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ABSTRACT. Functions analogous to the spin-weighted spherical harmonics, adapted to the para-
bolic and elliptic coordinates are defined. Some examples of the usefulness of these functions in
the solution of partial differential equations for nonscalar fields are given.

RESUMEN. Se definen funciones anélogas a los arménicos esféricos con peso de espin, adaptadas a
las coordenadas parabélicas y elipticas. Se dan algunos ejemplos de la utilidad de estas funciones
en la solucién de ecuaciones diferenciales parciales para campos no escalares.

PACS: 02.30.Jr; 02.30.Gp; 03.40.Kf; 03.65.Pm

1. INTRODUCTION

The method of separation of variables is one of the most useful techniques employed in
the solution of partial differential equations; however, the partial differential equations
governing vector, tensor, or spinor fields written in noncartesian coordinates usually cor-
respond to systems of partial differential equations that cannot be solved by separation
of variables in a straightforward way.

In the case of spherical and circular cylindrical coordinates, the use of spin-weighted
quantities and of the corresponding raising and lowering operators allows one to reduce
nonscalar partial differential equations to sets of ordinary differential equations, by ex-
pressing the fields in terms of spin-weighted harmonics (see, e.g., Refs. [1-4]).

The aim of this paper is to extend the main results of Ref. [4], which deals with circular
cylindrical coordinates only, to the parabolic cylindrical and elliptic cylindrical coordi-
nates. In Sect. 2, following Ref. [5], the spin-weight and the raising and lowering operators
are defined for any system of orthogonal cylindrical coordinates; the usual vector opera-
tors are expressed in terms of spin-weighted quantities and the spin-weighted harmonics
are defined. In Sect. 3, the eigenfunctions of the curl operator, the divergenceless vector
fields, the solution of the vector Helmholtz equation and of the Dirac equation in parabolic
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cylindrical and elliptic cylindrical coordinates are expressed in terms of the corresponding
spin-weighted harmonics.
2. SPIN-WEIGHTED QUANTITIES
We shall consider cylindrical coordinates (u,v, z), where
Wi= u(mvy)v v :U(Ivy)a (1)
and (z,y, z) are cartesian coordinates. We shall further assume that (u, v, z) are orthogonal
coordinates and that the induced orthonormal basis {€,, é,, €, } is right-handed. A quantity
n has spin-weight s if under the rotation through an angle # about é,,
! O I 1 VP i
€y + 16, =€V (y +iéy), (2)
it transforms according to
nl — Bisg'ﬂ (3)

(cf. Ref. [6]). If n has spin-weight s then its complex conjugate 77 has spin-weight —s. For
an arbitrary vector field F, the scalar fields

By =F <8, Fj:l-:-F’(éu:tiév) (4)
have spin-weight 0 and +1, and we have
F = 1F_1(éu +ié,) + 1Fy1(éu — i&,) + Foé.. (5)

For a quantity n with spin-weight s, we define

dn = - (h dy + 8)n+—(hgu+zh10)n,
1

ho
- 1 1 s
) E_(_au__av) s el = 0l
n ™ ) h1h2( 2 — thi )T (6)

where hy, hy are the scale factors corresponding to the coordinates u and v, respectively,
and the comma indicates partial differentiation. Then, 87 and &7 have spin-weight s + 1
and s — 1, respectively (see the Appendix). Using the definitions (6) one finds that if 5
has spin-weight s, then

v o —i 1 h,2 _ 2ts hl‘v _ }L'Z,u
3371_63”_ { ( ) ( 811)} hih, ( hy % ha 3uT})
dy +

{( h 3v) hzuh]hizhm (:ﬂt )z(hzu-f-hly)} (7)
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Similarly, one finds that the gradient of a function f with spin-weight 0 is given by

Vf = =30 f)Eu+itn) = 38 f)(Ew = i&0) + (9:f)e:, (8)
and the divergence and the curl of a vector field F can be expressed as

V.-F=-10F,-10F, +8,R, (9)
VxF = £(0F +8,F_1)(éu+ié,) — 2(0 Fo + 0:F41)(éu — iéy)
+ 2(OF .y — O Fpy)é., (10)

in terms of the spin-weighted components F, defined by Eq. (4). (Note that Eqgs. (8-10)
hold for all the orthogonal cylindrical coordinate systems.)

