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Thermodynamic optimization of endoreversible engines
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ABSTRACT. Within the field of the so-called endoreversible thermodynamics (ET) it has been es-
tablished that most of the optimum performance conditions for finite-time thermal engines models
are highly sensitive to the heat transfer law used. For example, this is the case for maximum power
output conditions. In the present work, by means of the De Vos' method we develop a systematic
way to obtain several typical ET-results and we find that there exists a general property which is
maintained for endoreversible engines under changes in the heat-transfer law.

RESUMEN. En el campo de la llamada termodindmica endorreversible (TE) se ha establecido que
la mayoria de las condiciones para la operacién éptima de modelos de médquinas térmicas a tiempo
finito dependen fuertemente de la ley de transferencia de calor usada. Este es el caso del régimen
de mdxima potencia, por ejemplo. En este trabajo, mediante el metodo de De Vos, desarrollamos
una manera sistemdtica de obtener varios resultados tipicos de la TE, y encontramos que existe
una propiedad general que se mantiene bajo cambios de la ley de transferencia térmica usada en
maquinas endorreversibles.

PACS: 44.60.+k; 44.90.+c

1. INTRODUCTION

Endoreversible thermodynamics (ET) can be considered as an extension of classical equi-
librium thermodynamics in the domain of endoreversible processes [1,2]. ET has been
capable to describe physical systems in which predominant irreversible processes occur at
the coupling between the system and its surroundings. In the ET approach, the internal
processes within the system may be treated as reversible transformations and the global
entropy production is ascribed only to energy exchanges occurring at the links connect-
ing the system with its surroundings. This separation in internal reversible processes and
frontier-irreversible processes is known as the endoreversibility hypothesis, and can be
considered as reasonable for cases in which the internal relaxation times of the system are
negligibly short compared to the duration of the global process to be considered. A typical
endoreversible system is the so-called Curzon & Ahlborn (CA) engine [3] (see Fig. 1). This
heat engine is a Carnot-type cycle in which there is not thermal equilibrium between the
working fluid and the reservoirs, at the isothermal branches of the cycle. CA showed that
such an engine is a non zero power output engine (in contrast with the reversible Carnot
cycle that in practice does not deliver power output) which working at the maximum
power regime has an efficiency given by

T,

nca =1 — 4/ =,
1CA T,
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FIGURE 1. De Vos’ scheme for the Curzon and Ahlborn endoreversible engine.

where T; and T are the absolute temperatures of the cold and hot reservoirs, respectively.
Equation (1) compares well with observed efficiencies for some power sources as can be
seen in Table I of Ref. [3]. Eq. (1) has been obtained by several authors [4-6] by using
alternative approaches to the CA-cycle. Since the CA paper, an extensive work has been
made in the field of the ET, also called finite-time thermodynamics [7]. Among the several
approaches proposed for endoreversible engines, the De Vos' treatment (1,5,8] is remark-
able because of its simplicity and generality. In this paper, we obtain a general outline for
some ET results following the De Vos' approach, including the recovery of those results
in Refs. [9] and [10]. They consist in some properties of the CA-cycle operating under an
ecological optimization criterion, the first one, and an improvement of finite-time efficien-
cies calculations, the second one. In this work, we also suggest that there exists a general
property for CA-cycles which is independent of several heat transfer laws.

2. TYPICAL ENDOREVERSIBLE ENGINE CHARACTERISTICS

Figure 1 shows the De Vos’ scheme for a typical endoreversible engine (the CA engine)
constituted by the following parts: two heat reservoirs (T} and Ty); two irreversible com-
ponents (thermal conductances a and ) and a reversible Carnot engine between the
intermediate heat reservoir at Tj, and the intermediate heat reservoir at Th,. By the
condition of endoreversibility [1], we have

Q_ Q@

= 2
le T?w , ( )
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where @1 and Q3 are the heat flows (heat transfer per unit time). Because of first law of
thermodynamics, it follows that

Q1 =W+ Q, (3)

where W denotes the power output (work per unit time). It has been usual to propose
(for the thermal conductors) constitutive laws of the type

