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ABSTRACT. The algebraic classification of totally symmetric spinors and of trace-free totally
symmetric tensors in three-dimensional spaces is considered. The geometric properties of a family
of geodesics in a space with positive definite metric are expressed in terms of a one-index spinor
that determines a vector field tangent to the geodesics. The usual massless free field equations in
flat space-time are written as evolution equations for spinor fields in three-dimensional space.

RESUMEN. Se considera la clasificacién algebraica de los espinores totalmente simétricos y de los
tensores sin traza totalmente simétricos en espacios tridimensionales. Las propiedades geométricas
de una familia de geodésicas en un espacio con métrica definida positiva se expresan en términos de
un espinor de un indice que determina un campo vectorial tangente a las geodésicas. Las ecuaciones
usuales para campos libres sin masa en espacio-tiempo plano se escriben como ecuaciones de
evolucién para campos espinoriales en el espacio tridimensional.

PACS: 02.40.+m; 03.50.De; 11.10.Qr

1. INTRODUCTION

This is the third of a sequence of papers devoted to the spinor formalism in three-
dimensional spaces and its applications. In any three-dimensional riemannian space, a
spinor calculus similar to that employed in the four-dimensional space-time of general
relativity can be developed (see, e.g., Refs. [1,2]). An important difference, however, is
that in any three-dimensional space there exists a natural antilinear mapping of the spin
space onto itself [2].

In this paper we consider the algebraic classification of totally symmetric spinors and
that of trace-free totally symmetric tensors by spinor methods. We show that the geo-
metric properties of a family of geodesics in a space with positive definite metric can be
characterized in a form analogous to that found in the case of a family of null geodesics in
general relativity. The massless free field equations are written in terms of SU(2) spinors
and we show that the electromagnetic field determines one or two real vector fields, which
are the spatial parts of the principal null directions of the electromagnetic field (see,
e.g., Ref. [3] and the references cited therein). In Sect. 2 we summarize the necessary
background material of Refs. [1,2] and we consider the effect of complex conjugation
on the spinor equivalent of a tensor. In Sect. 3, following the method employed in the
spinor formalism of general relativity, the algebraic classification of totally symmetric
spinors and of trace-free totally symmetric tensors is outlined. In Sect. 4, the geometric
properties of a family of geodesics in a space with positive definite metric are expressed
in terms of a one-index spinor associated with a vector field tangent to the geodesics
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and the geometrical interpretation of some of the spin-coefficients is given. In Sect. 5
the usual massless free field equations are written in space-plus-time form. In the case of
the electromagnetic field it is shown that the spinor equivalents of the Poynting vector
and of the Maxwell stress tensor have very simple expressions. Throughout this article,
lower-case Latin indices a, b,..., range over 1, 2, 3 and capital Latin indices A, B,...,
range over 1, 2.

2. PRELIMINARIES
In this section we summarize some basic facts needed for this paper. A more detailed
discussion can be found in Refs. [1,2]. If ¢4, . denote the components of an n-index

three-dimensional tensor relative to an orthonormal basis, the components of its spinor
equivalent are defined by

tABCD..EF = (%a“ AB) (—-\};a” CD) (7150" Ep)tab__‘c, (1)
where the connection symbols 0,45 are such that

TaAB = TaBA,

i (2)
0aABOp 7 = —2gab.
The spinor indices are raised and lowered according to
Va = eap¥?, WP = ey, (3)
where
_( 0 1\ _ ap
(eaB) = (_1 0) = (") (4)
and
+1 itag=b
Gab =
0 ifa#b
From Egs. (1-2) it follows that
tab..c = (—7150,1 AB) (—%Gb CD) (—\—}zﬂfc EF) tABCD. .EF, (5)
0 450" cp9ab = —(eaceBD + £ADEBC), (6)

B B = g A (7)
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In three dimensions there are two inequivalent signatures, which can be taken as (+++)
and (4 + —). Following Refs. [1,2], in the case where (gq) = diag(1,1,1) we choose

