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ABSTRACT. Quantization of Chern-Simons theory is considered. Canonical quantization is ana-
Iyzed and it is showu that it caunot be consistently done unless renormalization of integrated
connections is taken iuta accouut. Otherwise quantization at the level of \Vilsoll loop algebra can
be done consistently.
RESUMEN. Se estudia la cualltización de las teorías de Chern-Simons en 3 dimensiones. Se analiza
la cuantización canónica y se muestra que no puede ser hecha consistente mente a menos que se
tome en cuenta la renormalización de las conexiones integradas. De otra manera, la cuantización
del álgebra de lazos de Wilson puede ser realizada cOIlsistentemente.

PACS: 03.50.Kk; 03.70.+k; 11.15.Tk

l. INTRODUCTION

Chern-Simons (CS) theories in 3 dimensions have been object of study due to their mul-
tiple applications: 3D gravity [1,21, knot theory [2,31 and 20 (rational) conformal field
theories [3,41.
Let Ai, i = 0,1,2 be a Lie algebra valued connectinn of a group G on the 3 dimensional

manifold M, the corresponding CS theory is desL'ribed by the action

1 = 4
k
" l,d3x"jk tr (AiDjAk + ~A,AjAk),

where k is the coupling constant with dimensions of action and tr is the bilinear form of
the Lie algebra of the group G. CS theories are topological field theories, invariant under
spacetime diffeomorphislIls and independent on the metric of the corresponding manifold.
Under gauge transformations, CS action is gauge invariant up to an additive topological

constant, that is

induces

A~ = U-1 Di U + U-1 A,U (2)

(3)

(4)
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The second ter m on the r.h.s., a total derivative, is a surface ter m whereas the third,
locally also a total derivative, is pro por tion al to the winding number of the transforming
grou l' element U E G

(5)

which is given by the homotopy group 7r3( G), for compact groups an integer number.
Pure e-s theories describe "trivial" motions given by flat connections as can be seen

from their equations of motion:

(6)

which are gauge covariant, consistently with the gauge invariance of the action.
In all the mentioned three cases of applications of es theories, Wilson 1001'S play

an important role in defining the corresponding degrees of freedom. The reason is the
topological character of the theory, which can be studied only by means of nonlocal
objects.

Thus, for the group ISO(2,1), if 7r¡(M) i' O, CS theory contains nontrivial degrees
of freedom described by Wilson 1001'S [2]' integrated along noncontractible curves and
which represent motions of point particles. In fact, the resulting theory is equivalent to
3D Einstein gravity IIJ.
For quantum es theories with compact groups, with nonvanishing values of the winding

number (5), the expectatioll values of Wilson lines along knotted closed curves give the
corresponding Jones polynomials.
Finally, the qnantum Hilbert space of a 2D spacelike section punctured by the inter-

section of Wilson 1001'S, describes the space of con formal blocks of the WZW model with
gauge group G [3].
Therefore, the calculation of the commutator algebra of Wilson 1001'S is an important

issue. In Ref. 15]' this commutator algebra has been considered for the group ISO(2,1).
As usual, a foliation of M = R x ¿; has been chosen so that time runs along R and ¿; is
a spacelike two-manifold. In this case the topology of M is summarized by the one of ¿;,
aud it is enough to study spacclike Wilson 1001'S.
The study of this algebra has been further pursued in Ref. [61 for 3D de Sitter gravity,

that is, es theory of the groups SO(3,1) and SO(2,2), where the resulting observable
algebra has been quantized obtaiuing, after suitable reparametrizations, two copies of
SU(2)q. Further work has been done, in the genus one sector of the theory, to calculate
the Wilson loop algebra for the following cases: 3D gravity [7], conformal gravity [8] and
the Sitter supergravity [9). Generalizations to indude the remaining haudles of ¿; in the
case of the Sitter gravily, have been pursued in Ref. [10).
In all lhese works the <¡uantized observable algebra tUl'lled out lo have lhe slructure

of a '1uantuIll algebra. In !lef. [17] this structure has been considerate for the classical
Wilson loop algebra as well as for the quantized one, with an operator product depending
on olle parameter. In both cases, the slructure of the theory turned out lo be the same,
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differing only the deformation parallleter, in the last case having a nontrivial dependenee
on the Planek eonstant.

