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ABSTRACT.The non-linear stability of the Kolmogoroff fiow is numerically studied using both
spectral and lattice Doltzmann simulations with the aim of validating these latter teehníqllcs.
Three differcnt methods were applicd: one standard spcctral method ami two types of lattice
Doltzmann simulations. Results, in the fonu of streamline and vorticity pattenls, are presented for
different Reynolds and wave number. (,,-'pect ratio), showing generally good agreement among the
three techniques and with well known results in the Iiterature. This agreement is better for steady
or quasi-steady situations, and an explanation for this feature is provided.

RESUMEN.En este trabajo se estudia numéricamente la estabilidad del fiujo de Kolmogoroff
empleando técnicas espectrales y red de malla de Doltzmann, con la finalidad principal de validar
estas últimas técnicas. Se emplearon tres diferentes métodos: un método espectral y dos tipos
de simulación con redes de malla. Se presentan resultados de patrones de función de corriente y
vorticidad para diferentes números de Reynolds y de onda (relación de aspecto), mostrando en
general buena concordancia entre las tres técnicas y con resultados ya establecidos en la literatura.
La concordancia es mejor para flujo estacionario o cuasi-estacionario, para lo cual se da \Ina
explicación en este trabajo.

rAes: 47.20.Ft; 47.20.Ky; 47.30.+s

1. INTROOUCTION

The Kolmogoroff fIow is caBed snch a fIow obtained for a viscous incompressible lIuid
induced by an unidirectional external force field periodic in one coordinate [1-3]. The
study of this type of fIow ha.s received considerable attention in the past years due to tbe
faet that is suitable to study large scale perturbations induced by viscosity driven at small
scales [3]. The linear stability analysis wa.s carried out by Meshalkin and Sinai [4) and
independently by Creen [5]. The marginal stability curve shows that the critical fieynolds
number decre,,-,es with the perturbations' wave lIumber, reaching the value of J2 for the
wave number zero. This critical Reynolds number tends to infinity a.s the wave numb,'r
of 1 is achieved (this corresponds to an aspect ratio of unity, same wave number as that
given by the driving force). IJeaulllont [6] and Cotoh el al. [7] used Floquet theory after
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taking into account modes which do not have the same periodicity as the unperturbed
flow in the transversal direction.

Bondarenko et al. [81 have reproduced this type of flow in laboratory scale using a thin
layer of electrolyte placed in a periodic magnetic field. He obtained a critical Reynolds
number several orders of magnitude larger than 12, difference based on the different
boundary conditions used in the experiment. They obtained for the Reynolds number
three times larger than the critical one, irregular oscillations showing the appearance of
turbulence, but the sequences of events leading to this state depend on the degree of
confinement. Obukhov [3] analysed the model including friction and Thess [91 carried
out a comprehensive linear stability analysis taking into account viscosity, linear friction
and confinement. Thess found that strong confinement leads to oscillation at the onset of
instability, contrary to the purely exponential grow obtained for weakly confined systems.

Sivashinsky [lO], studied the non-linear bifurcation of this flow close to the critical
value of 12, obtaining the evolutiou equation, whieh shows chaotic behavior (turbulence).
The first bifurcation shows the existence of vortical periodic !Iows, the number of which
depends on the Reynolds number and the wave number of the perturbation. It can be
shown that these periodic flows are unstable, leaving only one vortical flow. She [11,121
constructed a simplified model and performed extensive numerical simulations of the
non-linear evolution of the Kolmogoroff !Iow. Perturbed in the unstable band of the wave
numbers, this !Iow reorganizes itself into a periodic or quasi-periodic array of vortices
roughly aligned with the direction of the force. This is a relatively rapid process occurring
in times of the order of the eddy tumover time, resulting in a variety of states depending
very much in the initial perturbation. Later on, these sates, which are unstable to the
pairing of two neighbor vortices, evolve by sequences of pairing events spaced by increas-
ingly long time intervals of very lit tic activity. The number of vortices decreases by one in
each pairing and the overalllength scale of the !Iow (in the direction of the force) increases
accordingly. i\umerical computations were extended up to about 103 eddy tumover times.
Recently, Martínez et al. [131 made a comparison of spectral method and ¡attice Botz-
mann simulations on a two dimensional shear layer initial value spatially-periodic problem
perturbed with a low level random noise. They found both simulations to be very close to
each other in the history of enstrophy, wave number energy spectra and vorticity plots at
least for times of the order of several tum-over times. They detected however discrepancies
in the spatial position of vortical structures.