(01AB)E((1] _‘j), (m)s(g 3) (aaw)s(_‘l’ ‘(1,), (®)

which satisfy Eqs. (2) and, under complex conjugation,
TaaB = —0, "8, (9)

while in the case where (gq5) = diag(1,1, —1), we choose the solution of Egs. (2) given by

(014B) = ((1) _(1]) y  (o24B) = (S ?) ,  (034B) = (? 8) , (10

which obeys the relations
GaAB = —TARNBS 04 (11)

where

(nas) = ((1, _‘1’) . (12)

The mate of a spinor ¥4, denoted by 14, is defined by 2]

. [vAif (gw) = diag(1,1,),
Ya = o (13)
TIABV‘)B if (gab) = diag(11 1, _1):
or, equivalently,
A ~Ya if (gap) = diag(1,1,1),
9 = { 7 (14)
-n*PYp if (ga) = diag(1,1,-1),
where, in accordance with the rules (3), nAf = ¢€4cPBpop, ice.,
agy_ (-1 0 15
=7 1) (15
Note that 745 n2¢ = —63. Making use of Eqs. (13-14) we obtain
2 —YA if (gab) = dlﬂ,g (11 1, 1)1
P4 = { (16)

va i (gap) =diag(1, 1,—1),
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and

{ &AﬁA if (gap) = diag(1,1,1),
(17)

—a" B4 if (gap) = diag(1,1,-1).

The mapping ¥4 — P4 is antilinear and in the case where (gq5) = diag(1,1,1) it is,
except for a factor, the time reversal operation (see, e.g., Refs. [4,5]).

If 1/3,4 = M4, then Y4 = Mp4 = |A|>¢4 and, comparing with Eqgs. (16), we see that
only in the case where the metric is indefinite there exist nontrivial solutions of

Pa = M\pa (18)

and necessarily |A| = 1.

Since the connection symbols g,45 can be complex [Eqgs. (8) and (10)], the spinor
components t4p_ gr given by Eq. (1) may be complex even if ¢4 are real. The complex
conjugate of the n—index tensor ¢, . is defined by

tab...c = tab...c» (19)

(Since the components tg5. . transform by means of real matrices, the components t4p.. .
also correspond to a tensor.) Using Egs. (1), (9), (11) and (19) one finds that the spinor
components of #4, , denoted by tap...EF, are given by

_ (=1)*¢AB..EF if (gop) = diag(1,1,1),
tAB.EF = (20)

(=1)"narnBs - ner nFu tS-TU if (gep) = diag(1,1,-1),

where n is the number of indices of ¢4 (cf. Ref. [2], Egs. (33) and (42)). Thus, in
general, the spinor components of the complex conjugate of a tensor, tap..EF, do not
coincide with the complex conjugates of the spinor components of that tensor, t4p. . EF.
(In fact, with 0,45 given by Egs. (8) and (10), t4p..gF and t4p._gr do not transform in
the same manner under the spin transformations.)

3. ALGEBRAIC CLASSIFICATION

As in the case of four-dimensional spaces, the fact that each spinor index can take only
two values and that the spin transformations are given by unimodular matrices imply
that the irreducible parts of an arbitrary spinor correspond to totally symmetric spinors
and each totally symmetric n-index spinor ¢4p._. 1 can be expressed as the symmetrized
tensor product of n one-index spinors (3]

¢aB..L = aaBp- 6Ly, (21)
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where the parenthesis denotes symmetrization on the indices enclosed (e.g., a48p) =
%(aAﬂg + apf4)). This decomposition is unique except for scale factors. The existence
and uniqueness of the expression (21) is a consequence of the fundamental theorem of
algebra. If £4 is an arbitrary spinor then assuming, e.g., £2 # 0,

6ap. L EAEB .l = ¢ 1(EY)" + ndar 1 (€M) + - + B2 2(ED)"
= (€)™ { 1.1 (6" /)" + ngor.1 (€ /€N + -+ + 62,2}

hence, (£2) "¢ap..E2€B .. €L is an nth degree polynomial in (£!/€%) which can
be factorized in the form @11 1(61/€2 — 21)(E1/€2 — 23)--- (€1/€* — 2,); therefore,

dap. L EAEE €L = p11 1(E' — 21E8)(E! — 226?)- - (€' — 2q€?), which is the product
of n homogeneous first degree polynomials in £4, i.e.,