Q1 = a(Tf - T},) (4)
and
Q2 = B(TE, — TF), ()

with k = 1 for the Newton’s law of cooling or & = 4 for Stefan-Boltzmann heat exchange [5,
12]. By substitution of Egs. (4) and (5) in Eq. (2), we obtain

C!(le - lew) ﬂ(Tka = TZ’C)

le - T?w . (6)
For the reversible part of Fig. 1 it is clear that
T?w

=1-—=—, 7

U T (7)

where 7 is obviously the endoreversible Carnot efficiency. By solving Egs. (6) and (7) for
Tiw and Ty, we obtain

k a k B T2k

Tw = S0 T a0 —mFT -7

(8)

and

ko o T])k k B - W)k_l k
ey )

By means of Eqgs. (8) and (4) we get the function Q; = Q1(n),

Fhy =y (1= T])lek - T2,c (10)
2 =0+ 21— )

with v = &—‘f% Multiplying Eq. (10) by 5, immediately becomes

(1-n)*Tf - T4

2251 -n) + FH0A -’

(11)

W =n
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which give us the cycle’s power output in terms of 7. Following the same procedure, we
can obtain the mean entropy production of the CA engine. The entropy production o for
the entire engine (working fluid plus reservoirs) is

Q@
o= T, T, (12)
which in terms of 7 becomes [by substitution of Egs. (4) and (5) in (12)]
7 [A-nT - B[ - n)*TF - Tf] (13)

N 25(1-n)+ A1 —n)k

Equations (10), (11) and (13) give us the main characteristics of an endoreversible CA
cycle, as functions of the efficiency 7, for heat flows governed by Egs. (4) and (5). Figures
2a, 2b and 2c show the characteristics curves of heat input, power output and entropy
production, respectively. As it is expected these characteristics are compatible with the
full reversible limit case, that is W(n.) =0 and o(n.) =0 for p. = 1 — %

3. THERMODYNAMIC OPTIMIZATION

3.1. Newton's law of cooling

Curzon and Ahlborn obtained Eq. (1) maximizing the cycle’s power output as function
of the variables X = Ty — Ty, and Y = T3, — T5. This procedure implies a cumbersome
algebraic handling of two variable functions [3]. By means of expressions as Egs. (11)
and (13) the maximization problem is reduced to one independent variable, namely, 7
(which is the De Vos' procedure). For example, to maximize the power output by using

. . : AW () i1
Eq. (11), immediately it follows that, 7'1?-)- = 0 implies

k

% (a1 = ¥+ + B(1 - m)*) - (a+B8(1-m*")

k

- {k— 1% (a%(l -+ 81 - n)"'l) =0, (14)
2

which for the Newton’s law of cooling case (k = 1) reduces to
(1-n)'Ti -Tp =0, (15)

whose solution is Eq. (1).

In Ref. [9] a criterion of merit to optimize a CA cycle was proposed. This criterion con-
sists in the maximizing of the function E, which represents the best compromise between
high power output and low entropy production. The function E is given by

E=W -To, (16)
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FiGURE 2. Thermodynamic characteristics for the CA-engine in terms of 7, with ¥ = 1 and
arbitrary values for a, 3, T} and T5: (a) heat input; (b) mean power output and (¢) mean entropy

production.

where W is power output, 75 the temperature of the cold reservoir and o the entropy
production (per unit time). By substituting Eqgs. (11) and (13) in Eq. (16), we get

v | (=)@ - 1T (1 - TTF + (1 =)F T — THH
E(n) = = = B X : (17)
T arp(l—m+ F51—-n)

For fixed k, % and %, E(n) is depicted in Fig. 3. This is a convex curve with an unique

maximum point. To obtain nyg, where E(7) has its maximum, we calculate % = 0, which
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FIGURE 3. The ecological function in terms of  for k = 1 and arbitrary values of a, 3, Ty and T>.
implies (for k = 1)

2T (1 -0 -TT - T5 =0, (18)

To(TH + T;
nME=1—,/%, (19)
1

in agreement with the solution reported in Ref. [9], where it was obtained by means of a
conventional CA-approach. Equation (19) has the following property [9]:

whose solution is

IME = yg = %Eﬁ : (20)
with 7c the Carnot efficiency and nca the CA efficiency given by Eq. (1), as can be seen
in Fig. 4.