From Egs. (8-9) and the commutativity of d and 8 it follows that the laplacian of a
function of spin-weight 0 is given by

Vif=80f+082f, (11)

which also follows from Eq. (7) with s = 0. Using the identity Vx (V xF) = V(V-F)-V?F
and Egs. (8-10), one finds that
VIF = LOOF_ + 2F_1)(éu + i&) + 30O Fy1 + .2 F11)(éy — iéy)
+ (53 o+ 6,2F0)é,_. (12)

Let (F, be a function of v and v with spin-weight s such that
dO(Fy) = —a® (Fy, (13)

where o is a (real or complex) constant. Since 8 and & commute, we can normalize the
functions (F, in such a way that, for a # 0,

35Fa = as+1Faa
8,Fy = —ay_F,. (14)

(The solution of Eq. (13) is not unique; as we shall show below, the solutions of Eq. (13) can
be characterized by an additional label A, which takes values in a discrete set. Furthermore,
for given values of s, a, and A, with real , there is only one linearly independent bounded
solution of Eq. (13).)

The simplest case of Eq. (13) corresponds to s = 0 [see Eq. (7)], in which case Eq. (13)
reduces to the two-dimensional Helmholtz equation [see Eqs. (7) and (11)],

1 h2 hl 2
%\ 3 Y F(\' vl Y Fa Fn= 3 15
iz (00 (edu(oFa)) +00 (FL0u(0F) ) | + 0% e =0 e
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which admits separable solutions in cartesian, polar, parabolic and elliptic coordinates
(see, e.g., Ref. [7]). Since Eq. (13) has been solved in polar coordinates in Ref. [4], in what
follows we shall restrict ourselves to parabolic and elliptic coordinates, which are defined
by

= u, y= %(’02—%2) (16)
and
r = acoshucosv, y = asinh usin v, (17)

where a is a constant scale factor, respectively.
The coordinate transformations (16-17) satisfy the Cauchy-Riemann conditions

Oilt = 94 Oy = —dyy. (18)

Therefore, the scale factors hy and hs coincide

hy=hs = \/(8“:1:)2 + (8,z)% = h, (19)
and Egs. (6-7) reduce to

On = —h*"1(0y +1idy) (A7),

on = —h=*71(8, — i8,)(k°n), (20)
and

—_ Am 1 2 9 2ts
dn=00n = -}-ﬁ{ﬁu n+ 9, n} —-h—s(h,vaun — h40yn)

1 g4 1
+ & {E}'(h,uu + h,vv) - h—4(h'3 ‘5 h,g)} m, (21)

respectively. We shall consider now the solutions of Eq. (13) in parabolic and elliptic
coordinates separately.

2.1. Spin-weighted parabolic harmonics

The scale factor h for the parabolic coordinates defined by Egs. (16) is given by

h =vu?+? (22)
(Eq. (19)], therefore, using Eqs. (21-22) one finds that Eq. (13) amounts to

2

1 ]
(u? +v2)?

u? + v?

21s

e BB 2 _
(u? + v2)2 +a| JFuluvi =0 (23)

(8112 + 8?)2) -

(v0y — udy) —
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This last equation admits separable solutions only if s = 0, in which case it has the
separable solutions

0Far(1,0) = Ux(u)Var (), (24)

where
d*U, &V, ;
22 4 (@2 - M)War =0, 24 (ol + 2N)Var =0, (25)

and A Is a separation constant. Hence, if a # 0, U,y and V, can be expressed in terms
of the parabolic cylinder functions (Weber functions) (see, e.g., Refs. [7-9]).

By virtue of Egs. (14), we can obtain the functions ,F,), for integral values of s and
a # 0, in terms of g F,a. In fact, using Eqgs. (14) and (20) one finds that

h\°T1 G
L peom, = (J.) [—5(3u + 1'61.)] oFus, s3>0,
al Q h
sfal = 1\ =% —_s AN=OT 1 =g (26)
(—a) a UFGA = (E) [ﬁ(au = Iav):| UFCh\s s < 0.