$ap..LE268 - €L = (aal?)(BBEB) - (61€7), (22)

which implies Eq. (21). The spinors aga, £a,...,64, appearing in Eq. (21) are called
principal spinors of ¢4p. . Equation (22) shows that 4 is a principal spinor of ¢ap..L
if and only if ¢4p. E4¢B .- €L =0.

The tensor t,p . is trace-free and totally symmetric if and only if its spinor equivalent
tap. EF is totally symmetric (see, e.g., Ref. [6]). Thus, according to Eq. (21), if £5..c is
an n-index trace-free, totally symmetric tensor, t4p._gr can be expressed in the form

taB..EF = &(aBB " VE6F), (23)

and making use of Egs. (13) and (20) it follows that

tap..er = (—1)" BB ¥EbF). (24)

As in the case of the spinor formalism employed in the four-dimensional space-time of
general relativity, the totally symmetric spinors of a given rank can be classified according
to the multiplicity of their principal spinors. However, in the case of three-dimensional
spaces, when two principal spinors are not proportional, a further subclassification can
be obtained according to whether one of them is proportional to the mate of the other or
not.

The simplest nontrivial case of this algebraic classification corresponds to a two-index
symmetric spinor, v4p, which is equivalent to a (possibly complex) vector v, [Egs. (1)
and (5)]. The components v4p can be expressed as

vAB = o(aPB), (25)

hence

v2u, = —vAByyp = %(aAﬂA)z (26)
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(cf. Eq. (7). The vector v, is real if and only if ®4Bp) = —&(A;@B) (Egs. (23-24)] which
leads to the following two possibilities:

~

(i) &a=Aaa, Ba=-A"18a, (27)

which can be satisfied only if the metric is indefinite, with |A| = 1, and
(i) @a=X0a, Ba=-Alaa. (28)
By combining Eqs. (28) one obtains,
da =M= -IA"laga. (29)

When the metric is positive definite, only the case (ii) is viable and comparing Egs. (16)
and (29) we see that A must be real. If A is positive, from Egs. (25) and (28) we have
vaB = a(aA"tapy = A2 4A"1/24py; hence, absorbing the (real) factor A=/ into a4
we find that

VAR = aaGp). (30)

If A is negative, Eqgs. (25) and (28) give v4p = —/\B(A,BB) = (—)\)_1/2[?(,4(—)\)_1/2,65),
which is also of the form (30).
On the other hand, when (g,5) = diag(1,1,—1), in the case (i) A must be of the form

e*; then, from Eq. (27) we have (ei(%‘f)a,;) = e"i(%_'})eiaa,g = i(ei(%‘§)aA) and,

similarly, (e_i(%_f)ﬁA) = i(e_i(%_%)ﬁ,‘). By rewriting Eq. (25) in the form vap =

e"(%‘%)aue”"(%'%)ﬁm and absorbing the factors ei‘(%_%) into o4 and B4, we find that

in the case (i) v4p can be expressed as

(i) vaB = aafBp), with G4 =iaa, Ba=iba (31)

Using Egs. (17) and (26) one finds that the vectors of the form (31) are such that v*v, > 0.

In the case (ii), Egs. (16) and (29) give A = =i|}A|; then, from Eq. (28), we have
|AY/284 = +i|]A|7/2a4. By expressing Eq. (25) in the form vap = |A|"1/2q4|\|}/?8p,
and absorbing the factors |A|¥1/2 into ay and B4, we conclude that in the case (ii) vap
can be expressed as

(il) wvap = tiagaap). (32)

From Egs. (17) and (26) it follows that Eq. (32) corresponds to a real vector such that
vy, <.0.

