Eqs. (59-60)). The Maxwell stress tensor, Tab, is given by 411'Tab= EaEb + BaBb -
!(EcEC + BcBC)gab = F(aFb) - !FcF" 9ab; therefore, making use of Eqs. (6), (7) and
(38) one finds that the spinor equivalent of Tab is given by 1611'TABCD = 2(FABF CD +
FABFcD) - FRSFRS(eAceBD +eBceAD) = FAcFBD + FADFBc + FBDF AC+ FBCF AD,
l.e.,

CD (C- D)411'TAB = F(A F B) (65)

Similarly, using Eq. (16) of Re£. [lj, one finds that the spinor equivalent of the Poynting
vector, S = (e/411')E x B = (ie/811')F x F, is given by

e - R
SAB = mFR(A F B) .

411'v2

The symmetry of FAB implies that

(66)

(67)

(eJ. Eq. (21)). Thus, FaFa = -FABFAB = !(QA /3A)2. On the other hand, FaFa =
EaEa - BaBa + 2iEaBa = E2 - B2 + 2iE. B; therefore, /3A = .\QA if and only if E2 = B2
and E. D = O. I3y absorbing the factor .\1/2 into QA, we obtain

(68)

where the principal spinor QA is defined up to signo The eleetromagnetie fields with
E2 = D2 and E. D = O are ealled degenerate, algebraically special, null or pure radiation
fields.
The principal spinors QA and /3A of FAB define the real vector fields

(69)

It may be noticed that QA and /3A are defined by Eq. (G7) up to the transformation
QA •....•.\QA, /3A •....•.\-I/3A, which induces the transformation Va •....•1.\12va,Wa •....•i.\I-2wa,
on the vector ficlds (G9).This means that a nondegenerate electromagnetic field defines, at
each point of the space, two real vectors whose direction and sense are uniquely defined.
In general, the direction of Va or Wa does not coincide with that of the electric or the
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magnetie field. Substituting Eq. (67) into Eq. (66), making use of Eqs. (24) and (38), one
finds that

e (R R")SAB = ro o QRWAB + f3 f3RvAB ,
811'y 2

whieh, by virtue of Eq. (26), amounts to

(70)

(71)

Thus, S is a linear eombination of v and w and it makes equal angles with v and w. On
the other hand, from Eqs. (24), (65) and (67) it follows that the spinor equivalent of the
trace-free part of the Maxwell stress tensor, Tab = Tab - !Tc cgab, is given by

(72)

therefore (eJ. Eqs. (39-40))

and

Using Eqs. (26), (38), (65), (67) and (69) we obtain

4 T C C 1P pAB AB 3 Af3 "Bf3"
11' C + V Wc = 2" AB - V WAB = -40 A o B

therefore,

(73)

In the case of a degenerate eleetromagnetie field [Eq. (68)], Eqs. (71) and (73) reduce
to

e
S = -Ivlv,

411'
(74)

If the eleetromagnetic field satisfies the souree-free Maxwell equations (64), the vector field
v (and henee S) is tangent to a shear-free eongruenee of geodesies. (This result is a special
case of the Mariot-Robinson theorem [9,10] whieh applies in eurved space-time.) Indeed,
if PAB = OAOB represents an algebraieally special eleetromagnetie field that satisfies the
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source-free Maxwell equations, the only nonvanishing component of FAB with respect to
the triad defined by

(75)

is F22; then, making use of the Maxwell equations in the form given by Eqs. (66) of
Ref. [1J, one obtains

and

K = Q = O,

(6 - 2{3)F_1 = O,

I 8
(D + 2" + p)F-! = - ro -8 F_1,

y2e t

(76)

(77)

where F_1 = F22 (ef. Eqs. (41) of Re£. [1]). Equations (76) imply that the eongruence
with tangent vector VAB = Q(AñB) is shear-free and geodetic.
Conversely, given a shear-free congruence of geodesics, there exists an algebraically

special solution of the source-free Maxwell equations FAB = QAQB such that Q(AñB) is
tangent to the congruence. Indeed, by choosing the triad D, 6, Ó, in such a way that D
is tangent to the congruence, 1< = Q = o. Rence, the source-free Maxwell equations for
an electromagnetic field with Fu = F12 = Oreduce to Eqs. (77). Since [D,6] = (2e - p)6
(Ref. [1), Eq. (33)), the integrability condition of Eqs. (77) is