In this paper we present a numerical description of a part of the non-linear response
of the Kolmogoroff flow to relatively short wavelength perturbations by two different
numerical techniques: spectral (S) and lattice llo1tzmann simulation (LB). The work is
intended as an assessment of two variations of the lattice Iloltzmann method which uses
simplified versions of the lattice Boltzmann equation.

2. FOIlMULATION

\Ve assume a two dimensional flow given by a velocity vector y'(x, y), induced by a
pcriodic gravity force in the x dircctioIl but modulated along the y t'oordillatc. In tcrms
of the vorticity, w. = y' X y' (y' = ifJj8x+ j8j8y), and the stream function, </J', defined
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by éhj;" /ay = y' . i and a¡jJ'/ax = -y'. j, the :'\avier-Stokes gO\'erning ('quations for this
flow, called Kolmogoroff flow, can be \\Titten as

aw' a1/;' aw' a¡jJ' uw' (u2w' u2w') 1 , ,--+-----=v --+-- +-y xf.at ay ax ux uy ux2 uy2 p' (1)

(2)

where f' = -Fa sin(1I'y/h)i denotes the body force ami Fa its amplitude. The force is
modulated along the y coordinate and directed in the direction of the :c coordinate; h
corresponds to the half wavelength of this modulation; ¡,j, k are the unit vectors corre-
sponding to the x, y and z coordinates, respectively; t corresponds to the time; v is the
kinematic viscosity and p' the density of the fluid. The stream function, 1/;:" and vorticity,w:" for the steady-state flow are given by

, Fah3 (1I'Y)
1/Jss= - --2- cos -h '

¡¡-Tí

, _ Fah (1I'Y) kWss - -- cos - .
/'11' h

(3)

(4)

Here, J1 corresponds to the dynamic viscosity, J1 = p' v. The longitudinal .y-velocity com-
ponent for the steady-state Kolmogoroff flow, is then

Introducing the following non-dimensional normalized variables;

(5)

, J111'w=w __ o

F.' h'O

x
X=_.ah'

f'
f= -,

F.'o

F.'t
T = _0_,

/l1I' 2

where a represents the aspect ratio L/ h, the non-dimensional governing equations trans-
form to

UW 1 u1/;UW 1 ulj; Dw 1 2 11'2- + --- - --- = -y w + - cos(1fl¡)k,
UT a ur¡ Ux a Ux ur¡ R R

1I'2w = y21/;k.

(6)

(7)
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R corresponds to the neynolds number defined with the maximum steady-state longitu-
dinal veloeity and is given by

(8)

The non-dimensional Laplacian transforms to

An alternati\"(' form of the non-dimensional :\al'ier-Stokes equations for the Kolmogoroff
flow given by Eqs. (6) and (i) and preferable for the spectral numerical technique, because
it conserves the kinctic energy iu the im'iscid Iimit, is the following:

where

v.v = O,
(9)

(10)

(11)

Equations (9) and (10) are to be soh'ed with suitable initial conditions and the periodicityconditions

V(O,I}) = v(l, 1/);

n(o,1/) = n(l, 1});
v(x, O) = ve\:, 1),

n(x, O) = n(x, 1),

(12)

(13)

In the following sections we describe both the spectral and ¡attice 130ltzmann methods
used to solve this problem.

3. SPECTRAL ~IETIIOlJ

In this section we describe the spectral numerical technique to solve the gO\'erning equa-
tions, based in the Fourier Galerkin method. \Ve introduce the discrete Fourier transform
for all variables in the fonn

,\1 N

V(X,I/,T) = ¿ ¿ Vm,,(T)exp(i1l7T1/+i1117TX).
m=-.\t n=-.\'

(J.J)
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The numerical calculation is performed by using a standard splitting technique de-
scribed elsewhere 114,15). In the /irst step, both the non-linear and body force terms are
taken into account, that is

av ".2aT = R f + v x 'V x v.