In the special case where v®v, = 0, Eq. (26) implies that v4g must be of the form
vap = aqap and vap corresponds to a real vector if and only if apap = —&4éap, which
amounts to &4 = *ia4; therefore, the spinor equivalent of a real null vector is of the form

vAaB = Taaap, with &4 = 1o 4. (33)
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As a second example we consider a four-index totally symmetric spinor ® 4pcp which is
equivalent to a trace-free symmetric tensor ®45 and, according to Eq. (21), can be written
as

®4Bcp = aBBYCOD). (34)
Making use of Eqs. (23-24) one finds that @, is real if and only if
a(aBeYCcSp) = G(aBBACED)- (35)
In the case with signature (+++), condition (35) severely restricts the possible multiplic-
ities in the principal spinors of ®4pcp. In fact, it is easy to see, with the help of Eq. (16),
that the only possible algebraic types are
®aBcp = fas&pacap),
®apcp = a(adpBchp). (36)
By contrast, when the metric is indefinite, the solutions of Eq. (35) are of the form
®aBcD = aaBBYCD), with &4 =iaa, Ba =1iBa, Y4 =iva, b4 =iba,
®aBcp = iaBBYCYD)s with &4 = iaa, Ba = iBa,

®apcp = +a(adpBchpy,

®aBcD = aaaBfcp), with &4 = iaa, Ba = iBa, 94 = iva,
®4pcp = Tia(sapfclbp),  with s =iay,
Papcp = ﬂ:a(AaBﬁcﬁD), with &4 =1ay4, BA =1if,,

Qapcp = Taaapécép,
®aBcD = aaapacfpy, with &4 = iaa, Ba = iBa,
P apcp = tagapacap with &4 = tag. (37)
Making use of the identity
asBp — apPa = o®Preap (38)

and Eq. (6), a straightforward computation shows that if vap = 48p) and wap =
Y(4ép), then Eq. (34) amounts to

®apcp = $(vapwep + wapvep) — §vFFwer(eacenp +€apenc) (39)
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or, equivalently,

‘I)ab = V(aWp) — ;l;vcwcgah (40)

where v, and w, are the vector equivalents of v4p and w4, respectively.

In the case of the tensors represented by Egs. (36), the only combinations of the
principal spinors that produce real vectors are ta4ap) and 5 ABB). Therefore, in a
three-dimensional space with positive definite metric, at each point where it does not
vanish, a trace-free symmetric tensor field ®,, determines at least one and at most two
real directions. Since any two-index symmetric tensor can be expressed as the sum of a
trace-free symmetric tensor and a multiple of the metric tensor, the same conclusion holds
for any two-index symmetric tensor (cf. Sect. 5.2).

4. CONGRUENCES OF CURVES

In this section we shall restrict ourselves to spaces with a positive definite metric. Then,
as shown in Eq. (30), any real vector t, can be expressed in the form

taB = a(4Gp). (41)

Proposition. The vector field (41) is tangent to a geodesic if and only if

aAdBaCVABa(; =1). (42)
Note that a?aPV 45 = —1%V,, is real and, according to Egs. (13-14), the complex con-
jugate of Eq. (42) is

ataPalvVapac = 0. (43)

Proof. Using the identity (38) we see that for an arbitrary spinor &4,

1

A B ~B
A= = [a Y ed — A CB

§ (}RQR( aa”€p £ );

hence,
x i " x ” "
6BV spac = ' (acaDaAaBVABaD = acaDaAaBVABaD) (44)

QR

and, similarly,
1

(dcaDaAéBVABdD - ac&DaAdBVABéD) a

a*aPV gpéc = —
a'tap
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Thus, the spinor equivalent of t,V°t, is given by
—tABVABtCD = —a4bp (Ot(cVAB&D) + d(DVABaC))

1 A A A a ~ ~
= — “Fan {a(CaD)aEaAQBVABQE e QCGDQEQAO-’BVABGE

- &D&CaEaAdBVABaE - &(Dac)&EaA&BVABO!E}

EqAaBVY spég

= _aRlﬁzR {tCDO!Aé.’BVAB (C!Eé‘jg) — acaph

+ acapa®a?aPV pag}, (45)

which is proportional to tcp if and only if Eqs. (42-43) are fulfilled.

