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Thermodynamic optimization of endoreversible engines
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ABSTRACT.Wilhin lhe field of lhe so-called endoreversible lhermodynamics (ET) it has becn es-
lablished lhal mosl of lhe oplimum performance condilions for finile-lime lhermal engines models
are highly sensitive to the heat transfer law used. For examplc, this is the case for maximum po\\'C'r
oulpul condilions. In lhe presenl work, by means of lhe De Vos' method we develop a syslematie
way lo oblain several lypical ET -resulls and we find lhal lhere exisls a general properly whieh is
maintained for endoreversible engines under changes in the heat-transfer law.

RESUME1\.En el campo de la llamada termodinámica endorreversihle (TE) se ha estahlecido 'lile
la mayoría de las condiciones para la operación óptima de modelos de máquinas t(;rlllicas a tiempo
finito dependen fuertemente de la ley de transferencia de calor usada. Este C's('1 raso del régillH'1l
de máxima potencia, por ejemplo. En este trabajo, mediante el metado de De Vos, dcsarrollamo~
una manera sistemática de obtener varios resultados típicos de la TE, y ('ncontramos quC'C'xist('
una propiedad general que se mantiene bajo cambios de la ley de transfl'rf'lIda t('cmica usada ('11

máquinas endorreversibles.

PAes: 44.GO.+k; 44.90.+c

1. INTRODUCTION

Endoreversible thermodynamics (ET) can be eonsidered as an extension of dassieal eqlli-
librium thermodynamics in the domain of endoreversible proeesses 1',21. ET has been
capable to describe physical systems in whieh predominant irreversible pro{'esS('s oecllr at
the coupling between the system and its surrollndings. In the ET approaeh, the internal
processes within the system may be treated as reversible transformations and the global
entropy production is ascribed only to energy exchanges occurring at the links connect-
ing the system with its surroundings. This separation in internal reversible processes and
frontier-irreversible proeesses is known as the endoreversibility hypothesis, alJ(1 can be
considered as reasonable for cases in whieh tbe internal relaxation times of the syslem are
negligibly short compared to the duration of the global process to be considered. A typical
endoreversible system is the so-called Curzon & Ahlborn (CA) engine 131 (see Fig. '). This
heat engine is a Carnot-type eyele in whieh there is not thermal e'luilihrium hetween the
working fluid and the reservoirs, al the isothermal branehes of the cyele. CA showed that
such an engine is a non zero power output eugine (iu contrast wilh the reversible Carnot
eyele that in practice does not deliver power output) which working at tbe maxitrlutrl
pawcr regime has aH f'fficiency givcn by

¡r;
'ICA = 1 - VT;'

8GG

(1)
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FIGUHE l. De Vos' scheme for lhe Curzon and Ahlborn endoreversible engine.

where T2 and T¡ are the absolute temperatures of the cald and hot reservoirs, respectively.
Equation (1) compares well with observed efficiencies for sorne power sources as can be
seen in Table 1 of Ref. [3). Eq. (1) has been obtained by several authors [4-6] by using
alternative approaches to the CA-cyc!e. Since the CA paper, an extensive work has been
made in the field of the ET, also called finite-time thermodynamics [7]. Among the several
approaches proposed for endoreversible engines, the De Vos' treatment [1,5,8) is remark-
able because of its simplicity and generality. In this paper, we obtain a general ontline for
sorne ET results following the De Vos' approach, inc!uding the recovery of those results
in Refs. [9) and [lO]. They consist in sorne properties of the CA-cyc!e operating under an
ecological optimization criterion, the first one, and an improvement of finite-time efficien-
cies calculations, the second one. In this work, we also suggest that there exists a general
property for CA-cyc!es which is independent of several heat transfer laws.

2. TYPICAL El'DOREVEHSIIlLE EI'CINE CIIAHACTEIUSTICS

Figure 1 shows the De Vos' scheme for a typical endoreversible engine (the CA engine)
constituted by the following parts: two heat reservoirs (T¡ and T2); two irreversible com-
ponents (thermal conductances (} and /3) and a reversible Carnot engine between the
intermediate heat reservoir at T¡w and the intermediate heat reservoir at T2w. ny the
condition of endoreversibility [1]' we have

Q¡
T¡w

(2)
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where Ql and Q2 are the heat flows (heat tmnsfer per unit time). Because of first law of
thermodynamics, it follows that

