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ABSTRACT. The non-linear stability of the Kolmogoroff flow is numerically studied using both
spectral and lattice Boltzmann simulations with the aim of validating these latter techniques.
Three different methods were applied: one standard spectral method and two types of lattice
Boltzmann simulations. Results, in the form of streamline and vorticity patterns, are presented for
different Reynolds and wave numbers (aspect ratio), showing generally good agreement among the
three techniques and with well known results in the literature. This agreement is better for steady
or quasi-steady situations, and an explanation for this feature is provided.

RESUMEN. En este trabajo se estudia numéricamente la estabilidad del flujo de Kolmogoroff
empleando técnicas espectrales y red de malla de Boltzmann, con la finalidad principal de validar
estas tltimas técnicas. Se emplearon tres diferentes métodos: un método espectral y dos tipos
de simulacién con redes de malla. Se presentan resultados de patrones de funcién de corriente y
vorticidad para diferentes niimeros de Reynolds y de onda (relacién de aspecto), mostrando en
general buena concordancia entre las tres técnicas y con resultados ya establecidos en la literatura.
La concordancia es mejor para flujo estacionario o cuasi-estacionario, para lo cual se da una
explicacién en este trabajo.

PACS: 47.20.Ft; 47.20.Ky; 47.30.+s

1. INTRODUCTION

The Kolmogoroff flow is called such a flow obtained for a viscous incompressible fluid
induced by an unidirectional external force field periodic in one coordinate [1-3]. The
study of this type of flow has received considerable attention in the past years due to the
fact that is suitable to study large scale perturbations induced by viscosity driven at small
scales [3]. The linear stability analysis was carried out by Meshalkin and Sinai [4] and
independently by Green [5]. The marginal stability curve shows that the critical Reynolds
number decreases with the perturbations’ wave number, reaching the value of v/2 for the
wave number zero. This critical Reynolds number tends to infinity as the wave number
of 1 is achieved (this corresponds to an aspect ratio of unity, same wave number as that
given by the driving force). Beaumont [6] and Gotoh et al. [7] used Floquet theory after
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taking into account modes which do not have the same periodicity as the unperturbed
flow in the transversal direction.

Bondarenko et al. [8] have reproduced this type of flow in laboratory scale using a thin
layer of electrolyte placed in a periodic magnetic field. He obtained a critical Reynolds
number several orders of magnitude larger than /2, difference based on the different
boundary conditions used in the experiment. They obtained for the Reynolds number
three times larger than the critical one, irregular oscillations showing the appearance of
turbulence, but the sequences of events leading to this state depend on the degree of
confinement. Obukhov [3] analysed the model including friction and Thess [9] carried
out a comprehensive linear stability analysis taking into account viscosity, linear friction
and confinement. Thess found that strong confinement leads to oscillation at the onset of
instability, contrary to the purely exponential grow obtained for weakly confined systems.

Sivashinsky [10], studied the non-linear bifurcation of this flow close to the critical
value of v/2, obtaining the evolution equation, which shows chaotic behavior (turbulence).
The first bifurcation shows the existence of vortical periodic flows, the number of which
depends on the Reynolds number and the wave number of the perturbation. It can be
shown that these periodic flows are unstable, leaving only one vortical flow. She [11,12]
constructed a simplified model and performed extensive numerical simulations of the
non-linear evolution of the Kolmogoroff flow. Perturbed in the unstable band of the wave
numbers, this flow reorganizes itself into a periodic or quasi-periodic array of vortices
roughly aligned with the direction of the force. This is a relatively rapid process occurring
in times of the order of the eddy turnover time, resulting in a variety of states depending
very much in the initial perturbation. Later on, these sates, which are unstable to the
pairing of two neighbor vortices, evolve by sequences of pairing events spaced by increas-
ingly long time intervals of very little activity. The number of vortices decreases by one in
each pairing and the overall length scale of the flow (in the direction of the force) increases
accordingly. Numerical computations were extended up to about 103 eddy turnover times.
Recently, Martinez et al. [13] made a comparison of spectral method and lattice Botz-
mann simulations on a two dimensional shear layer initial value spatially-periodic problem
perturbed with a low level random noise. They found both simulations to be very close to
each other in the history of enstrophy, wave number energy spectra and vorticity plots at
least for times of the order of several turn-over times. They detected however discrepancies
in the spatial position of vortical structures.

In this paper we present a numerical description of a part of the non-linear response
of the Kolmogoroff flow to relatively short wavelength perturbations by two different
numerical techniques: spectral (S) and lattice Boltzmann simulation (LB). The work is
intended as an assessment of two variations of the lattice Boltzmann method which uses
simplified versions of the lattice Boltzmann equation.