From Egs. (45) it also follows that (41) is tangent to an affinely parameterized geodesic
if and only if, in addition to Eq. (42), a®*@4 is constant along the geodesic.

Given a congruence of curves (i.e., a family of curves such that through each point
there passes one curve in this family) we define a spinor field o4 such that

tAB = 0(40p) (46)
are the spinor components of a tangent vector to the congruence and
oA() i =1, (47)

Note that t%t, = % [Eq. (26)] and that Egs. (46-47) define o4 up to a factor of the form
e'’. Making use of the definitions

K= voBoCVABOC,

a= oAf)BoCVABoc,

g = OAOBEPCVABOC = OAOBOCVAgéc, (48)
P= OAOBEiCVABﬁ(;',
€= oAéﬁc")CVABoC = 04680CV spéc,
or, equivalently,

E = -6"686°V 4péc,

a = 0686V 4péc,

B = 6"6P0CV apoc = 64686V gpoc, (49)

o= —éAfJBOCVABOC,

E= —oAéBOCVABfJC = --OAéB@CVABOCs
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which amount to Egs. (31a—c) of Ref. [1] with
D =-0%680,p, 6=0%P84p, §=-06%6"045, (50)

from Eq. (42) we see that D = %9, = —t4Bd,p is tangent to a congruence of geodesics
if and only if & = 0.

Using Egs. (47) and (48) one finds that under the transformation 04 — €**/204, where 6
is a real function, which preserves conditions (46-47), the spin-coefficients (48) transform
according to

K+ ek, am efa, p— p,

i0 : ; k)
ﬂl—be (ﬁ—aﬁﬂ), EHE+§D3,

which are precisely Eqgs. (39) of Ref. [1]. Therefore, choosing 6 in such a way that D = 2ie
the new ¢ vanishes. In particular, if D is tangent to a congruence of geodesics, & = 0 and
we can always make € = 0. Equations (44) and (48) show that a and ¢ vanish if and only
if 04 (and hence 64) is covariantly constant along the geodesics,

0468V 4poc = 0.

This last condition implies that the triad D, § and § is parallelly transported along the
geodesics.

Given a system of coordinates z* (g = 1,2,3), the functions z#(u,v) define a one-
parameter family of geodesics if for a given value of v, the curve z#(u) = z#(u,v) is
geodetic. The vector field (# = Oz*(u,v)/0v measures the displacement of neighbor-
ing geodesics and t* = dz*(u,v)/du is tangent to the geodesics. Then, t#0("/0z* =
¢ [ou = 8%x¥ /Oudv = Ot” /dv = (Ft¥ /8z* or, equivalently,

[t‘l C] =0, (52)

where ¢ and ( are the differential operators (or vector fields) t = t#9/dz*, ( = (*9/dz".
Any vector field (? satisfying Eq. (52) is said to be a connecting vector of the congruence.
(Equation (52) means that the Lie derivative of (* with respect to t* vanishes.)

Writing t = D and ¢ = fD + Wé + wé, where f is a real function and w is a complex
function, making use of Eqs. (33) of Ref. [1] and the properties of the commutator (or
Lie bracket) one finds that

[t,¢] = (Df + 20w + 2aw)D + (DW + (2e — p)w — Fw)é
+ (Dw + (—2¢ — p)w — KW)8,

hence, assuming € = 0, ¢ is a connecting vector for a congruence of geodesics with tangent
vector D if and only if

Df =0 (53)
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and
Dw = pw + kw. (54)

Equation (53) implies that if ¢ is orthogonal to D at some point of a geodesic, then it
is orthogonal to D along that geodesic. (Note that D = (1/v/2)d/ds, where s is the arc
length.) In what follows we set f = 0; therefore, ¢ is orthogonal to the congruence of
geodesics everywhere and we can write

C=$al +y623

where 8; = (6 +8)/V/2, 8; = i(6 — 6)/+/2 form an orthonormal basis of the normal planes
to the geodesics and

w= %(m + iy). (55)