Since the functions 4/, Fq) appear in the solution of the Dirac equation (see Sect. 3.4),
one can obtain these functions from the solutions to the Dirac equation given in Ref. [10];
in this manner we get

sipFar = AFOWA(VEFusivh—u) (TV () FUTV(E), (27
where

d . ~

(— +zau) tr = XU,
du
d =
— g I = xir

(du mu) b = AT,

(i - mu) V =iV,
dv

(i - ia-v) V =iV, 28)
T = 1AV, (2

and A is a separation constant. Combining Eqs. (28) one obtains the parabolic cylinder
equations

i—g + (a®u® +ia — AU = 0,
%z- + (a*u® —ia - AY)U =0,
% + (@* +ia+ ANV =0,
22T (62— a4 A = 0, (29)

dv?
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(¢f. Egs. (25)). Using Eqgs. (14) and (27) one can find ,F,, for half-integral values of s and
a#0.
Finally, using the fact that

(02 +82)Inh =0, (30)
it can be verified that the most general solution of Eq. (13) with a = 0 is given by
sFo=hf(u+iv) + h*g(u — 1v), (31)

where f and g are arbitrary (differentiable) functions. As in the case of the circular cylindri-
cal coordinates, in some applications, the boundary conditions exclude the spin-weighted
harmonics with @ = 0 (note that the functions (31) either diverge at the origin or at
infinity, or do not vanish at infinity (unless, of course, they are identically zero)).

2.2. Spin-weighted elliptic harmonics
In the case of the elliptic coordinates defined by Eqs. (17), the scale factor (19) is

h= a\/sinh2 u+sin®y = a\/msh2 u — cos? v, (32)
and, using Eq. (21) one finds that Eq. (13) takes the explicit form
2is
(sinh?u + sin

: ((‘)13 + 01;2) =

IS Ea— 75 (sinvcosv dy — sinhucoshu d,)
sinh® u + sin“ v v)

s?(cosh®u —sin®v)  , ,
~ (sinh?u + sin® v)? +a’a®| sFo(u,v) = 0. (33)

This partial differential equation admits separable solutions only if s = 0. Substituting
0Fax(1,v) = Uaa(u)Var(v) (34)
into Eq. (33) with s = 0 one finds that

dzUa,\
du?

dvm\
dZ

+ (a®a?sinh® u 4+ A?)Uqyy, = 0, + (a®a?sin® v — A?)V,,, = 0, (35)
where A is a separation constant. The solutions of Eqs. (35) are linear combinations of
Mathieu functions (see, e.g., Refs. [7,8]).

As in the preceding case, the functions ;F,y, for integral values of s and a # 0, are
given by Eq. (26) with h and ¢F,» given by Egs. (32) and (34-35), respectively. Using the
results of Ref. [10] one finds that

+1/2Fax = Fiah™%/?\/coshu + cos v (\/h + asinv F ivVh — asin 1:)

x (V(w)U(u) ¥ V(u)ff(u)), (36)
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where

(d_ + taasinh u) U = 3 ATE,
(c_i_ — taa sinh u) = AU,

(-——wasmv V= —,\17,

( - + taq smv) V = =)\Y, (37)
dv

and A is a separation constant. By combining the first-order differential equations (37)
one gets

2
i—g - ((12&2 sinh® u + iaacoshu + A)U = 0,
u
dQﬁ 9.5 s 2 . INTT
W—i—(a a* sinh® u — taa coshu + A*)U = 0,
u
d‘Z
T + (a®a?sin? v — iaa cosv — A?)V = 0,
v
A2V gy
el + (a®a’sin® v 4 iaacosv — A2V = 0, (38)

which are Whittaker-Hill equations (see Ref. [10] and the references cited therein). (Note
that Ref. [10] contains several misprints.) Then, the functions ;F,), with half-integral
values of s and a # 0, can be obtained from Egs. (14) and (36).