(3)

where W denotes the power output (work per unit time). lt has been usual to propose
(for the thermal conductors) constitutive laws of the type

(4)

and

(5)

with k = 1 for the Newton's law of cooling or k = 4 for Stefan-Boltzmann heat exchange [5,
12]. By substitution of Eqs. (4) and (5) in Eq. (2), we obta;n

o(Tt - T,kw) {3(T{w - T{)
=

T1w T2w

For the reversible part of Fig. 1 it is clear that

(6)

(7)

where '1 is obviously the endoreversible Carnot efficiency. By solving Eqs. (6) and (7) for
T1w and T2w, we obtain

and

Tk- o Tk+ {3
lw - 0+ {3(1- r¡)k-I I 0+ {3(1- r¡)k-l

r.k2
(1 - '1) (8)

r.k _ 0(1 - r¡)k Tk {3(1 - r¡)k-l r.k
2w - 0+ {3(1- r¡)k-l 1 + 0+ {3(1_ r¡)k-I 2'

By means of Eqs. (8) and (4) we get the fuuction Ql = Ql(r¡),

(1 - r¡)kTk - r.kQ, = "1 I 2 ,

o~¡¡(1 - 1/) + of¡¡(1 - 1/)k

with "1 = oo!~.l\lultiplying Eq. (10) by'}, illlmediately becomes

(9)

(10)

(11 )
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which give us the cycle's power output in terms of 'l. Following the same procedure, we
can obtain the mean entropy production of the CA engine. The entropy production a for
the entire engine (working fluid plus reservoirs) is

Q2 Q¡
a=---

T2 TI

which in terms of '1 becomes [by substitutiou of Eqs. (4) and (5) in (12))

(12)

(13)

Equations (10), (11) and (13) give us the main characteristics of an endoreversible CA
cycle, as functions of the efficiency '/, for heat flows governed by Eqs. (4) and (5). Figures
2a, 2b and 2c show the characteristics curves of heat input, power ontput and entropy
production, respectively. As it is expected these characteristics are compatible with the
full reversible limit case, that is 1I'(11c) = O and a(1/e) = O for 'le = 1 - 'R.

3. TIIERMODYNAMIC OPTIMIZATION

3.1. Newton's law o/ cooling

Curzon and Ahlborn obtained Eq. (1) maximizing the cycle's power output as function
of the variables X = T¡ - T1w and Y = T2w - T2. This procedure implies a cumbersome
algebraic handling of two variable fnnctions [31. By means of expressions as Eqs. (11)
and (13) the maximization problem is reduced to one independent variable, namely, '1
(which is the De Vos' procedure). For example, to maximize the power output by using
Eq. (11), immediately it follows that, dl~.\")= O implies

Tk
T.~(o(l-r¡)k+l +¡J(1_r¡)2k) - (o+¡J(1- r¡)k-I)
2

-(k-I)'I(O~}(1-'I)k+¡J(I-'I)k-l) =0, (14)

which for the Newton's law of cooling case (k = 1) reduces to

(15 )

whose solution is Eq. (1).
In Re£. [91 a criterion of merit to optimize a CA cycle was proposed. This criterion con-

sists in the maximizing of the function E, wbich represents the best compromise between
high power output and low entropy production. The function E is given by

(16)
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FIGURE 2. Thermodynamie eharaeteristies for the CA-engine in terms of ry, with k = 1 and
arbitrary values for o, (3, T, and T2: (a) heat input; (b) mean power output and (e) mean entropy
production.

where 11' is power output, T2 the temperature of the eold reservoir and a the entropy
produetion (per unit time). lly substituting Eqs. (11) and (13) in Eq. (16), we get

For fixed k, ¥. and ~, E(1)) is depieted in Fig. 3. This is a eonvex curve with an unique

maximum point. To obtain 'IME, where E(ry) has its maximum, we ealculate ~~ = O, whieh
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FIGURE3. The ecological function in terms of r¡ for k = 1 and arbitrary valnes of n, (3,TI and T2.

implies (for k = 1)

whose solutioll is

2T?(l - r¡f - T1T2 - Ti = o, (18)

'/ME = 1 - ( 19)

in agreement with the solution reported in Re£. [91, where it was obtained by means of a
conventional CA-approach. Equation (19) has the following property [9]:

_ t _ 'lC + 'JCA
'/ME - 'IME= 2 (20)

with r¡c the Carnot efficiency and l/CA the CA efficiency gi\'en by Eq. (1), as can be seen
in Fig. 4.
The point of maximum E(,/) has the interesting property of gi\'ing us down to about

80% of the maximulIl power output, but with an entropy production down to about 30% of
the entropy that \Vonld be produced hy the maximum po\Ver regime. This beha\'ior can he
seen in Figs. Sa and Sb. For this reason the function E('I) is called ecological function [91.