Denoting by Gmn the Fourier transform of the right hand side of Eq. (15),

(15)

Gmn = 1: 1: (~ f + v x 'V xv) exp(-in""1 - im".x) (11/ dX, (16)

and using the Adams-Bashforth discretization procedure, Eq. (15) takes the form

(17)

where Vr+~' corresponds to the discrete Fourier transform of the intermediate velocity
vector at the new time T + t:H and V' is the true veJocÍty vector at time T. The Fourier
transform in Eq. (16) is computed with the aid of the FFT algorithm. Aliasing is removed
by using the 3/2 rule 115). The time step D.T used in the nllmerica! integration is deter-
mined by the CFL stability condition. Using both velocity components, Eq. (17) takes
the form

U'+~' - U' = D. (ªe' _ !e'-~')1 72\2X l

where e \ and en are the corresponding components of the vector G. The second step
takes into accollnt the total pressure term as well as the cOlltinllity equation. That is

and ,.., V'+~, - Ov. 2 -. ( 18)

These equations can be written in the following formo

V.r+.ó.T _ VT+.ó.r _ " A IlT+Vr2 - 1 n1ruT 2 l
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Using the above relationships, Eqs. (18) then transform to

In the third and last stel', the viscous term is considered in the form

Therefore, using an iml'licit scheme we obtain finally

and

l'T+~T
2

tm' "'+(,;;-)') .
1+ JI

4. LATTICE BOLTZMANI' METlIODS

The results of the sl'ectral method are coml'ared with those of a couple of lattice I3oltz-
mann methods. Some details of the implementation follow. Further information can be
found in Refs. [16-201. The present applications reHes on the lattice I30ltzmann equation.
For a simulation of the Kolmogoroff flow with I300lean variables lattice I30ltzmannes see
Ref. [23).

Lattice I301tzmannes are discrete dynamical systems evolving according to a set of
cellular automata rules which are both simple and local, in order to make them snitable
for massively parallel computation. The molecules of a lattice I301tzmann live in the
discrete sites of a (generally regular) lattice tessellating :R", and move in a synchronized
way along links joining neighboring lattice sites. In this way, molecules moving in different
directions can meet at the lattice sites at discrete time intervals, colliding instantaneously
according to a definite set of collision rules. The number of molecules and the total
rnomelltum are cOlIsefved in t1l(' collisions al l'(lch lattice site. Tia' possibility of tlsing
Iattice Iloltzmannes to simulate hydrodynamical pheno1llella is based 011 the conservation,
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during the microscopic evolution of the gas, of quantities which can be interpreted as the
mass and momentnm densities of a fluid. The large scale equations for these densities
coincide with the incompressible Navier Stokes equations when the la!tice is snffici"ntly
symmetric and the macroscopic velodty of the flow is much smaller than the wlocity of
the gas partides.
The macroscopic conservation equations were derived in Refs. [IG,I í] from th" nn-

derlying microdynamical equation and from the lattice Iloltzmann e<¡uation. A simplified
Iloltzmann equation suitable for numerical computation was deduced in Ref. [18] by ke"p-
ing only those elements of the complete Boltzmann e<¡uation necessary to get the first f"",
terms of an Chapman-Enksog multi-scale expansion for small Knudsen ami ~lach nnml",rs
and can be thought of as defining a new dynamical system that shares th" properti"s of
space and time discreteness of a ¡attice Iloltzmann, but not its Iloolean character. This
simplified e<¡uation is

Ni(X + Ci, r + 1) = Ni(x, r) + nij [Nj(x, r) - Nj"(x. r)], ( 1~)

where nij is the linearized collision operator; O ::; Ni ::; 1, i = 1, .... b. are tI", In"an
partide populations in the b possible states per lattice site, and Ci ar" th" corr"sponc1ing
partide velocities. In ",hat follows the two dimensional projectec1 face-c"nt"r"c1 hYI",rcnbic
lattice (FCHC) is used, so that b = 24. In termo of th" local density and ,'"locitO' of th" gas,

(20)

the equilibrium populations NtI are
N;" = 2\ (p + 2Ci . V + 3v. Qi . v),

\\fhefe Qio/3 = CinCi{3 - ~b(}/3 (the grcck indexes Illean Cartesian rOmpOlH'llts in Rol). As
shown, the linear opcrator, n dCIlotcd by a 24 x 24 symmctric matrix, act.s Oll lIle dif-
ferences between the present amI the e<¡uilibrium populations corresponding to the local
values of p and v. The result repr"sents the change of the populations due to collisions.
This is added to the Ni and then each updated population is moved to the neighboring
site pointed by its respective Ci. The null space of the linearized collision op"rator d('("r-
mines the <¡uantities conserved during the collisions. E<¡nation (19) is a finite ditrerences
e<¡uation which can be sol ved numerically by performing only local operations. nij has five
zera cigcnvalllcs associalcd lo the conscrvatioll of mass and mornclltll111. AI1 H-theorem
exists for Ec¡. (I~) when the non zero eigenvalueo are negative "nd larger than -2, (see
Ref. [18]). Under the same conditions, the numeric,,1 scheme based on this e<¡uation is
linearly stable [19].