Since the scale factor (32) also satisfies Eq. (30), the most general solution of Eq. (13)
with a = 0 is also given by Eq. (31).

3. APPLICATIONS

In this section we give some examples of the usefulness of the spin-weighted functions
sFoa(u,v) in the solution of nonscalar equations in parabolic cylindrical and elliptic cylin-
drical coordinates.

3.1. Solution of the vector Helmholtz equation

According to Egs. (5) and (12), the vector Helmholtz equation, VZF+A?F = 0, in circular,
parabolic, or elliptic cylindrical coordinates, is equivalent to the three uncoupled equations

OOF, +d2F, + k*F, =0,  s=0,+1, (39)
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which admit solutions of the form

Fs = SFQ,\(U,‘U) gs(z)? (40)

where the g,(2) are functions of z only that, owing to Eqs. (13) and (39-40), satisfy the
differential equations

s 2 >+ (k% —a?)g, =0, § = U, (41)

Following the steps given in Ref. [4], one can show that any divergenceless solution of the
vector Helmholtz equation can be written in the form

F=¢ xVy+Vx(é x Vi), (42)

where ¢ and 1y are solutions of the scalar Helmholtz equation.

3.2. Divergenceless vector fields

Let F be a vector field with vanishing divergence, then its spin-weighted components
satisfy

~10F , —19F, +8.Fy =0 (43)

[Eq. (9)]. Assuming that any function with spin-weight s can be expanded in terms of the
sFax(u,v), with a # 0, we can write (cf. Refs. [1,3])

F, = /dazgs(a,/\,z)SFaA('zL,v), 6= 0,41, (44)
A

Substitution of Eqgs. (44) into Eq. (43), making use of Eqs. (14), yields
39410000 2) = g1(e, A, 2)) = ~Ld.g0(a, A, 2), (45)
hence, using Eqs. (13-14) and (45), from Egs. (44) one finds that
Fip = =0y + 9.0,
Fo = 981y, (46)
F_y = idy + 0.0,

where

’d)l == fdazga(gﬂ(a,/\,z) +g—l(a1/\’z))0F0'\(u’U)’

Yo = /da 2J0 a, A, 2) o Fon(u,v).
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Owing to Egs. (8) and (10), Egs. (46) are equivalent to
F=¢é x Vi +V x (& x Viip). (47)
Thus, any divergenceless vector field can be expressed in the form (47), where ¢, and v,

are two scalar functions. (Note that Eq. (42) is a special case of Eq. (47).)

3.3. FEigenfunctions of the curl operator

By using Egs. (5) and (10) one finds that the eigenvalue equation V x F = uF in circular,
parabolic, or elliptic cylindrical coordinates amounts to (cf. Ref. [3])

(O Fo + 0.F41) = pFy,
(O Fyy — OF_y) = 2uF, (48)
—i(8Fy + 8,F_1) = pF_,.

Looking for separable solutions of Eqs. (48) of the form

Foi= o B it v )0 2], 5 =0,%1, (49)
one gets
—iaG = pgo,
dH
i— +iagy = puG, (50)
dz
dG
e wH,
where
G = 3(g941 + 9-1), H= 3941 — g-1)- (51)

From Eqs. (50) it follows that

a*G
s e + (Ju’ 2)G =0, (52)

and making use of Egs. (13-14) and (49-51) one obtains

Fy= (G+H)130Fa,\ = (G+ —d, G) —0oFay = —tpdy + 8.0,

Fo = —u:—GoFaA =36 (TOFQA) =9y, (53)

Fy = (G- H) (-é) Bty == (G = ;aC) By, =B,

1
o
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(cf. Egs. (46)) where

o aa (i, 1)

which, owing to Eqs. (11), (13) and (52), satisfies the scalar Helmholtz equation, V2 +
u?®¥ = 0. Equations (53) are equivalent to

F=pé; xVp+V x (& x V). (54)

(An alternative derivation of Eq. (54) is given in Ref. [11].)

3.4. Solution of the Dirac equation

Using Eq. (63) of Ref. [5] and Egs. (A1), (A3) and (A4), one finds that the Dirac equation
written in terms of spin-weighted quantities is given by

1du!

