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ABSTRACT.Functions analogous to the spin-weighted spherical harmonics, adapted to the para-
bolic and elliptic coordinates are defined. Sorne examples of the usefulness of these functions in
the solution of partial differential equations for nonscalar fields are given.

RESUMEN.Se definen funciones análogas a los armónicos esféricos con peso de espín, adaptadas a
las coordenadas parabólicas y elípticas. Se dan algunos ejemplos de la utilidad de estas funciones
en la solución de ecuaciones diferenciales parciales para campos no escalares.

PACS: 02.30.Jr; 02.30.Gp; 03.40.Kf; 03.65.Pm

1. INTRODUCTION

The method of separation of variables is one of the most useful techniques employed in
the solution of partial differential equations; however, the partial differential equations
governing vector, tensor, or spinor fields written in noncartesian coordinates usually cor-
respond to systems of partial differential equations that cannot be sol ved by separation
of variables in a straightforward way.

In the case of spherical and circular cylindrical coordinates, the use of spin-weighted
quantities and of the corresponding raising and lowering operators allows one to reduce
nonscalar partial differentíal equations to sets of ordinary differential equations, by ex-
pressing the fields in terms of spin-weighted harmonics (see, e.9., Refs. [1-4]).

The aim of this paper is to extend the main results of Re£. [4], which deals with circular
cylindrical coordinates only, to the parabolic cylindrical and elliptic cylindrical coordi-
nates. In Sect. 2, following Re£. [5]' the spin-weight and the raising and lowering operators
are defined for any system of orthogonal cylindrical coordina tes; the usual vector opera-
tors are expressed in terms of spin-weighted quantities and the spin-weighted harmonics
are defined. In Sect. 3, the eigenfunctions of the curl operator, the divergenceless vector
fields, the solution of the vector Helmholtz equation and of the Dirac equation in parabolic
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cylindrical and elliptic cylindrical coordinates are expressed in terms of the corresponding
spin-weighted harmonics.

2. SPII\-WEIGllTED QUAI\TITIES

\Ve shall consider cylindrical coordinates (u, v, z), where

u = u(x, y), v = v(x, y), (1)

and (x, y, z) are cartesian coordinates. \Ve shall further assume that (u, v, z) are orthogonal
coordinates and that the induced orthonormal basis {eu, ev, e,} is right-handed. A quantity
'1 has spin-weight s if under the rotation through an angle o about e"

(2)

it transforms according to

(3)

(cj. Ref. [6]). lf '1 has spin-weight s then its complex conjugate r¡ has spin-weight -s. For
an arbitrary vector field F, the scalar fields

Fo == F. e" (4)

have spin-weight o and :1:1, and we have

F IF (- ") IF (- ") F:-= 2" -1 Cu + lev + '2 +1 eu - lev + oez.

For a quantity '1 with spin-weight s, we define

(
1 i) s0'1 == - -} 8u + -} 8v '1+ -}-}-(h2,u + ih¡,v)r¡,

tI l2 1,11..2

- (1 i) sO'] == - -8 - -f) ']- --(h2 - ihl )'1h
l

u h
2

v h
l
h

2
,u ,v,

(5)

(6)

where h¡, h2 are the scale factors corresponding to the coordinates u and v, respectively,
and the comma indicates partial differentiation. Then, 0'1 and O'] have spin-weight s + 1
and s - 1, respectively (see the Appendix). Using the definitions (6) one finds that if '1
has spin-weight s, then

(i)
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Similarly, one finds that the gradient of a funetion f with spin-weight O is given by

(8)

and the divergenee and the eurl of a vector field F can be expressed as

V'. F = -~éJF-l - ~DF+I + 8,Fo, (9)

V' x F = -J,(DFo + 8,F-¡)(eu + iev) - -J,(éJFo + 8,F+l)(eu - iev)
1 --+ 'fi(éJ F_1 - éJF+l)e" (10)

in tenllS of the spill-weighted eomponents F, defined by Eq. (4). (Note that Eqs. (8-10)
hold for all the orthogonal eylindrieal eoordinate systems.)