The Rcynolds Ilulllbcr attaincd in a latticc Dolt.zmann silllulation is

Re = R'ML, (21)

where L io the size of the lattice referred to the lattice pitch, M is the rdation of th"
characteristic velocity to the lattice I30ltzmann velocitO' (lcil/2 for the FCIIC lattice),
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and R' is an efficiency factor depending on certain properties of the lal tice and of the
collision operator, (see ReL [16]). This factor can be made arbitrarily large by tuning sorne
parameters in the collision operator 118,19], but it is limited by the need of keeping the
flow in the collision-dominated regime. The optimum value of R' to minimize the size of
the lattice and the computational work depends on the kind of flow and on the Reynolds
number to be attained; see Ref. [20] for a discussion of this issue.

The external force is implemented by increasiug the mean populations Ni at each lattice
site and time step by small amounlS corresponding to an equilibrium distribution function
with a velocity equal lO the strength of the force per unit mass, see Ref. [6,191.

The method was used for simulating the Kolmogorolf flow at Reynolds numbers 16,
32, 64, and 96, and for several aspect ratios. The initial condition was selected to excite
diflerent modes in the range of linear instability for each Reynolds number. The 1\lach
number Al was kept smaller than 0.3 in all the cases, to limit the error due to compress-
ibility elfects and to the spurious tenns in the lattice momentum equation. Regarding
compressibility errors introdnced by lacking of the Galilean invariance, Kornreich and
Scalo [21] have restored this invariance using non linear resonance elfects, thus reducing
the compressibility errors at supersonic speeds. The evolution was followed for several
dozens of residence times. Even though no claim is made that the true final state was at-
tained, a fairly permanent flow resulted in all the simulations, which remained unchanged
for several thousands residence times, in the selected cases for which such a long test was
conducted.

This (pseudo )-steady state coincides with the one attained with the spectral met hod,
and also with the modified lattice I30ltzmann method described below. On the other
hand, noticeable dilferences arise in the transient evolution, which is faster for the lattice
I30ltzmann than for the real flow. These dilferences can be attributed to compressibil-
ity elfects, which are one of the well known shortcoming of lattice I30ltzmann meth-
ods.

The Mach nnmber should be very small to prodnce a wide separation between the
fast acoustic phenomena and the slow hydrodynamics phenomena of interest, and lO
keep the spurious terms (of order Al relative to the other terms in the mornentum equa-
tion) below appropriate limits. This, however, is exceedingly expensive in computational
terms because the time stepping of the lattice I30ltzmann automatically follows the faster
time scale, resulting in a very large number of elementary time steps for realistic simula-
tions.

Closer examination of the macroscopic momentum equation arising from the simplified
I30ltzmann equation (19) [22] shows that the spurious terms are either the gradient of a
scalar function or proportional to V' . v. The first ones can be accounted far by sirnply
redefining the pressure, and the second ones would vanish if the incompressibility condition
V'.v = O were satisfied. This is what happens far steady flows because the exact continuity
equation stemming from (19) is

opor + p V' . Vo = O,

which explains the good agreement found in the simulations.
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FIGURE 1. Streamlines (R = 64, a = 3) for T « 1.

~--------~ -----==:=--===------'---
=-==-======--::::----------------.::-=-- -- -- -- --- --------~_-:.-:.-:.-=.-=.-=.===-----=-==---====c--=>--===-~-~=~-~~~
t:::::~---~-----=:::::==::-----~ ::

~---=-=~~-~--~--~---==-=--==-=-----------~~
FIGURE2. Streamlines (R = 64,a = 3) for T = 0(1).