> e —9,0' + dv? - imTcul»

_i.aa_f = vl +8,0% - imTcug,

%88_": = —8,ul + 0u? + i—vgfvlg

%8@_1;2 = Ou! +8,u + ?:1—Cv2, (55)

A

where u?, v# are the components of the Dirac spinor with respect to the spin basis
1

induced by the coordinates (u,v,z2); u' and v' -have spin-weight —3, while «? and v?

have spin-weight -12- (Alternative derivations of Egs. (55) are given in Refs. [4,10,12-14].)
Equations (55) admit solutions of the form

ul = _jj9Foa(u, v)g(z)e EHR

u? = 1)9Fan(u,v)G(2)e™ EH/R
: —1/2Fa,\(uav)f(z)e_iEt/ha

v? =y joFor(u,v)F(2)e i EYR, (56)

S
I

Substituting Egs. (56) into Egs. (55) one obtains [4]

-5 +aC = ———A, (57)
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and
;)
d_B B _ E +me D.
dz he
B — 2
-2 -ap=E21p (58)
z he
where

A=3(g+G), B=4§G-g), C=L(F-f), D=Li(f+F). (59

1

Therefore, Egs. (55) admit solutions of the form

u

u? _ .4‘1(3){‘01\ e'iEr/h+ 1.3(:).\_’0). e,,-g;/f,‘ (60)

vl 1C(2)X an tD(2) X

v?

where
_1/2Fa —(_1/2F,
Aoy = l Mt A]. X_a = (172 M)], (a #£0). (61)

1/2Fax 1/2Fan

(The bounded solutions with a = 0 correspond to plane waves traveling along the :-axis
[4,14].)
Using the fact that

QXiax = £aXian, (62)
where [4]
o [0 =g
= , 63
3=[0 7] -

it is casy to sce that cach term in the right-hand side of Eq. (60) is an eigenfunction of
the operator

K=hn I (64)
0 Q

with eigenvalue —ha and ha, respectively (cf. also Refs. [2,4]).
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4. CONCLUDING REMARKS

By contrast with the spin-weighted harmonics in spherical and circular cylindrical coordi-
nates, in the cases of parabolic cylindrical and elliptic cylindrical coordinates, the functions
sFax(u,v) with s # 0, are not separable; however, one can find the solutions of Eqgs. (23)
and (33) for s = £1/2,%1,..., by means of Egs. (14).

Since the equations for fields of any spin, written in terms of spin-weighted quantities
and the operators & and 9, have the same form in circular cylindrical coordinates as in
parabolic cylindrical and elliptic cylindrical coordinates, the solutions to such equations,
given in terms of the spin-weighted harmonics and the operators @ and @, have the same
form in any of these coordinate systems. Thus, for instance, the solution of the Helmholtz
equation for spin-2 fields in parabolic cylindrical or elliptic cylindrical coordinates is given
by Eqs. (42) of Ref. [15], which were obtained in circular cylindrical coordinates.

APPENDIX

If (u,v, z) are orthogonal cylindrical coordinates, then

1 1
= — = —0,, = Jd,, Al
d hlau, 7)) h23 d3 =0 (A1)

form an orthonormal triad. A straightforward computation shows that

= 1 . . <
0.8 =0, (68 = S { (b = ih10)6 = (hou +ik12)B}, (A2)
1
where
D= \%83, b= %(81 + iag), 3 = %(al - ia?) (AS)

(see Ref. [5], Eq. (32b)). Comparing Egs. (A2) with Eqgs. (33) of Ref. [5] one finds that
the only nonvanishing spin-coefficient for the triad (A3) is given by

1
= —————(hgu +ih1). A4
8 2\/§h1h2( 2u 1v) (A4)
Therefore, the spin-weight raising and lowering operators (6 + 2s3) and (& — 2s3) are

6+ 250 = — o at,) ha.5 +ithy %
s «./_(fn + \/_h1 2(2 th1 )

= - i} 1 J
0—280= —{ —h — —3) Mo — il ) Abd
=== (4 T e i) (43)
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