From Eqs. (8-9) and the eommutativity of éJand éJ it follows that the laplaeian of a
funetion of spin-weight O is giwn by

(11)

whieh also follows from Eq. (i) with s = O.Using the identity V'x (V' x F) = V'(V' .F)- V'2F
and Eqs. (8-10), one finds that

V'2F = ~(éJ éJF_1 + 8/ F-¡ )(eu + iev) + ~(éJéJF+l + 8/ F+¡)(eu - iev)

+ (éJéJFo+8/Fo)e,. (12)

Let ,Fa be a funetion of II and v with spin-weight s sueh that

- 2éJéJ(,Fa) = -o ,Fa, (13)

where Q is a (real or eomplex) constan!. Sinee á and D commute, we can normalize lhe
funetions ,Fa in su eh a way that, for Q i' O,

tJ sFa = Q' s+lFol

D,F" = -Q ,-lFa. (14)

(The solution of Eq. (13) is not unique; as we shall show below, the solutions of Eq. (13) can
be eharaeterized by an additionallal)('1 A, whieh takes values in a diserete se!. Furthermore,
for given values of s, o, and A, with real o, there is only one linearly independent bounded
solution of Eq. (13).)

The simplest case of Eq. (13) eorresponds to s = O [see Eq. (i)l, in whieh case Eq. (13)
rednees to the two-dimensional Helmholtz eqnation [see Eqs. (i) and (11)1,

(15 )
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which admits separable solutions in cartesian, polar, parabolic and elliptic coordinates
(see, e.y., Ref. [7]). Since Eq. (13) has been solved in polar coordinates in Ref. [4]' in what
follows we shall restrict ourselves to parabolic and elliptic coordinates, which are defined
by

and

x = a cosh u cos v, y = asinhusinv,

(16)

(17)

where a is a constant scale factor, respectively.
The coordinate transformations (16-17) satisfy the Cauchy-Riemann conditions

I
(18)

Therefore, the scale factors hI and h2 coincide

and E'1s. (6-7) red uce to

éir¡ = -h'-I(Du + iov)(h-'r¡),

tJr¡ = -h-,-I(Du - iDv)(h'r¡),

and

- - 1 {2 2} 2iséiéir¡ = éiéir¡ = h2 0u'7 + 0v r¡ _.h'l(h,vOu17 - h,uOv'7)

{
1 s+12 2}+ s h3 (h,uu + h,vv) - ¡;;t(h,u + h,v) r¡,

( 19)

(20)

(21)

respectively. \Ve shall consider now the solutions of Eg. (13) in parabolic and elliptic
coordinates separately.

2.1. Spin-weiyhted parabo/ic harmonics

The scale factor h for the parabolic coordinates defined by Eqs. (16) is given by

[E'1. (19)], therefore, using Egs. (21-22) one finds that Eq. (13) amounts to

[
1 2 2 2is s2 2]

2 2 (Ou + 0v ) - (2 2)2 (VOu - UOv) - (2 2)2 + el ,F,,(u, v) = o.u+v u+v u+v

(22)

(23)
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This last equation admits separable solutions only if s = O, m which case it has the
separable solut ions

(24)

where

(25)

(26)

and A is a separatiou coustau\. Hence, if C> '" O, Ua>. and Va>.can be expressed in terms
of the parabolic cyliuder functions (Weber fuuctions) (see, e.g., Refs. [7-9]).
By virtue of Eqs. (14), we cau obtaiu the fuuctions ,Fa>., for integral values of s and

C> '" O, in terms of oFa>.. Iu fact, using Eqs. (14) and (20) one finds that

1
~,U'oFa>. = (-~r['~2(D. + iD,,)]' oFa>., s ~ O,

P>.-
, a - ( 1) -, (' ) -, [ 1 ] -,

-~ U -, oFa>. = i ¡;'i(D. - iDu) oFa>., S ~ O.