The point of maximum E(5) has the interesting property of giving us down to about
80% of the maximum power output, but with an entropy production down to about 30% of
the entropy that would be produced by the maximum power regime. This behavior can be
seen in Figs. 5a and 5b. For this reason the function E(n) is called ecological function [9].

3.2. Dulong-Petit’s law of cooling

A more realistic description of the heat exchange between the working fluid and its sur-
roundings must include a T*-term due to radiative contributions. The so-called Dulong-
Petit (DP) law of cooling given by

Q1 = o(Th - Thw)* (21)
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FIGURE 5. Comparisons: (a) between power output at maximum W and maximum E regimes and
(b) between entropy production at the same both regimes.

and

Q2 = B(Tow — Tu)F, (22)

with k = 5/4 takes into account combined conductive-convective and radiative cool-
ing [10,11]. This law may be seen as a curve fitting of the Newton and Stefan-Boltzmann
contributions to the heat exchange between the working fluid and the heat reservoirs (for
at least certain temperature interval) [11]. In Ref. [10], by using this law of cooling, the
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FIGURE 6. Power output in terms of 7 by using a DP-law of cooling.

authors improved efficiency calculations made with Newton’s law of cooling only [3,12]
(see Table I of Ref. [10]). Following the same procedure as in the previous cases [Egs. (10),
(11) and (13)] for the DP-case, we obtain

1—-nT) -T:
WDP — aﬁ n ( 7]) 1 2 = ’ (23)
1=7|al/k + [31/1:(1 - E

which is a convex curve with an unique maximum point, as is depicted in Fig. 6.
To obtain nupp, which maximizes Eq. (23) we solve the equation

dWpp(n)

o 0 (24)
by means of numerical methods. Some of the numerical results of Eq. (24) can be seen in
Table I (third column), and they agree with those reported in Ref. [10] for the same power
plants. As it was stated in that reference, by using the Dulong-Petit’s law of cooling the
efficiency calculations are improved in comparison with the CA-efficiency results which
use the Newton’s law of heat transfer.

For the case of the DP-law of cooling, we also can express an ecological function as

Epp(n) = Wpp(n) — Taopp(n). (25)

To find this function we need to construct the entropy production opp for this law of
cooling,

Q2 @
ODP = T (26)
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TABLE I. Comparison between nympyp, TMERe and 7obs for several power plants.

Power plant T (K) | Th (K) | 7MPoe | "MEpp Ta6: k
West Thurrock (U.K.) 1962 conven- 298 838 0.366 0.49 0.36 | 5/4
tional coal fired steam plant

Lardarello (Italy) geothermal steam 353 523 0.16 0239 | 0.16 | 5/4
plant

1936-1940 Central steam-power sta- 208 698 0.281 0.416 | 0.28 | 1.55
tions in the U.K.

1956 steam—power plant in the U.S. 298 923 0.392 0.52 040 | 5/4
1949 combined—cycle (steam and mer- 298 783 0.347 0.47 034 | 5/4
cury) plant in the U.S.

Doel 4 (Belgium) 283 566 0258 0.373 | 035 | 5/4

which implies [by substitution of Egs. (21) and (22) in (26)]

k
s af (1-9)T1 - T, (1-n)T1 — T3 (27)
T\ T, 1-7 allk 4 BU/k(1 — n)"—;i '
By substituting Eqgs. (27) and (23) in (25) we obtain
B L-nf-1 1
a p— —
EDP(”) = d il : =)
1—-n allk 4 BUk(1 —9) %
k
_ B —g)d— s (& ~ql ~13 (28)
T, 1-n al/k+ﬁl/k(1_n)£{—l- ’

which also is a convex curve in 7 with one maximum point (see Fig. 7).

