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ABSTRACT. Assuming that the background space-time is the Carter A solution (CA), an expres-
sion for tbe Starobinsky constant for perturbatíons of arbitrary spín s by means of r determinent
of arder 2s ís obtained. This constant and the corresponding algebraically special perturbations
for sorne interesting cases are determined.

RESUMEN.Asumiendo que el espacio-tíempo de fondo es la solución A de Carter (CA), se obtie~e
una expresión para la constante de Starobínsky para perturbaciones de espín arbitrario s en
términos de un determinante de orden 25. Esta constante y las perturbaciones algebraicamente
especiales son determinadas para algunos casos de interés.

PACS: 04.20.Jb

1. INTRODUCTION

A method of studying the perturbations of the Kerr solution by spin 1/2, 1, 3/2 and
2 massless free fields, consists in analyzing the maximal spin-weight components of the
perturbation, each ofwhich satisfies a second-order differential equation (known as Teukol-
sky's equation), that admits separable solutions [1-5]. One of the many remarkable prop-
erties of the separated functions is the differential relation between the one-variable func-
tions belonging to opposite spin-weight +s and -s. This differential relation is given by
the so-called Teukosky-Starobinsky identities which contain a constant called Starobin-
sky's constant. Although this constant can be evaluated by means of a straightforward
computation from the Teukolsky equation, an alternative method to obtain this constant
has been proposed by Chandrasekhar when the curved space-time is the Kerr solution [61.
On the other hand, just like for the J\err metric, in all the type D vacuum space-times

with a possibly non zero cosmological constant, it has been shown that the maximal
spin-weight components of the perturbations satisfy decoupled (second-order) equations
that can be solved by separation of variables too. Torres del Castillo has found that in
all the type D vacuum space-times with cosmological constant, relation similar to the
Teukolsky-Starobinsky identities hold. Furthermore, he showed that analogous relations
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apply to the case of the spin-3/2 perturbations, if the cosmological constant is set equal to
zero [7] and, when the curved space-time is a solution of the Einstein-Maxwell equations,
he has shown that the equations for the spin-3/2 perturbations have the same structure
as those found when the curved space-time is a solution of the Einstein equations with
cosmological constant. Therefore, in that case, the Teukolsky-Starobinsky identities have
exactly the same form as those before mentioned 181.The existen ce of these identities,
turns out be related to that of a two-index Killing spinor [9,101.

In the present paper, following Re£. [11], we show that when the background metric is
the Carter A solution, the Starobinsky constant can be evaluated looking for algebraically
special perturbations for arbitrary spin s by means of a determinant of order 2s. In
Sect. 2 we give the decoupled equations for the perturbations in the Newman-Penrose
notation, we assume that the Teukolsky equations are valid for any value of s and we
determine explicitly the express ion for the Starobinsky constant and the corresponding
special perturbations when s = 1/2, 1, 3/2, 2 and 5/2. The Carter A solution contains
the Kerr-Newman metric as a particular case and, of course, the Kerr solution.

2. EXPRESSI()N "OR TIIE STAROBlNSKY CONSTANT

In all the type O solutiollS of the Einstein-Maxwell equations with an aligned electro-
magnetic field, one can choose a null tetrad of vectors (D, t!., 6, 6) such that D and t!. are
double principal nul! directions of the conformal curvature. If we denote by X" and )C,
the components with maximal spin-weight of a spin s massless perturbation, then from
the corresponding field equations it follows that 11,2,7,8]

[(D - (2s - 1). +, - 2sp - ¡;)(t!. - 2s, +1')

- (6 - (2s - 1)13- a - 2sr + ir)(6 - 2so: + 11") - (s - 1)(2s - I)W2]X, = 0, (1)

[et!. + (2s - lJi -1+ 2SI1+ ¡¡)(D + 2s. - p)

- (6 + (2s - 1)0: +!J + 2S11"- f)(6 + 2s¡3 - r) - (s - 1)(2s - I)W2]X_, = O, (2)

when s = 1/2, 1; 3/2 and 2; provided that when s = 1 or s = 2 the background electro-
magnetic field vanishes.