Since the fuuctions -301/2r"o>. appear in the solution of the Dirac equation (see Sec\. 3.4),
one can obtain these functions from the solutions to the Dirac equation given in ReL [101;
in this manner \Ve gel,

where

(28)

and .A is a separatioll COllstant.
equations

edu + iC>U) U = AV,

(.5!:... - iC>lI) jj = AV,
du

( d ) -dv + iüv V = iAV,

( d ) -- - ic>v V = iAV,
dv

Combining Eqs. (28) one obtains the parabolic cylinder

(29)
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(ej. Eqs. (25)). Using Eqs. (14) and (27) one eau find ,Fa>, for half-integral values of S and
Q ji o.

Finally, using the faet 1hat

it can be verified that the most geueral solution of Eq. (13) with Q = O is given by

,Fo = 'r'J(u + iv) + h-'g(u - iv).

(30)

(31 )

where J and 9 are arbilrary (differenliable) funetions. As in the case ofthe circular ey!indri-
cal eoordinates. in some app!ieations, the boundary couditions exclude the spin-weighted
harmonies wilh Q = O (note that the funelions (31) eitl",r diverge at lhe origin or at
infinity, or do nol vauish at iufinity (uuless, of course, lhey are ideulically zero)).

2.2. Spin-weighted e//iptie hannonies

In the case of the elliptie eoordiuates defined by Eqs. (17), the seale factor (19) is

and, using Eq. (21) one finds that Eq. (13) takes the exp!icit form

(32)

2is ( . n. I 1 n)• 2 . 2 2 SIIl 11COSV Uu - SIn 1 11 ros 1u Uv(smh U+SIIl v)

s2(eosh2u - siu2 v) 2 2] F. ( )
2 2 +aO' s o'll,V =0.

(siuh u + sin v)2
(33)

This partial dilfereutial equatiou admits separable solutions only if s = o. Substituting

oFa>,(u, v) = U,,>,(u)Vo>'(v) (34)

into Eq. (33) with s = O oue fiuds that

d
2
U2°>' + (a2,,2 siuh2u + >.2)Uo>, = n,
¡fu

(35)

where >. is a separation eonst.aut. The SOIIlt.iollsof Eqs. (35) are !inear combinations of
"-¡athieu funet.ious (see, e.g., Refs. [7,8]).

As in the preeeding case, the fuuctiolls ,Fo>', for integral values of s ancl Q ji O, are
given by Eq. (26) wit.h h and oFo>' given by Eqs. (32) and (34-35), respeet.ively. Using t.he
result.s of Re!. [101 one finds that

Il/2Fo>' = 'fiah-3/2Jcosh u + ros v (Jh + a sin v 'f iJh - a sin v)

x (V(v)U(ll) 'f V(v)U(u)), (36)
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where

(dd
U
+ iao sinh u) U = i>'U,

C~- iao sinh u) U = i>'U,

(:v - iaosinv) V = ->.V,

(~ + iao sin v) V = ->.V,
dv

(37)

and >. is a separation constant. By combining the first-order differential equations (37)
one gets

~:~ + (0202 sinh2 u + iao cosh u + >.2)U = O,

2-
~u~ + (0202 sinh2 u - iao cosh u + >.2)U = O,

d2V
dv2 + (0202 sin2 v - iaocosv - >.2)V = O,

¿V -
-12 + (0202 sin2 v -1 iaocosv - >.2)V = O,
( v

(38)

which are \Vhittaker-Hill equations (see Ref. [101 and the references cited therein). (Note
that Ref. [101 contains several misprints.) Then, the functions sFo~, with half-integral
values of s and o # O, can be obtained from Eqs. (14) and (36).
Since the scale factor (32) also satisfies Eq. (30), the most general solution of Eq. (13)

with o = O is also given by Eq. (31).

3. ApPLICATIONS

In this section we give some examples of the usefulness of the spin-weighted functions
sFo~(u, v) in the solution of nonscalar equations in parabolic cylindrical and elliptic cylin-
drical coordinates.