If we take data for the Doel nuclear power plant reported in Ref. [7], which are T} =
566 K and T = 283 K, and we suppose that it was designed with an ecological criterion
(maximizing Epp) we obtain by means of Eq. (28) ymEy, = 0.37 in good agreement with
the observed efficiency, 7o,s = 0.35. (see last row in Table I)

In Table II we show the so-called ecological efficiency ngy, calculated by means two
procedures: Solving numerically d—‘?"— = 0, to find the point (yMEpp) Where Epp has a
maximum, and by means of express?on

nc + nmp
nMEDp =~ T’;\/IBDP = _2—DF‘, (29)

which is the analogous of Eq. (20). We see that the property showed in Ref. [9] (expressed
by Eq. (20)) for the Newton’s law of cooling case, is retained for the DP-case. The k
exponent in Eqs. (21) and (22) may have other values in the interval [1.1,1.6] [11]. For the
case of the Steam Power plant (1936-1940 Central steam-power stations in the UK) the
better value for k is 1.55 [10]. In this case, we also observe, that the property expressed




THERMODYNAMIC OPTIMIZATION OF ENDOREVERSIBLE ENGINES 875

140 + 1
120 - i
100 T

Epp(n) W
60 5

20 §

| n
% 02 04 06 08 1
n

FIGURE 7. Ecological function in terms of 7 for the DP-law of cooling case with k = 5/4.

TABLE II. Semisum property [Eq. (29)] for k = 5/4 and for k = 1.55: 1936-1940 Central steam-
power stations in the UK.

Power plant nc MPpp TMEor | TMEpp k
West Thurrock (U.K.) 1962 conven- 0.64 0.366 0.49 0.50 5/4
tional coal fired steam plant

Lardarello (Italy) geothermal steam 0.32 0.16 0.239 0.24 5/4
plant

1936-1940 Central steam-power sta- 0.57 0.281 0.416 0.42 1.55
tions in the U.K.

1956 steam-power plant in the U.S. 0.67 0.392 0.52 0.53 5/4
1949 combined-cycle (steam and mer- 0.61 0.347 0.47 0.47 5/4
cury) plant in the U.S.

Doel 4 (Belgium) 0.50 0.258 0.373 0.37 5/4

by Eq. (29) (but with k = 1.55) is approximately maintained. The results summarized in
Table II suggest that the property

ME = W—C-:L;ﬂ, (30)
with 7yp the efficiency at the maximum power regime, is practically independent of
the heat transfer law employed, in contrast with myp which changes with different heat
laws [13,14]. In our opinion, the previous property of nyg is a consequence derived from the
fact, that the geometrical fashion of the curves representing W (7) (see Figs. 2b and 6) is
very close to a parabolic behavior. For the case of a true parabola, as W (n) = Won(nc —n),

the property expressed by Eq. (30) is an equality (see Appendix).
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4. CONCLUDING REMARKS

In this paper we showed that the formalism proposed by De Vos consisting in to express
relevant quantities in terms of 7, is suitable for embracing several optimization criteria
for endoreversible engines. In Section 3, we extended the De Vos' results for the case
of the ecclogical optimization criterion by using different heat transfer laws. Our results
include a nice reproduction of those reported in Ref. [10](which were calculated by means
of a CA-formalism) and numerical calculations which suggest that the semisum property
(Eq. (30)) is maintained for at least the three heat transfer laws previously mentioned. As
far as we know this property is the first candidate to be independent of the heat transfer
law used in endoreversible engines.

APPENDIX

If we take a typical power output vs. efficiency curve (for example, see Fig. 6) and propose
that it has a parabolic behavior given by

W(n) = Won(ne —n), (A1)
immediately we obtain
IMP = 37C. (A2)
On the other hand, the ecological function is given by
E(n) = W(n) — Tho(n), (A3)

which has a maximum at nyg. Then

(i%;l))wg - (dlz;gn))wa e (d(;?})ws - —
and
(5 L »(

In Refs. 9] and [10] was showed that the functions W (7) and o(7) are linked by

W(n) = g(n)e(n), (A6)
with

TiTon

Q*TI_TQ‘TITII
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Equation (A7) holds for both Newton and Dulong-Petit’s laws of cooling [9,10].

By substitution of Egs. (A1), (A6) and (A7) in (A3), it follows that

IME = %?Jc, (AS8)

then

IME = 3 [%nc] =3 [Uc + %ﬂc] 5 (A9)

finally, substituting Eq. (A2) in (A9), we obtain

_ Nic +mp

IME = 7 (A10)

that is, Eq. (30) as a true equality.
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