On the other hand, it is known that in al! the type D solutions of the Einstein-Maxwel!
equations with an aligned electromagnetic field, there exist a coordinate system {x, y, ", v}
such that Bu and Bu are Killillg vectors. It can be showlI that the solutiolls of Eqs. (1)
and (2) are given by [8]

X• - ei(ku+lu)R S
s - +8 +Sl (3)

)C, = (4)
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respectively, where k, I are constants, </> is certain complex function depending on the
background metric, R+" S+" R_" and S_, satisfy the fol!owingequations:

[QDI_,D¡j - (28 - l)iq(l) + i(8 - 1)(28 _1)Q(2)]Q' R+, = A,Q' R+" (5)

[eLe, + (28 - l)p(l) + i(8 - 1)(28 - I)P(2)] S+, = -A,S+" (6)

[QDi_,Do + (28 - l)iq(l) + i(8 - 1)(28 - I)Q(2)] R_, = A_,R_" (7)

[el_,e; - (28 - l)p(l) + i(8 - 1)(28 - I)P(2)] S_, = -A-,S_,. (8)

Rere A, and A_, are separation constants and

(
p P(I»)

en ,=.,¡p 8x + P + n 2P ,

(
P P(I»)e+ ,=.,¡p 8 - - +n-

n x P 2P'

(9)

(10)

(11)

(12)

q(y) and p(x) are polynomials of degree not greater than 2, which contain the separation
constants k and 1, Q(y) and P(x) are polynomials of degree not greater than 4, which
contain parameters present in the metric and j(n) denotes the n-th derivative of j. These
polynomials are reported in Ref. [81 for al! the type D solutions of the Einstein-Maxwel!
equations, in our case (i.e., for the CA metric), these polynomials and the complex func-
tion </> are given by

q(y) = 1- ky2,

Q(y) = b+ e2 - 2my + fOy2,

p(x) = I+ kx2,

P(x) = b-l + 2nx - fOX2,

</>(x, y) = (y + ix)-I,

(13)

(14)

(15)

(16)

(17)

where b, e,g, n,m and fO are constants. The Kerr-Ncwman metric is obtained if one takes
b = a2, 9 = O= n, fO = 1. In terms of the Boyer-Lindquist coordinates, y = r, x =
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-a COS (J, u = -t + a<p and v = <p/a. Making use of Eqs. (5), (7), (9) and (10), we obtain
that in this case the so-called Teukolsky-Starobinsky identities are given by

Q' Dt2'Q' R+, = E,R_ ••

Q' D5' R_, = B,Q' R+••

where E•• and B, are complex constants. Prom Eqs. (18) and (19) one gets

Q' Dt2'Q' D5'R_, = B,E,R_, = IC,12R_,.

(18)

(19)

(20)

Prom this last equation we see that using Eqs. (7), (9) and (10), we can evaluate in a
straightforward way IC,12 == B,E,. However, the aim of the present paper is to obtain an
expression for IC,12 as a condition for getting algebraically special perturbations, which
is equivalent to assume that only one of the functions R+, or R_, is different to zero.
Making use of Eqs. (18) and (19), we have that a solution for R+, different from zero
associated with an identically vanishing R_, is possible only if B, = Oand R+, satisfies

D+2'Q'R - Oo +8 - . (21 )

Physically, the algebraically special perturbations describe waves propagating only in the
positive or negative y-direction.

Following Chandrasekhar, we make use of the independent variable, y. defined by [21

dy. q
dy - kQ'

According to this equation, one gets

Therefore, the general solution of Eq. (21) is given by (with P+, = Q' R+,)

28-1

P+, = e-iky• 2: Bj yj;

j=O

(22)

(23)

(24)

here B2,-I,"', B¡ and Bo are constants of integration. These constants can be evaluated
substituting (24) into Eq. (5); thus, in this way, one gets the following restriction:

[

(2) ]2'-1.
+ (8 - 1)(28 - 1) Q

6
- iq(1)(28 - 1) - A, ~ BiyJ = O. (25)
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Taking ..\= (1 - 8)(28 - 1)Q~2J+ As> and using Eqs. (13) and (14), this last equation can
be transformed into

28-1 28-1

[b+ e2 - 2my + fOy2J L j(j - 1)Bjyj-2 - [..\ - 2iky(28 - 1)J L Bjyj
j=O j=O

2,,-1

+ [2i(l- kr2) + 2(1 - 8)(foY - m)J L jBjyl-l = O. (26)
j=O

Since this last equation is a polynomia! in the variable y of degree (28 - 1) equated to
zero, and this equality must hold for aHvalues of y, the coefficient of each and every power
of y in this equation must vanish separately. Therefore, we are led to consider one system
of homogeneous linear equations for the constants Bj (j = 28 - 1, ... ,O), which has a
nontrivial solution (i.e., not aH constants equal to zero) provided that the determinant of
this system of equations vanishes. Therefore, we have the foHowingrestriction:

..\
2(28 - 1)[(8 - 1)m - itl
-(28 - 1)(28 - 2)(b + e2)

O
O

-2ik
..\+ fo(28 - 2)