In order to find the geometrical interpretation of the functions © = Rep, w = Imp
and k, we consider first the case where k = 0 and w = 0, then substituting Eq. (55) into
Eq. (54) one finds that Dz = ©z, Dy = Oy, which means that as one moves along a
geodesic, any connecting vector ¢ orthogonal to D expands (© > 0) or contracts (© < 0),
maintaining its orientation with respect to the axes 9, and 0, i.e., the congruence is
expanding (© > 0) or contracting (© < 0). In fact, using, e.g., Eq. (42) of Ref. [1] it
follows that div D = 20.

When k = 0 and © = 0, Eqs. (54-55) give Dz = wy, Dy = —wx, which corresponds
to a rigid rotation of the connecting vector relative to the axes 8, and 93. If p = 0
and k is real, from Egs. (54-55) we get Dz = kx, Dy = —ky, which correspond to a
volume-preserving shear with principal axes 9, and d;. When & is complex then, at a
given point, & is of the form k = |kg|e™® and from Egs. (51) one finds that under the
transformation o4 — e~X9/4g 4 (which preserves the condition £ = 0 and corresponds to
a rotation through an angle —xo/2 about D), k — |ko| at that point. Therefore, Eq. (54)
with p = 0 and k complex corresponds to a volume-preserving shear with principal axes
that form an angle —(arg«)/2 with respect to 9, and 9.

Thus, D is tangent to a shear-free congruence of geodesics if and only if a = k = 0
which, according to Eqs. (48), is equivalent to the condition

020V ggoc = 0. (56)

Similarly, the vector field (41) is tangent to a shear-free congruence of geodesics if and
only if

aAO:CVABac = () (57)
even if a*éa, is not constant. Indeed, assuming that a,4 is different from zero, we

can define 04 = (afdagr)~Y2a,, which satisfies Eq. (47), then a?a®Vapac =
(aRaR)3?040CV gsgoc = 0, where we have made use of Eq. (56).
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5. MASSLESS FIELDS

In this section we consider the usual massless free field equations in flat space-time. These
equations are written here in terms of SU(2) spinors, in a form that is manifestly covariant
under spatial rotations only.

5.1. Weyl neutrino field
The Weyl neutrino equation for the two-component neutrino field, v, is given by

10

where the o, are the Pauli matrices [7,8] or, equivalently,
19

2VE yp=—= —vya. 59
V2VE yp - 5 %A (59)

Making use of Eqs. (14) and (20) one finds that the complex conjugate of Eq. (59) is

» 1.0 »
B

= — —4. 60
Vaviide = - oda (60)

(It may be noticed that 14 satisfies the equation for the antineutrino [7,8].)
Equations (59-60) lead to the continuity equation

A 8 -. - 8 9 R
AB - TR O
eV2VAB Y dp =9y ¥ VB 5 (¥ 4a),
which is of the form divJ + 9p, /3t = 0, with
Jap = —cV29Pa¥p), pn = V4. (61)

(Using Eq. (26) we obtain J,J® = c?p,2, i.e., |J| = pac; hence, the four-vector (pnc,J) is
null.)

Looking for plane wave solutions of Eq. (59) of the form 14 = a4e'*a**~“t) where the
z® are cartesian coordinates, and k, and a4 are constant, we get

\/ikiag = %QA, (62)

where k4 p are the spinor components of k,. Since k, is real, from Eq. (30) it follows that

kapg = V2 (“_’) A%B) (63)

c (IR&R

(The minus sign appearing in Eq. (63) corresponds to the fact that, for a neutrino with
positive energy, the spin and the momentum are antiparallel.)
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5.2. Electromagnetic field

As shown in Ref. [1], the source-free Maxwell equations in vacuum can be written as

% FaB, VABpyp =0, (64)