The forcgoing observation suggests a cure for the eomprcssibility disease in unsteady
lattiee Boltzmann flows: it would sulfiec to modify the treatment of the eontinnity e<¡ua-
tion to deerease the actual value of 'V . v without neeessarily reduce the Maeh number.
To aehievc this goal a time splitting mcthod, similar to the one used with the speetral
method, can be used to advantage. First a modified lattice Boltzmann non eonserving
the number of partides but witlt tonstant maeroseopie density is set up by modifying the
eollision operator in Er¡. (JU), (see Ref. 122)). Tite momentum equation, wltielt is tite only
macroscopic equation rcmaining rOl' this latticc I301tzmanu, is appropriate for dcscribing
the part of tite flow evolution associated to tite eonveetion and tite viseosity. For the
veloeity eltangc due to tite pressure gradient, wltielt enforees tite eompressibility eondition,
a different metltod is used. [u the present case sueh a metltod is not of the lattiee type
but coincides with the seeond part of tite speetral metltod outlined before. Alternative
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FIGUHE3. Slreamlines (R = 64, a = 3) for r » 1.

FIGURE4. Lines of eonslanl vorlieily (R = 64, a = 3) for r » 1.

lreatmenl. within lhe realm of latliee Doltzmann methods are also possible [221, restoring
lhe loeality property.

Actually the results of this hybrid method for the transient period of lhe Kolmogo-
roff f10w are closer to those of the spectral method that to the ones of lhe tirst lattiee
Doltzmann method, provided that a suf/ieient number of Fourier modes is used in the
computatiolls.

5. NUMERICAL ItESULTS

Figures 1 to 4 show the transient non-linear evolution for a Reynolds nnmber of 64,
aspect ratio of 3 and an initial perturbatioll corresponding lo an excilatioJl of the fifth
harmonie, using lhe laltiee Doltzmann simu!ation. The body forees aet iu the horizontal
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FIGLHE 5. Streamlines (R = 64.0 = 4) for T» 1. SI)('ctral method.

FIGUHE6. Strearnlines (R = 6,1." = 4) for T» 1. Lattice Doltzmann method.

direction being modulated in the vertical direction. Jt is apparent that the amplitude
of the excited mode decreases very fast but due to the relatively large amplitude of
the initial perturhatiou. it excites suhharmonics with large amplification rates. Fig. 1
shows the streamline pattern at a time short compared with the residence time. Here, the
amplitude of mode 2 has grown producing the typical Kelvin's cat eye strnctures, with a
fecirculation zone in t}¡(. fegioll of maximum shear. Thcsc fecirculatioll ZOllt~Senlarge at
later times (of order unity), leading to vortical structures which interact with one another.
Finally, at still larger times (Figs. 3 and 4) a pseudo steady-state is attained. This Row
which rcmains ullchallg('d 1Ip lo times of tlle or<iPf of 103 residence times has strpamlines
that follow mainly the vertical direction. Fig. 4 shows the lines of constant vorticity for
the case considered.

Figures 5-7 show the streamline pattern for times larger than the residence time using
the three numerical techniques outlined ahoye, that is spectral, lattice Doltzmann and
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FIGl'HE 7. Streamli,"'s (JI = G~.a =~) for T» 1. Hybrid method.

FI(;UHE 8. StrPamlilll's (JI = G.l,a = G) for T = 200. Sp,'('lralllJ('lhod.

hybrid. n'SIH'ctivt'ly. The HpYllOlds ll11lllhrr ll~('d in th(' cakl1latiolls was G.L lhe aspect
ratio was (J = 4 alld tllt' initial lH'rturbatioll to 11It' sI (lady parallrl fIow was illtro<ill('t'd in
ti", ,ero lid mod,'. Thl' 1'<,,,111' of Ihe thn'e metho,b ,ha\\' wry good agn'l'tIll'nt. Finally.
Fig. 8 displays t11l' pro('('ss of vortt'x pairillg rOl' II = G.I alld an asp<.('t ratio of G obtaillt'd
\I,,'it!l sppctral trcillliqtlt's.

A e1,i'O\\'LEDC ~I ¡,:STS

This work ha.o;;; bt'f'1l supported hy t he' 111s1 it uto <1('COOIH'rari6u COIl Ibt'l'Oillllérica (Spaill)
and by tll(' Cray np:"parrh lllf', throllgh a re:-;earch gran! On SllIH'lTOlllIHlting. The 1l111ll('r-

jcal (,olllIllltatiollS [01' tlu' s¡H'ctral IIIPthod w('rp dout' 011 tIH' Cray-"~lP al lh!' .\"ational
Ulli\'l'rsily of ~Il'xictl (U:'\A~I).
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