3.2. Dulong-Petit 's law o/ cooling

A more realistic description of the heat exchange hetween the working fluid aIJ(1 its sur-
roundings must indude a T4-term due to radiati\'e contributions. The so-called Dulong-
Petit (DP) law of cooling gi\'en by

(21 )
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FIGURE 5. Comparisons: (a) belween power oulpul al maximum IV and maximulll E regimes and
(b) belween enlrnpy prnduclion al lhe sallle bolh regimes.

and

(22)

wilh k = 5/4 takes into account combined conductive-convective and radialive cool-
ing [lO, 11j. This law may be seen as a curve fitting of the Newton and Stefan-Boltzmann
contributions to the heat. exchange between the working fluid and the heat reservoirs (for
at least certain temperature interval) [111. In Ref. [10]' by using this law of cooling, the
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FIGURE6. Power oulpul in lerms of ~ by using a DP-Iaw of cooling.

aulhors improved efficiency calculations made with Newton's law of cooling only [3,121
(see Table 1 of Re£. 110]). Following the same procedure as in the previous cases [Eqs. (10),
(11) and (13)] for the DP-case, \Veoblain

W _ {3-'/- [ (1- ,,)'1'1 - '1'2 ] k
DP - Q "-1 '

1 -" ",l/k + {31/k(l _ ,,).-

which is a convex curve with an unique maximum point, as is depicted in Fig. 6.
To obtain "MPDP which maximizes Eq. (23) we solve the equation

d.IV__D_P (,,) __ O

d"

(23)

(24)

by means of numerical methods. Sorne of the numerical results of Eq. (24) can be seen in
Table 1 (third colullln), and they agree with those reported in Re£. [101 for the same power
plants. As it was stated in that reference, by using the Dulong-Petit's law of cooling the
efficiency calculations are illlproved in comparison \Vith the CA-efficiency results which
use the Newton's law of heat transfer.

For the case of the DP-law of cooling, \Ve also can express an ecological function as

(25)

To find this funetion we need to construct the entropy production aDP for this law of
cooling,

(26)
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TABLE 1. Comparison betw('('n TJ~IPDP' I1MEol' anrl TJobl for several power plants.

Power plant T2 (K) TI (K) TJMPoJ' 7J~1Eop 1Job!l k
\Vest Thurroek (U.K.) 1962 eom'en- 298 838 0.366 0.49 0.36 5/4
tianal coal fired steam plant
Lardarello (ltaly) geothermal steam 353 523 0.16 0.239 0.16 5/4
plant
1936-1940 Central steam-power sta~ 298 698 0.281 0.416 0.28 1.55
tions in the U.K.
1956 steam-power plant in lhe U.S. 298 923 0.392 0.52 0.40 5/4
1949 eombined-eycle (steam and mero 298 783 0.347 0.47 0.34 5/4
eury) plant in the U.S.
Doel 4 (Delgium) 283 566 0258 0.373 0.35 5/4

whieh implies [by sllbstitution of Ec¡s. (21) and (22) in (26)1

a(J (l-'I)T, - T2 [ (1 - '1)T¡ - T2 ]k
UDP = .\:_1

T¡T2 1 - '1 al/k + (JI/k(l - '1)-,

By substitllting Ec¡s. (27) and (23) in (25) \Veobtain

(27)

(28)

\Vhieh aIso is a eonvex curve in '1 with one rnaximum point (see Fig. 7).
If \Ve take data for the Doel nuclear po\Ver plant reported in ReL [7J, whieh are TI =

566 K and T2 = 283 K, and \Ve suppose that it \Vas designed \Vith an eeologieaI eriterion
(maximizing E[)p) \Veobtain by means of Ec¡. (28) '1~IEop = 0.37 in good agreernent \Vith
the observed efficieney, '1ob, = 0.35. (see last ro\V in Table 1)

In Table II \Ve sho\V the so-ealled eeologieal efficieney '1Eop ealculated by means t\Vo
proeedures: Solving numerically d~op = O, to !ind the point ('1MEop) where E[)p has a
maximum, and by means of express70n

t 'le + 'lMPop
'1~IEop '" '1MEop == 2 (29)