3.1. Solution of the vector Helmholtz equation

According to Eqs. (5) and (12), the vector Helmholtz equation, V'2F+k2F = O, in circular,
parabolic, or elliptic cylindrical coordinates, is equivalent to the three uncoupled equations

s = O, :1:1, (3D)
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which admit solutions of the fonu

F, = ,FOA(u,v)g,(z), (40)

where the g,(z) are functions of z onl)" that, owing to Eqs. (13) and (30-40), satisfy the
differential equations

d
2
g, (k2 2)dz2 + . - a g, = O, s = 0,:1:1. (41 )

Following the steps given in ReL [41, one can show that any divergenceless solution of the
vector Helmholtz equation can be written in the form

(42)

where 101 and 102 are solutions of the scalar Helmholtz equation.

3.2. Divergence/es", vector fields

Let F be a vector field with vanishing divergence, then its spin-weighted components
satisfy

(43)

[Eq. (0)]. Assuming that any function with spin-weight s can be expanded in terms of the
,FOA(u, v), with a t O, we can write (cj. Refs. [1,3])

F, = J det ~ 9,(0, A, z) ,FOA(ll, v),
A

s=O,:l:1. (44)

Substitution of Eqs. (44) into Eq. (43), making use of Eqs. (14), yields

hence, using Eqs. (13-14) and (45), fmm Eqs. (44) one finds that

F+1 = -ithj'I + D,!J1/12,

Fa = {)!J 1/12,

F_1 = i{)1/11 + D,!J1/12,

where

101 == J dü ~ J... (9+1 (a, A, z) + 9-1 (a, A, z) )aFOA(ll, v),A 2a

1/12 == - J dü ~ ~9a(a, A, z) aFOA(ll, v).
A ü

(45)

( 4G)
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Owing to Eqs. (8) and (lO), Eqs. (46) are equivalent to

(47)

Thus, any divergenceless vector field can be expressed in the form (47), where 1/11 and 7/J2

are two scalar functions. (Note that Eq. (42) is a special case of Eq. (47).)

3.3. EigenJunctions oJ the curl operator

By using Eqs. (5) and (lO) one finds that the eigenvalue equation V' x F = /lF in circular,
parabolic, or elliptic cylindrical coordinates amounts to (eJ. Ref. [3])

i(DFo + a,F+¡) = I,F+I,

i(D F+1 - DL¡) = 2"Fo,

-i(D Fo + a,L¡) = I,L¡.

Looking for separable solutious of Eqs. (48) of the fonu

(48)

one gets

F, = ,Fn~(u, v) g,(z), s = O, :1:1, (49)

where

-iGG = /lgo,

dll
i--;¡;: + iGgo = /lG,

.dG
¡ dz = I,H,

(50)

G == !(g+1 + g-¡),

From Eqs. (50) it follows that

H == !(g+1 - g-¡). (51)

and making use of Eqs. (13-14) ane! (49-51) one obtains

1 (.) 1F+I = (G + ll)-DoFn~ = G + :"'D,G -uoFn~ = -il,u7/J + D,u'¡"
o JI o

iGG - (iG )-Fo = - -oFn~= DU -oFn~ = UU 1/1,
l' Gi'

( 1)- (i) 1- --L1 = (G - H) -;;: uoFa~ = - G - ¡;D,G ;;:UOFn~= il'U'¡' + ü,D,¡"

(52)

(53)
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(ef. Eqs. (46)) where

_ iG(z)
¡Ji= -- oFo>'(u, v),

ClJ1.

whieh, owing to Eqs. (11), (13) and (52), satisfies the sealar Helmholtz equation, v2¡Ji +
J1.2¡Ji= o. Equations (53) are equivalent to

F = ¡le, x v¡Ji + v x (e, x v¡Ji).

(An alternative derivation of Eq. (54) is given in Ref. [llJ.)