2. FORMULATION

We assume a two dimensional flow given by a velocity vector v*(z,y), induced by a
periodic gravity force in the x direction but modulated along the y coordinate. In terms
of the vorticity, w* = V*xv* (V* = i0/0x +j8/8y), and the stream function, ¥*, defined
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by 8y* /0y = v* -i and 9y*/dr = —v* - j, the Navier-Stokes governing equations for this
flow, called Kolmogoroff flow, can be written as

Jw*  OY* dw*  IY* dw* Fu®  §w 1. ..
% T By Br  Ba By _”(ax?J“ay? v x (1)
. 82'(,-‘9* a?w*
w = (W + a—yz' k, (2)
where f* = —Fj sin(my/h)i denotes the body force and Fy its amplitude. The force is

modulated along the y coordinate and directed in the direction of the z coordinate: h
corresponds to the half wavelength of this modulation; i,j,k are the unit vectors corre-
sponding to the x, y and z coordinates, respectively; ¢t corresponds to the time: v is the

kinematic viscosity and p* the density of the fluid. The stream function, Y%, and vorticity,
wg, for the steady-state flow are given by

- ELh Y

Ves = — uﬂ_g cos (71_) y (3)

Wy = i cos (ﬂ) k. (4)
Ths h

Here, p corresponds to the dynamic viscosity, 4 = p*v. The longitudinal z-velocity com-
ponent for the steady-state Kolmogoroff flow, is then

*p2
ut, = L sin (Wy). (5)

= un? h

Introducing the following non-dimensional normalized variables:
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where a represents the aspect ratio L/h, the non-dimensional governing equations trans-
form to
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R corresponds to the Reynolds number defined with the maximum steady-state longitu-
dinal velocity and is given by

R F§ph® _ umph

ﬂ_2'u’2 L 1 (8)

The non-dimensional Laplacian transforms to

o? 9?

1
Ve o & 9
a26)(2+31]2

An alternative form of the non-dimensional Navier-Stokes equations for the Kolmogoroff
flow given by Egs. (6) and (7) and preferable for the spectral numerical technique, because
it conserves the kinetic energy in the inviscid limit, is the following:

v _ 1_, g2
-a—T_EVV—i—-Efﬁ-va’xv—VH, (9)
Vv=0, (10)
where
H=p+|v2|. (11)

Equations (9) and (10) are to be solved with suitable initial conditions and the periodicity
conditions

v(0,n) = v(1,7); v(x,0) = v(x,1), (12)
H(Ov 7]) = H(I,U); H(X,O) = H(X’ 1) (13)

In the following sections we describe both the spectral and lattice Boltzmann methods
used to solve this problem.

3. SPECTRAL METHOD

for all variables in the form

N

M
vix,n,7) = Z Z an(r)exp(inrm+imfr,\'). (14)

m=—Mn=—N
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The numerical calculation is performed by using a standard splitting technique de-
scribed elsewhere [14,15]. In the first step, both the non-linear and body force terms are
taken into account, that is

8 2
8—:=%f+vaxv. (15)

Denoting by G, the Fourier transform of the right hand side of Eq. (15),

1 1 2
Gpn = / / (%f +vxVx v) exp(—inmy — immy) dn dy, (16)
b

and using the Adams-Bashforth discretization procedure, Eq. (15) takes the form
VItAT - V" = Ar(3G" - }G™747), (17)

where VIJ"M corresponds to the discrete Fourier transform of the intermediate velocity
vector at the new time 7 + A7 and V7 is the true velocity vector at time 7. The Fourier
transform in Eq. (16) is computed with the aid of the FFT algorithm. Aliasing is removed
by using the 3/2 rule [15]. The time step A7 used in the numerical integration is deter-
mined by the CFL stability condition. Using both velocity components, Eq. (17) takes
the form

UteT U = Ar(3G67 - 16770,

V11'+A‘r _ V'r — AT(%G; _ lGrﬁA‘r),

where G, and G, are the corresponding components of the vector G. The second step
takes into account the total pressure term as well as the continuity equation. That is

V3 AT W = A VTV and, W VYO0, (18)
These equations can be written in the following form:
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Using the above relationships, Eqs. (18) then transform to

Jrvar _ (BVPHAT — (m)upar
: @)

U21+Ar - _%TT_L%T-{-AT,

H12'+A'r - nﬁlr (V21'+A1' _ VIT'*'AT).

In the third and last step, the viscous term is considered in the form

av 1
— = =V?v.
or R

Therefore, using an implicit scheme we obtain finally

T+AT
U2

Aoxd (n2+(§)2)

1+ R
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and

T+AT
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Arn? (n2+(%)2) ‘

VT+AT

4. LATTICE BOLTZMANN METHODS

The results of the spectral method are compared with those of a couple of lattice Boltz-
mann methods. Some details of the implementation follow. Further information can be
found in Refs. [16-20]. The present applications relies on the lattice Boltzmann equation.
For a simulation of the Kolmogoroff flow with Boolean variables lattice Boltzmannes see
Ref. [23].