\Vhieh is the analogous of Eg. (20). \Ve see that the property sho\Ved in ReL [9J (expressed
by Eg. (20) far the Ne\Vton's Iaw nf eooling case, is retained for the DP.ease. The k
exponent in Eqs. (21) and (22) may have other vallles in the interval[l.l, 1.61 [11). For the
case of the Steam Po\Ver plant (1936-1940 Central steam-po\Ver stations in the UK) the
beller value for k is 1.55 [lOj. In this case, we also observe, that the property expressed
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FIGURE7. Ecological fllnclion in lerms of ry for lhe DP-Iaw of cooling case wilh k = 5/4.

TABLE11. Semisum properly [Eq. (29)1 for k = 5/4 and for k = 1.55: 1936-1940 Cenlral sleam-
power stations in the UK.

Po,"er pIant ryC 17M PUl' 1]MEpp T}~fEnr k
Wesl Thurrock (U.K.) 1962 conven- 0.64 0.366 0.49 0.50 5/4
tiana) coal fired steam plant
Lardarello (Ilaly) geothermal steam 0.32 0.16 0.239 0.24 5/4
planl
1936-1940 Cenlral steam.power sta. 0.57 0.281 0.416 0.42 1.55
lions in lhe U.K.
1956 sleam-power planl in lhe U.S. 0.67 0.392 0.52 0.53 5/4
1949 combined-cycle (steam and mer. 0.61 0.347 0.47 0.47 5/4
cury) planl in lhe U.S.
Doel 4 (Belgilllll) 0.50 0.258 0.373 0.37 5/4

by Eg. (29) (bUI with k = 1.55) is approximately maintained. The resnlts snmmarizeo in
Table II suggest that the property

'le + ')MP
')ME "" 2 (30)

with 'IMP the emciency at the maximum power regime, is practically independent of
the heat transfer law employed, in contrast with '1MP which changes with di!ferent heat
laws [13,141. In our opinion, the previous property of '1~IEis a conseguence derived from the
fact, that the geometrical fashion of the curves representing W(1)) (see Figs. 2b and 6) is
very close to a parabolic Lehavior. For the case of a true paraLola, as W ('1l = W01)( 'IC - '1l,
the property expressed by Eg. (30) is an eguality (see Appendix).
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4. Co:-:eLuDI!'G RDIARKS

In lhis papel' we showed lhal lhe formalism proposed by De Vos consisling in lo express
relevanl quanlilies in lerms of 7J, is suilable for embracing several optimization criteria
for endoreversible engines. In Seclion 3, we extended lhe De Vos' results for the case
of lhe e,clogical optimizalion criterion by using differenl heat transfer laws. Our results
include a nice reproduction of lhose reported in ReL [lOI(which were calculated by means
of a CA-formalism) and numerical calculalions which suggesl lhat the semisum property
(Eq. (30)) is mainlained for al leasl lhe lhree heal lransfer laws previollsly menlioned. As
far as we know lhis properly is lhe tirsl candidale lo be independenl of the heal lransfer
law used in endoreversible engines.

ApPEI'DIX

lf we lake a lypical power oulpul vs. efficiency curve (for example, see Fig. G) and propose
lhal il has a parabolic behavior given by

immedialely we oblain

7JMP = he.
On lhe olher hand, lhe ecological fllnclion is given by

which has a maximum al 7JME' Then

and

(dW()¡)) T (da()l))
dl¡ 'IME = 2 ----;¡;¡ "'lE'

In Refs. [91 and !JO) was showed lhal lhe funclions W(1]) and a(7J) are linked by

W()¡) = g(1])a(1]),

with

T¡T2)¡
9 = -T-,---T

2
_) .¡T-,'

(Al)

(AZ)

(A3)

(A4)

(A5)

(AG)

(A7)



Eqllation (A 7) holds for both :"e\\.ton and Dlllong-Petit's la\\"s of eooling [9,101.
l3y sllbstitlltion of Eqs. (Al), (AG) and (A7) in (A5), it follo\\"s that

(AS)

then

finally, sllbstitllting Eq. (A2) in (A9), \\"e obtain

(A9)

that is, Eq. (30) as a true eqllality.

'I~IE= 'le + 'I~II'
2 (A 10)

This \\"ork \\"as partially sllpported by COFAA-IPi\' ~Iexico.
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