D(2{3F_¡) - 6 (( -2e - p)F_1 - ~ e :t F_1) = (2e - p)2{3F_1•

Using again Eqs. (77) and Eqs. (58b-c) of Ref. [1]one finds that this condition is satisfied
identically. The solution of Eqs. (77) is not unique; in fact, it contains an arbitrary analytic
function of two complex variables. For example, the straight lines through a given point
form a shear-free congruence of geodesics. In fact, if we introduce the triad

1 (8 i 8)
6 = V2 r 80 + sin O 84> '

- 1 (8 i 8)6 = - - - - - (78)V2 r 80 sin O 84> '

where r, O, 4> are spherical coordinates, then D is tangent to the congruence and it is easy
to see that the spin-coefficients are [1)

K = Q = E = O,
I

{3 = - ro cotO,
2y2r

Substituting Eqs. (78-79) into Eqs. (77) one finds that

1
p= V2r. (79)

_ 1 ( o -i<l»F_! - -.-0 f r - et, cot"2e ,
rSIn
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where f is an arbitrary analytic function. However, in this case, for any choice of the
function f, F-1 will diverge in sorne direction.

5.3. The massless free field eJ¡uations for arbitmry spin

The massless free field equations for spin s are given by

../2 \1R A. _ :f:1 a A.
(A'I'B ... L)R - ~ at 'l'AB ... L, (80)

and

\1ADA. - o,+,A8 ... L - 1 (81)

where rPAB ... L is a 2s-index totally symmetric spinor and the sign in the right-hand side
of Eq. (80) depends on the helicity of the field (ef. Eqs. (59-60) and (64».
Let

J,AB ... L == c/>AB... L (82)

(or, equivalently, J,AB ... L = (-1)2'rPAB ...L, ef. Eqs. (13-14) and (20», then, Ilsing the fact
that \1AB= \1i, it can be readily seen that Eqs. (80-81) are eqllivalent to

(83)AB-\1 <PAD... L = o.rnR- la-
v2 \1 (ArPB ... L)R =:¡:~at <PAB... L,

(Hence, <PAB... L and J,AB ... L have opposite helicities, ef. Eqs. (59-60).) From Eqs. (80)
and (83) one obtains the continllity equation

~(A.AB ...L¡ ) = :f:../2e\1AR(A. B ... L¡ )at '1' 'l'AB ...L 'I'(A 'l'R)B ... L (84)

(ef. Eqs. (61) and (66». Note that c/>AB... LJ,AD ... L ~ Oand that <P(AD... LJ,R)B .. L corresponds
to a real vector field.
Aplane wave solution of Eqs. (80-81) is of the form <PAD ... L = XAB ... Lei(k.x. -w!), where

XAB ... L is constant and ka is a real constant vector. Taking into accollnt Eq. (30), from
Eqs. (80-81) it follows that

XAB ... L = O'AQE ... QL,

for sorne QA, and

(ef. Eq. (63».
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6. CONCLUDING REMARKS

Among the differences between the spinor formalism employed in general relativity and
the spinor formalism of three-dimensional spaces is the fact that, in the latter case, any
vector can be expressed in terms of two one-index spinors [Eq. (25)]. As we have shown,
when the metric has signature (++ -), the algebraic classification of the spinor equivalents
of vectors amounts to classifying the vectors according to whether v'v. 2:: O or v'v. ~ O.
In the case of a trace-free symmetric tensor, the factorization of its spinor equivalent
[Eq. (34)) leads to a canonical form [Eq. (40)1 that is not based on the eigenvectors of the
tensor.
The example given at the end of Sect. 5.2 shows that, even though Eqs. (77) are

integrable for a given shear-free congruence of geodesics, their solution may not be well
behaved globally.
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