1
\/§VC£A Fpyo = =

where Fqp are the spinor components of the complex vector field F = E + iB (cf.
Egs. (59-60)). The Maxwell stress tensor, Ty, is given by 47Ty, = E,E, + B,By —
H(E.E® + BcB%)gay = FoFy) — IF?cgab, therefore, making use of Egs. (6), (7) and
(38) one finds that the spinor equivalent of Tgs is given by 16nTapcp = ‘Z(FABF cp +
FapFcp) — FrsFRS(eacepp +epceap) = FacFpp+ FapF e + FepF ac + FacF ap,
i.c.,

== D

Similarly, using Eq. (16) of Ref. [1], one finds that the spinor equivalent of the Poynting
vector, S = (¢/47)E x B = (ic/87)F x F, is given by

c s fi
Sap=——=Fps Fp . 66
a8 = 7 Fra Fp (66)

The symmetry of F4p implies that
Fap = a(4 g (67)

(¢f. Eq. (21)). Thus, F,,F“ = —F4pF#8 = 1(a? B4)%. On the other hand, F,F® =
E.,E* - B,B*+2iF,B* = —~B24-%E-B: therefore Ba = Aay if and only if E? = B?
and E-B = 0. By absorbmg the factor A1/2 into a4, we obtain

FAB = xAQRB -~ E2 B2 and E-B = 0, (68)

where the principal spinor ay4 is defined up to sign. The electromagnetic fields with
E? = B? and E-B = 0 are called degenerate, algebraically special, null or pure radiation
fields.

The principal spinors a4 and 34 of F4p define the real vector fields

vAB = qa ),  waB = B(a Bp). (69)

It may be noticed that a4 and (4 are defined by Eq. (67) up to the transformation
as — Aag, Ba — A71B4, which induces the transformation v, — |A|2v,, wa — |A|"2wq,
on the vector fields (69). This means that a nondegenerate electromagnetic field defines, at
each point of the space, two real vectors whose direction and sense are uniquely defined.
In general, the direction of v, or w, does not coincide with that of the electric or the
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magnetic field. Substituting Eq. (67) into Eq. (66), making use of Egs. (24) and (38), one
finds that

Sap = 8;\/5 (aRarwas + B Brvas), (70)
which, by virtue of Eq. (26), amounts to
c
S = e (Ivlw + [w|v). (71)

Thus, S is a linear combination of v and w and it makes equal angles with v and w. On
the other hand, from Egs. (24), (65) and (67) it follows that the spinor equivalent of the
trace-free part of the Maxwell stress tensor, Ty, = Ty — -;-Tc"gab, is given by

4nTapcp = Foap Fep) = —a(a B Gc Bp) (72)
therefore (cf. Eqgs. (39-40))
4nTop = —V(aWh) + SV WeGas
and
47Tap = —V(Wp) + -:1;(47rTc ¢+ v°we)gap-

Using Eqgs. (26), (38), (65), (67) and (69) we obtain

47T, + v'w, = sF4pF*? — v*Buyp = 30484 6535
= =3 (vl Iw| = v°w),
therefore,
4nTop = —V(Wp) — 41(|v| |w| — vcwc)gab. (73)

In the case of a degenerate electromagnetic field [Eq. (68)], Egs. (71) and (73) reduce
to

c
Shiss E|v]v, 47T, = —VaUp. (74)

If the electromagnetic field satisfies the source-free Maxwell equations (64), the vector field
v (and hence S) is tangent to a shear-free congruence of geodesics. (This result is a special
case of the Mariot-Robinson theorem [9,10] which applies in curved space-time.) Indeed,
if Fuap = aqap represents an algebraically special electromagnetic field that satisfies the
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source-free Maxwell equations, the only nonvanishing component of F4p with respect to
the triad defined by

oa = (oFar) a4 (75)

is Fyp; then, making use of the Maxwell equations in the form given by Egs. (66) of
Ref. [1], one obtains

and
(6 = ZB)F—I =0,
1 o
(D + 2¢ +5)F_1 = —E EF_I, (77)

where F_; = Fy (cf. Egs. (41) of Ref. [1]). Equations (76) imply that the congruence
with tangent vector vap = a(4Gp) is shear-free and geodetic.

