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Perturbation theory for the double-well potential
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ABSTRACT. The energy eigenvalues for the ground state and the first excited states of the quartic
anharmonic oscillator (QAO) with a (symmetrical) double well potential are calculated with a
procedure, based on the Rayleigh-Schrodinger (RS) perturbation theory, which introduces an
adjustable parameter both in the perturbative potential and in the unperturbed hamiltonian.

RESUMEN. Se calculan los eigenvalores de la energia para el estado base y los primeros estados
excitados del oscilador no arménico cudrtico (QAQ) con un doble pozo (simétrico) de potencial. El
método empleado se basa en la teoria de perturbaciones de Rayleigh-Schrédinger, e introduce un
parametro ajustable tanto en el potencial perturbativo como en el hamiltoniano no perturbado.

PACS: 32.20.-d; 31.15.4q

1. INTRODUCTION

The double-well problem is almost as old as Quantum Mechanics, and one of the first
applications of this problem was the calculation of the NHj inversion frequency back in
1932 [1]. Ever since the problem has been dealt with by a number of authors [2-6], but
the agreement between ab-initio calculations [7-9] and experimental result [10] has been
recently shown.

The simplest analytical form for a symmetrical double well (Fig. 1) is that given by a
QAO whose potential is

V(z) = —jw’z? + Az, with A > 0. (1)
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FIGURE 1. The double-well potential V' (x) = —zwir? + At

One interesting feature of this problem is that the lowest eigenvalues have very close
values when the two wells are sufficiently separated, i.e., when A — 0, since the eigenvalue
separation goes as A~1/2 whereas the well depth varies as —1/\.

The solution of this problem as a perturbation of the harmonic oscillator, using standard
perturbation theory [11,12] is not possible since the perturbative series for the energy
eigenvalues diverges for any value of the perturbation parameter A [13,14]. This odd fact
can be qualitatively understood if we observe that the term \r? transforms the continuous
spectrum of the operator %(p2 —w?2?) into a totally discrete spectrum.

A possible solution would be to attempt a perturbative expansion in w? (assuming
the spectrum of %p2 + Ar? to be known), but this alternative does not work because the
perturbation becomes very large for small A and such is, precisely, the interesting regime.

The aim of this paper is to show how the energy eigenvalues for the QAO can be
computed through the use of the RS perturbation theory, successfully applied by other
authors [15-19] to the problem of the anharmonic oscillator with a single well (V(x) =
%wz.‘z‘.z + Azt with A > 0).

2. THE PERTURBATIVE METHOD

The hamiltonian for the QAO with a double well is given by

L8]

H= %pz - %wz.r? +Ar', with A > 0, (2)

where m = h = 1.
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FIGURE 2. Plot of the energy E as a function of z for n = 0 and n = 1 for A = 0.1. E represents
the exact energy of the Hamiltonian (2).

In order to give this hamiltonian the usual form as an unperturbed hamiltonian plus a
perturbative term i.e.,

H=Hy+U, (3)
we write
Hp = }(p* + w™a?) (4a)
and
Ux) = Mzt - %(w'z P iE (4b)

The essential difference with the standard perturbation theory is that a new frequency
o' has been introduced into both the perturbative potential U(z) and the unperturbed
hamiltonian Hg. It must be noticed that the effective potential U(x) to be used in the
calculations is not the real potential V(x) of Eq. (1). V(z) does not depend on w’ whereas
U(z) does. The Hamiltonian (4a) has been completed so as to represent a harmonic
oscillator and to be able to use perturbation theory of non-degenerated states.

The remaining problem is to solve the eigenvalue problem HY¥, = E,¥, with stan-
dard perturbation theory with corrections to second order [11]. The eigenvalues are then
expressed as

E,=E9 + EV + E®, (5)

where
[(n|U|k)[?

g e (6)
EO _ Eio)

EY = (nlHoln), B = (nlUln) and B =3}
k#n
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FIGURE 3. Plot of the energy for n =2 and n = 3.
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the functions |n) are states of the harmonic oscillator and use has been made of the
equation (n|U|k) = (k|U|n).