Lattice Boltzmannes are discrete dynamical systems evolving according to a set of
cellular automata rules which are both simple and local, in order to make them suitable
for massively parallel computation. The molecules of a lattice Boltzmann live in the
discrete sites of a (generally regular) lattice tessellating ®", and move in a synchronized
way along links joining neighboring lattice sites. In this way, molecules moving in different
directions can meet at the lattice sites at discrete time intervals, colliding instantaneously
according to a definite set of collision rules. The number of molecules and the total
momentum are conserved in the collisions at each lattice site. The possibility of using
lattice Boltzmannes to simulate hydrodynamical phenomena is based on the conservation,
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during the microscopic evolution of the gas, of quantities which can be interpreted as the
mass and momentum densities of a fluid. The large scale equations for these densities
coincide with the incompressible Navier Stokes equations when the lattice is sufficiently
symmetric and the macroscopic velocity of the flow is much smaller than the velocity of
the gas particles.

The macroscopic conservation equations were derived in Refs. [16,17] from the un-
derlying microdynamical equation and from the lattice Boltzmann equation. A simplified
Boltzmann equation suitable for numerical computation was deduced in Ref. [18] by keep-
ing only those elements of the complete Boltzmann equation necessary to get the first few
terms of an Chapman-Enksog multi-scale expansion for small Knudsen and Mach numbers
and can be thought of as defining a new dynamical system that shares the properties of
space and time discreteness of a lattice Boltzmann, but not its Boolean character. This
simplified equation is

Ni(x 4+ ey m41) =Ng(x,7) + 8 [Nj(x,r) - N;q(x, T)], (19)

where §2;; is the linearized collision operator; 0 < N; < 1, ¢ = 1,...,b, are the mean
particle populations in the b possible states per lattice site, and c; are the corresponding
particle velocities. In what follows the two dimensional projected face-centered hypercubic
lattice (FCHC) is used, so that b = 24. In terms of the local density and velocity of the gas,

po = -Ni and pPoY = CI‘JVi, (20)
the equilibrium populations NI are

WY = gla(p+2c1-~v+3v-Qi-v),
where Qiag = CiaCig — %6ﬂ,5 (the greek indexes mean Cartesian components in R'). As
shown, the linear operator, Q2 denoted by a 24 x 24 symmetric matrix, acts on the dif-
ferences between the present and the equilibrium populations corresponding to the local
values of p and v. The result represents the change of the populations due to collisions.
This is added to the N; and then each updated population is moved to the neighboring
site pointed by its respective ¢;. The null space of the linearized collision operator deter-
mines the quantities conserved during the collisions. Equation (19) is a finite differences
equation which can be solved numerically by performing only local operations. §2;; has five
zero eigenvalues associated to the conservation of mass and momentum. An H-theorem
exists for Eq. (19) when the non zero eigenvalues are negative and larger than —2, (see
Ref. [18]). Under the same conditions, the numerical scheme based on this equation is
linearly stable [19].
The Reynolds number attained in a lattice Boltzmann simulation is

Re = R*ML, (21)

where L is the size of the lattice referred to the lattice pitch, M is the relation of the
characteristic velocity to the lattice Boltzmann velocity (|c;|/2 for the FCHC lattice),
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and R* is an efficiency factor depending on certain properties of the lattice and of the
collision operator, (see Ref. [16]). This factor can be made arbitrarily large by tuning some
parameters in the collision operator [18,19], but it is limited by the need of keeping the
flow in the collision-dominated regime. The optimum value of R* to minimize the size of
the lattice and the computational work depends on the kind of flow and on the Reynolds
number to be attained; see Ref. [20] for a discussion of this issue.

The external force is implemented by increasing the mean populations N; at each lattice
site and time step by small amounts corresponding to an equilibrium distribution function
with a velocity equal to the strength of the force per unit mass, see Ref. [6,19].

The method was used for simulating the Kolmogoroff flow at Reynolds numbers 16,
32, 64, and 96, and for several aspect ratios. The initial condition was selected to excite
different modes in the range of linear instability for each Reynolds number. The Mach
number M was kept smaller than 0.3 in all the cases, to limit the error due to compress-
ibility effects and to the spurious terms in the lattice momentum equation. Regarding
compressibility errors introduced by lacking of the Galilean invariance, Kornreich and
Scalo [21] have restored this invariance using non linear resonance effects, thus reducing
the compressibility errors at supersonic speeds. The evolution was followed for several
dozens of residence times. Even though no claim is made that the true final state was at-
tained, a fairly permanent flow resulted in all the simulations, which remained unchanged
for several thousands residence times, in the selected cases for which such a long test was
conducted.