Conversely, given a shear-free congruence of geodesics, there exists an algebraically
special solution of the source-free Maxwell equations F4p = asap such that a4ép) is

tangent to the congruence. Indeed, by choosing the triad D, 6, §, in such a way that D
is tangent to the congruence, K = a = 0. Hence, the source-free Maxwell equations for
an electromagnetic field with F1; = Fip = 0 reduce to Egs. (77). Since [D, 8] = (2¢ — p)é
(Ref. [1], Eq. (33)), the integrability condition of Eqgs. (77) is

D(2BF_1)—§ ((—2s g -—\/__C cf;’;F_ ) = (2 — p)2BF_;.

Using again Eqs. (77) and Eqgs. (58b—c) of Ref. [1] one finds that this condition is satisfied
identically. The solution of Egs. (77) is not unique; in fact, it contains an arbitrary analytic
function of two complex variables. For example, the straight lines through a given point
form a shear-free congruence of geodesics. In fact, if we introduce the triad

148 6—1 i_,_i a 5o 1 a i 4 (78)

T 4/ 87 "~ V2r \ 39  sind 8¢ )’ V2r \88  sinf 8¢ )’
where r, 6, ¢ are spherical coordinates, then D is tangent to the congruence and it is easy
to see that the spin-coefficients are [1]

k=a=¢e=0, - f=- - cot 8, p=

227
Substituting Eqgs. (78-79) into Egs. (77) one finds that

(79)

1 0 —id
Fy= rsinﬁf(r_d’mt € ),
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where f is an arbitrary analytic function. However, in this case, for any choice of the
function f, F_; will diverge in some direction.

5.3. The massless free field equations for arbitrary spin

The massless free field equations for spin s are given by

10
V2R b5 1yr = +- o $4B..L, (80)
and
VABg4p.L =0, (81)

where ¢4p. 1 is a 2s-index totally symmetric spinor and the sign in the right-hand side
of Eq. (80) depends on the helicity of the field (¢f. Eqgs. (59-60) and (64)).
Let

$ap..L = ¢AB-L (82)

(or, equivalently, ¢AB~-L = (=1)24,5 . cf. Egs. (13-14) and (20)), then, using the fact
that V4, = V B it can be readily seen that Eqs. (80-81) are equivalent to

VAB

- 1 8 « -
\/§VR(A¢B___L)R = :FE & ®AB...L» ¢aB..L = 0. (83)

(Hence, ¢ap..1 and &AB,__L have opposite helicities, cf. Eqs. (59-60).) From Egs. (80)
and (83) one obtains the continuity equation

a

- (&B...L&AB_“L) — /2 VAR (¢{AB'"L€¥’R)B...L) (84)

(cf Egs. (61) and (66)). Note that ¢4B~Lg4p > 0 and that ¢(AB"'L‘£’R)B...L corresponds

to a real vector field.

A plane wave solution of Eqs. (80-81) is of the form ¢ap..L = xaB..L€ —t) where
XAB..L is constant and k, is a real constant vector. Taking into account Eq. (30), from
Eqs. (80-81) it follows that

i(kqz?®

XAB..L = apaQp ---Qf,

for some a4, and

e ToXe:
kap = V2 (2) 2522
C ataR

(cf. Eq. (63)).
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6. CONCLUDING REMARKS

Among the differences between the spinor formalism employed in general relativity and
the spinor formalism of three-dimensional spaces is the fact that, in the latter case, any
vector can be expressed in terms of two one-index spinors [Eq. (25)]. As we have shown,
when the metric has signature (++—), the algebraic classification of the spinor equivalents
of vectors amounts to classifying the vectors according to whether v*v, > 0 or v%v, < 0.
In the case of a trace-free symmetric tensor, the factorization of its spinor equivalent
[Eq. (34)] leads to a canonical form [Eq. (40)] that is not based on the eigenvectors of the
tensor.

The example given at the end of Sect. 5.2 shows that, even though Egs. (77) are
integrable for a given shear-free congruence of geodesics, their solution may not be well
behaved globally.
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