2(28 - 2)[(8 - 2)m - it)
-(28 - 2)(28 - 3)(b + e2)

O

O
-4ik

..\+ 2fo(28 - 3)
2(28 - 3)[(8 - 3)m - ie]
-(28 - 3)(28 - 4)(b + e2)

O
O

-6ik
..\+ 3fo(28 - 4)

2(28 - 4)[(8 - 4)m - ie)

O
O
O

-8ik
..\+ 4fo(28 - 5)

= O. (27)

On the other hand, when the background metric is such that it corresponds to Kerr-
Newman or the Kerr solution, and 8 = 3/2, or 8 = 1,2 respectively, the left-hand side
of Eq. (27) gives the right expression for the Starobinsky constant, so appealing to these
particular results, we conjecture that the Starobinsky constant for arbitrary spin and when
the curved space-time is the Carter A solution is given by means of this determinant, i.e.,

IC,12 = Determinant of Eq. (27). (28)

Therefore, for determining the expression of IC, 12, we have to evaluate a determinant
of order 28, whose evaluation for 8 = 5/2, requires a little effort. Now, we consider special
cases of Eq. (28).
8 = 1/2:

(29)
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s = 3/2:

s = 2:

s = 5/2:

2 I >. -2ik I 2[ell = -2il >. = >. + 4kl.

>. -2ik O
le3/212 = 2m - 4il >. + fO -4ik

-2(b + e2) -m - 2il >.

= >.2(>.+ fO)+ 16 k2[b + e2 + >'l/kJ.

>. -2ik O O

[e21
2 = 6(m - il) >.+ 2fo -4ik O

-6b -4il >.+ 2fo -6ik
O -2b -2(m + il) >.

= >.2(>.+ 2fo)2 + 144 k2(m2 + (2) + 40 k>.21

+ 48 hol>. + 96 k2>'b.

(30)

(31)

(32)

>. -2ik O O
8 (3;" - il) >.+ 3fo -4ik O

le5/212 = -12(b + e2) 6(!f - il) >.+ 4fo -6ik
O -6(b + e2) -4(!f + il) >.+ 3fo
O O -2(b + e2) -2(3;" + il)

= >'(>'+ 3fo) [>'(>'+ 4fo)(>' + 3fo) + 80 H>' + 128 klfo

+ (b + e2)[336 k2 >.2+ 576 fo>'k2 + 30721k3¡ + 1152 m2e>.
+ 1024 k2e2(fO + >')+ 2304 k2m2fo.

O
O
O

-8ik
>.

(33)

From Eq. (24), we have that the algebraically spccial perturbations when the spin is
1/2, 1, 3/2, 2 and 5/2 are given by

P () B -iky.1/2 Y = ¡/2e ,

P1(y) = B¡(2iky + >.)e-iky.,

P3/2 (y) = B3/2 { -2iky2 - >'y+ 4'k [>'(>' + fO) + 4mik + 8keJ} e-iky• ,
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P2(y) = B2 [-2iky3 - >.y2+ (~~) y + C] e-iky.,
B = >.(>. + 2fo) + 12imk + 12 kl,

C = 2b ~ >'l ( >. + 2fO) B+ 3 k + 24k2 '

Po () {. 4 3 ( iD) 25/2 Y = B5/2 -2lky - >'y - 6m - 4k Y

i .+ 6k [3m>' + 6(>. + 4fo)m - IE]y

. iD
- 8

1
k [6>'(b+ e2) + 12m2 +T

+ (>. + 3fo) E + iF]} e-iky•
6k '

where

D = 16kl + >.(>. + 3fo),

E = 24 k(b + e2) + 6>'l + (>. +to) D,4 .

In these expressions, BI/2, BI, B3/2, B2 and B5/2 are arbitrary constants, and k, except
for s = 1/2 where is arbitrary, has to be such that the corresponding Starobinsky constant
must vanish. The solution given by Eq. (24) represents waves propagating in the positive
y-direction, while its complex conjugate describes waves propagating in the negative
y-direction.

3. CONCLUSIONS

\Ve observe that the determinant by means ofwhich IC,12 is obtained, presents one impor-
tant property, that is given by the fol!owing fact: if one determines the nine elements of left
top quadrant, then we are in the possibility of generating al! elements of the determinant
for an arbitrary value of s. On the other hand the results obtained here for IC,12, when
s = 1/2,1,3/2 and 2 reduce to the ones obtained when the curved space-time is the
Kerr solution. In the case of the algebraical!y special perturbations, when s = 3/2 or
s = 2, these expressions are in agreement to those reported when the background me trie
corresponds to Kerr-Newman or Kerr solution respectively [6,121.
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