This (pseudo)-steady state coincides with the one attained with the spectral method,
and also with the modified lattice Boltzmann method described below. On the other
hand, noticeable differences arise in the transient evolution, which is faster for the lattice
Boltzmann than for the real flow. These differences can be attributed to compressibil-
ity effects, which are one of the well known shortcoming of lattice Boltzmann meth-
ods. _

The Mach number should be very small to produce a wide separation between the
fast acoustic phenomena and the slow hydrodynamics phenomena of interest, and to
keep the spurious terms (of order M relative to the other terms in the momentum equa-
tion) below appropriate limits. This, however, is exceedingly expensive in computational
terms because the time stepping of the lattice Boltzmann automatically follows the faster
time scale, resulting in a very large number of elementary time steps for realistic simula-
tions.

Closer examination of the macroscopic momentum equation arising from the simplified
Boltzmann equation (19) [22] shows that the spurious terms are either the gradient of a
scalar function or proportional to V - v. The first ones can be accounted for by simply
redefining the pressure, and the second ones would vanish if the incompressibility condition
V-v = 0 were satisfied. This is what happens for steady flows because the exact continuity
equation stemming from (19) is

a
% \ Vv vo=0,
or

which explains the good agreement found in the simulations.
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FIGURE 2. Streamlines (R = 64,a = 3) for 7 = O(1).

The foregoing observation suggests a cure for the compressibility disease in unsteady
lattice Boltzmann flows: it would suffice to modify the treatment of the continuity equa-
tion to decrease the actual value of V - v without necessarily reduce the Mach number.
To achieve this goal a time splitting method, similar to the one used with the spectral
method, can be used to advantage. First a modified lattice Boltzmann non conserving
the number of particles but with constant macroscopic density is set up by modifying the
collision operator in Eq. (19), (see Ref. [22]). The momentum equation, which is the only
macroscopic equation remaining for this lattice Boltzmann, is appropriate for describing
the part of the flow evolution associated to the convection and the viscosity. For the
velocity change due to the pressure gradient, which enforces the compressibility condition,
a different method is used. In the present case such a method is not of the lattice type
but coincides with the second part of the spectral method outlined before. Alternative
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FIGURE 3. Streamlines (R = 64,a = 3) for 7 > 1.
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FIGURE 4. Lines of constant vorticity (R = 64,a = 3) for 7 > 1.

{

treatments within the realm of lattice Boltzmann methods are also possible 22], restoring
the locality property.

Actually the results of this hybrid method for the transient period of the Kolmogo-
roff flow are closer to those of the spectral method that to the ones of the first lattice
Boltzmann method, provided that a sufficient number of Fourier modes is used in the
computations.

5. NUMERICAL RESULTS

Figures 1 to 4 show the transient non-linear evolution for a Reynolds number of 64,
aspect ratio of 3 and an initial perturbation corresponding to an excitation of the fifth
harmonic, using the lattice Boltzmann simulation. The body forces act in the horizontal
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FIGURE 5. Streamlines (R = 64,a = 4) for 7 >» 1. Spectral method.
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FIGURE 6. Streamlines (R = 64,a = 4) for 7 > 1. Lattice Boltzmann method.
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direction being modulated in the vertical direction. It is apparent that the amplitude
of the excited mode decreases very fast but due to the relatively large amplitude of
the initial perturbation, it excites subharmonics with large amplification rates. Fig. 1
shows the streamline pattern at a time short compared with the residence time. Here, the
amplitude of mode 2 has grown producing the typical Kelvin’s cat eye structures, with a
recirculation zone in the region of maximum shear. These recirculation zones enlarge at
later times (of order unity), leading to vortical structures which interact with one another.
Finally, at still larger times (Figs. 3 and 4) a pseudo steady-state is attained. This flow
which remains unchanged up to times of the order of 10% residence times has streamlines
that follow mainly the vertical direction. Fig. 4 shows the lines of constant vorticity for
the case considered.

Figures 5-7 show the streamline pattern for times larger than the residence time using
the three numerical techniques outlined above, that is spectral, lattice Boltzmann and
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FIGURE 7. Streamlines (R = 64,a = 4) for 7 > 1. Hybrid method.
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FIGURE 8. Streamlines (R = 64,a = 6) for 7 = 200. Spectral method.

hybrid, respectively. The Reynolds number used in the calculations was 64, the aspect
ratio was ¢ = 4 and the initial perturbation to the steady parallel flow was introduced in
the second mode. The results of the three methods show very good agreement. Finally,
Fig. 8 displays the process of vortex pairing for R = 64 and an aspect ratio of 6 obtained
with spectral techniques.
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