After computation of the corresponding matrix elements, the contributions to the en-
ergy become

By
w = (n + %)Yﬂ’
(1) 2
E,’ 3 9 , (1+YH(2n+1)
= 4Yn?(2n +2n+ 1N - o ,
E(z) 4\’2 [
— =-—[n(n-1)(n-2)(n-3) - (n+1)(n+2)(n+3)(n+4)
w 4Y2 (7)

+8n(n — 1)(2n — 1)? = 8(n + 1)(n + 2)(2n + 3)*]

! 2
ﬁ\%}:ﬁ[(n +1)(n+2)(2n+3) —n(n—1)(2n - 1)]
(1+Y7)?

32Y;3 [n(n—1) = (n+ 1)(n +2)],

where the following substitutions have been introduced:

'=Y,w, and /\'=-:\§,
w

w

so that Eq. (7) will yield energies in Hartrees.
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TABLE I.
n by I T2 E(x,) E(z;) Perturb. Exact
Elza=1)

0 0.100 1.590 1.590 —0.137750 —0.137750 —0.05125 —0.15413
0.085 1.740 1.740 —0.20611 —0.20611 —-0.07772 -0.23171
0.075 1.890 1.890 —0.26798 —0.26798 —-0.09602 —0.30208
0.050 2.504 2.504 —0.50684 —0.50684 —0.14406 —0.63275
0.035 3:8313 3.313 —1.00334 —1.00334 —0.17446 —1.12403
0.025 4.404 4.404 —1.88484 —1.88484 —0.19539 —1.82079
0.020 5.348 5.348 —2.99551 —2.99551 —0.20605 —2.43946

1 0.100 1.218 1.218 0.13785 0.13785 0.16875 0.142765
0.085 1.338 1.338 —-0.01010 —-0.01010 0.05723 —0.00318
0.075 1.440 1.440 —0.13186 —-0.13186 -0.0227 -0.12279
0.050 1.683 1.683 —0.60329 —0.60329 —0.23906 —0.57653
0.035 2.410 2.410 -1.20429 —1.20429 —0.38152 —1.11403
0.025 3.150 3.150 —-2.13279 —-2.13279 —0.48164 —1.81993
0.020 3.800 3.800 —3.14328 —3.14328 —0.53305 —2.43935

2 0.100 0.887 1.120 0.89137 0.92348 0.90624 1.01018
0.085 0.962 1.224 0.67866 0.71535 0.68470 0.82387
0.075 1.022 1.314 0.51067 0.55195 051313 0.68350
0.050 1.270 1.686 —0.07736 —-0.01045 0.02031 0.25474
0.035 1.571 2.163 —0.69862 —0.58053 —0.32042 —-0.11461
0.025 1.969 2.810 —1.46949 —1.23988 —0.56680 —0.62654
0.020 2.321 3.338 —2.16655 —1.78602 —0.69575 —1.17432

3 0.100 753 0.990 1.83209 1.90673 1.94914 1.90625
0.085 0.810 1.074 1.54302 1.62544 1.60883 1.35817
0.075 0.857 1.148 1.31876 1.40884 1:33133 1.46159
0.050 1.045 1.448 0.56577 0.69679 0.57031 0.77177
0.035 1.266 1.821 —0.16916 0.03808 —-0.02242 0.13085
0.25 1.546 2.322 —0.99408 —0.63170 —0.46680 —0.57558
0.20 1.788 2.769 —1.66896 —1.10681 —0.70375 —1.16586

3. NUMERICAL RESULTS

Equations (5), (6) and (7) provide the expression for the energy with corrections up to
second order in terms of an adjustable (arbitrary in principle) parameter Y,,. In order to
calculate the approximate energy of the hamiltonian (2) from Eqs. (5) and (7) we must
recall that the exact value of the energy is independent of Y,, and, hence, the optimal
energy will be the least sensitive to the variations in Y;,. This statement is known as the
least sensitivity principle [18]. Therefore, the optimal energy is obtained where a local

maximum of minimum, or an inflexion exists.

As they are, Eqgs. (7) are useful to compute the values of the energy for A > 1, whereas
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TaBLE II.
A= 1

n Y Y, (V1) e(Y2) Exact Perturb.