(54)

3.4. So/ution o/ the Dime eguation

Using Eq. (63) of Ref. [5) and Eqs. (Al), (A3) and (A4), one finds that the Dirae equation
written in terms of spin-weighted quantities is given by

1 au! I ~ 2 ime I
-- = -av +uv --ue at Z h'

~au2 = fJvl +a v2 _ imeu2
e at Z h'

1 av! a! -¡;- 2 ime J--=- u +uu +-v
e at' h'

1 av2 ~ I a 2 ime 2--a = uu + ,u + -.-v ,
e t "

(55)

where uA, vA are the eomponents of the Dirae spinor with respeet to the spin basis
indueed by the eoordinates (u, v, z); ul and VI .have spin-weight -~, while u2 and v2

have spin-weight ~. (Alternative derivations of Eqs. (55) are given in Refs. [4,10,12-141.)
Equations (55) admit solutions of the form

! -iEt/hU = _!/2Fo>.(U, v)g(z)e ,

u2 = 1/2Fo>.(U,v)G(z)e-iEt/h,

vI = _1/2Fo>.(U,v)/(z)e-iEt/h,

v2 = 1/2Fo>.(U,v)F(z)e-iEt/h.

Substituting Eqs. (56) into Eqs. (55) one obtains [41

dA + nA = E + 11le
2 C

dz he'

__dC_ + ClC = E - me2 A
dz he'

(56)

(57)
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and

\"here

dB- -oB =
dz
dD

-- -oD =
dz

E + 11Ie2

~ D,le

E - me2
~ B,le (58)

A '" ~(g+G). B '" ~(G - g), e", i(F - f), D", iu + F). (5!J )

Therefore, Eqs. (55) admil solulions of lhe form

(60)

\•...IH're

(o # O). (61 )

(The bOllnded solntions with o = O eorrespond lo plane waws Ira\"eling along Ihe :-axis
[4,141.)
Usiug lhe fael t hal

wln'rl' [4)

[
O -7i] ,
() o

(62)

(63)

it is eas)" lo se(' lhat eaeh IPrlll in lhe right-hand side of Eq. (60) is 'In ('igenfnnelion of
t.lll' 0pt'rat 01'

-; [-(lO]
1\",11 OC;'

wilh ('ig('n\"alue -110 aud TIO, rl'speeliwly (ef. a!so ¡h'fs. 12,.IJ).

(61 )
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4. CONCLUDING REMARKS

By contrast with the spin-weighted harmonics in spherical and circular cylindrical coordi-
nates, in the cases of parabolic cylindrical and elliptic cylindrical coordinates, the functions
,Fo,(u, v) with 8"" O, are not separable; however, one can find the solutions of Eqs. (23)
and (33) for 8 = :f:1/2, :f:1, ... , by means of Eqs. (14).
Since the equations for fields of any spin, written in terms of spin-weighted quantities

and the operators () and ti, have the same form in circular cylindrical coordinates as in
parabolic cylindrical and elliptic cylindrical coordinates, the solutions to such equations,
given in terms of the spin-weighted harmonics and the operators tJ and ti, have the same
form in any of these coordinate systems. Thus, for instance, the solution of the Helmholtz
equation for spin-2 fields in parabolic cylindrical or elliptic cylindrical coordinates is given
by Eqs. (42) of ReL [15]' which were obtained in circular cylindrical coordinates.

ApPEI"DlX

If (u, v, z) are orthogonal cylindrical coordinates, then

1
DI == -, Du,

'1

1
{)l == -, Dv,

'z
(Al)

form an orthonormal triad. A straightforward computation shows that

where

[D,61 = O, (A2)

6 == ~(DI + iDz), - I ')6= -(DI - zÜz--/2 (A3)

(see ReL [5]' Eq. (32b)). Comparing Eqs. (A2) with Eqs. (33) of ReL 151one finds that
the only nonvanishing spin-coefficient for the triad (A3) is given by

1 .
(3 = ---ro------(hz u + "'1 v).2y2hlhz' ,

(A4)

Thercfore, the spin-weight raising and lowering operators (6 + 28(3) and (b - 28(3) are

1 (1 i) 8 .6 + 28(3 = ro -, Du+ -h Dv - 12 (hz,u + zhl,v),
y2 11 z 2hlhz

- - 1(1 i) s6 - 28(3 = ro -, Du - -h Dv + 12 (hz,u - ihl,v)'
y2 '1 z 2h¡hz

(A5)
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