EY, =1)
0 1.9182 1.9182 0.5170 0.5170 0.5148 —0.6250
il 2.2594 2.2594 2.0195 2.0195 2.0206 —10.125
2 2.3944 2.8632 4.1600 4.1401 4.1911 —40.875
3 2.6142 3.2342 6.6787 6.6204 6.7055 —142.375
4 2.8241 3.5502 9.4393 9.3806 9.5010 -316.125
5 3.0900 3.8002 12.5079 12.374 12.5319 —595.625
6 3.1824 4.0303 15.7518 15.5697 15.7663 —1006.00

A =100

n Y Y (Y1) e(Ys) Exact Perturb.

E(Y,=1)
0 9.7380 9.7380 3.0743 3.0743 3.0695 —26025.2
1 11.0920 11.0920 11.0300 11.0300 11.0331 —205125
2 11.6796 13.6520 21.5990 21.5309 21.6941 —7.66E05
3 12.6647 15.4150 33.8252 33.6144 33.9160 —-1.96 E06
4 13.59085 16.8061 47.3129 46.9429 47.3923 —4.05E06
5 14.4454 18.0005 61.8544 61.3161 61.9175 —-7.29E06
6 15.2200 19.0420 713133 76.5995 77.3679 —-1.19E07

A = 5000

n Y1 Y e(h) e(Ya) Exact Perturb.

EfYa=1)
0 35.2242 35.2242 11.4309 11.4309 11.4140 -6.56 E07
1 40.9608 40.9608 40.8986 40.8986 40.9099 -5.16E08
2 43.1240 50.3880 79.9414 79.6940 80.2852 —-1.92E09
3 46.7506 56.8345 125.0726 124.3099 125.4030 —4.92F09
4 50.1880 61.9780 174.8434 173.4932 174.1310 —-1.0E10
5 53.2960 66.3800 228.4905 226.5240 228.7342 —1.8FE10
6 56.1416 70.2150 285.5133 282.9036 285.7143 -3.0E10

to perform the computation for the case A < 1 it is necessary to make the substitution

¥n, =1/X, and to find the optimal energy in terms of the new parameter X,,.

For the states n = 0 and n = 1 the plot of the energy as a function of X, for a given
A(< 1) is that shown in Fig. 2 where the horizontal line labeled with an E represents
the exact value of the energy calculated by non-perturbative methods [8,9,20]. For these

states there exist no local maxima or minima, but only an inflexion point.

The graphs corresponding to the state n = 2 and n = 3 are shown in Fig. 3, where the
existence of one local minimum (at z;) and one local maximum (at x) is evident. The
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behavior of the energy curve for the next excited states n > 3 is similar, and there is the
systematic finding that the exact value of the energy E is closer to E(z3).

In Tables I and II we present the energy eigenvalues for the ground state and the six
first excited states of the Hamiltonian (2) for some values of X, the corresponding values
produced by the RS standard perturbation theory and the exact values.

4. CONCLUSIONS

The introduction of an adjustable parameter into the perturbed hamiltonian and into the
perturbation potential yields an improvement in the approximation of the energy eigen-
values, and such an improvement is more noticeable as A’ increases. It is also interesting
to notice that the technique used here allows the calculation for values of A" as large as
5000 where the standard perturbation theory obviously fails. The results for values of A
for which Y, or X, are close to unity, the predicted energy value is quite similar to that
obtained by the standard theory and also to the exact value (see Table I).

The method used was developed by Fanelli and Struzynski [15] for the quartic oscillator.
In this work we have shown that it can also be applied to the double-well problem.
Although such method cannot be classified as “highly precise” the computation of the
optimal energy is so simple that correction up to a higher order might be easily included
in order to get more approximate eignvalues. The calculation of the optimal energy can
be done with a microcomputer, where the time and memory consumption is very small,
or even with a programmable pocket calculator.

On the other hand, it must be said that for A’ < 0.020 the curve is so smooth that
it is difficult to determine the optimal energy. This problem also shows that when the
perturbative hamiltonian is small the perturbation theory produces incorrect values.
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