In al! works lIlentioned befare, qnanlization has been performed at the level of the
\Vilson loop algebra, Thal is, lhe \Vilson loop Poisson braeket algebra has been eonverted
into a comInutator algebra followillg callonical qllalltizatiol1, so that ambiguotls operator
produets are fixed by means of some ordering preseription as already mentioned,

In this work, startillg frolll lile algcura of intcgrated conncctions, we considcr quautiza-
tion of Chern-Simons themies, Iu order lo ha,'e this algebra in a closed forlll, a gauge fixing
is in arder [1¡j, This form of the algebra is lhe one taken he re into aecount. In Seet. 2 we
eonsider the classieal theory, The Poisson braekels algebra of integraled conneetions has
lhe strueture of a braid-like algehra, E,'en at the classieal level the eompntation of this
algcbra is ambiguous and in arder lo llave a cOllsistcnl rcsuit, satisfying Jacobi identitics, a
"regularization" preseription is neeessary [1¡j, In Seet. 3 the algebra of traces of integraled
eonneetions, \Vilson loops, is considered, in particular fm lhe gronp SL(2, R), In See\. 4
quantizatioll is tacklcd. DI1C'1.0tite ambiguities iu tlle dcfinition of intcgratcd concxions,
the computations ill1plied are in general uot wel! defined, Thns we have to appeal lo
consistcncy critcria in order lo ohtaill a regularization prcscriptioll for liJe computation
of products of t\\'o illtcgratcd COllllcctiollS, dcfill('d along tlle samc curve. It t111'n5 out
that it is !lot possiblc to mailltaill tile .Jacobi idcntities and at the samc time to have an
invariant determinant.. Que way lo step out of thcse problems is to avoid thc ambiguities
oC t}¡c definition of integraled connectiolls considering \Vilson loops inslead. This \Vay \Vas
the one fol1owed in earlier work \Vhere qllantization was done at this level. In Sec\. 5 sorne
conclusions are urawn.

2, CLASSICAL TII¡';OItY

In this section we consider the ciassical Cheru-Silllons theory described by the action (1),
\Vc show ilO\\' thc algebra of i!ltegrated cO!lllect.iolls has lo be computed in order to have
the Jacobi identities verified,

Integrated <.:onllectiollS arc dcfined as follows: if ")':Il ---+ E is a curve on E, the integrated
connection IJih): I ~ G, is given by the path ordered exponential

IJih) = Pexp 1,A dx,
is a solution of liJe diffcrcntial eqtlalioll [5]

(i)

(8)

Here the curve '"'(is paramcterizcd by s E [0,1J and As is the con11ection tangc!lt to I at
s. Integrated cOIlnections depcnd 011 the hOll1otopy class of the choscn curve, alld doscd
curves have to be <.:onsidcred in arder to produce topological invariants.
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FIGUHE l. Dccomposition of two intersccting cycles "t alld a ¡uto l' = 1'3')'2/'1and q = (730'20'1_
The points n are the base points and e is the crossing point.

The canonical Poisson brackets of the theory can be derived [1,11] from the action (1):

(9)

where "', f3 = 1,2 and a is an index of the adjoint representation of G.
Therefore, Poisson brackets of integrated connections differ from zero only if the corre-

sponding curves intersect. Indeed, as shown in Refs. [5,G), we can consider two intersecting
closed curves 1and (J, takcn for consistency as the two independcnt cycles of a onc genus
sector of a genns g two-dimcnsional surface. Taking arbitrary base points for 1and (J, both
curves can he decomposed into threc pieces, the central one being in thc neighborhood of
the crossing point (Fig. 1). Thus

(10)

Taking the canonical !'oisson hrackets (!J) intó accollllt we ohtain

wherc, as usual, the notation is

W¡ = W 01, W2 = 10 W. ( 12)

Fllrther, thc crossing pieces 12 and (J2 are taken to be of infinitesimal length in such a
way that

¡.'O+' <Ix" (s)
W(¡2) = 1 + '0-' <lsA,,[x(s)] <ls + 0«2), ( 13)
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(14)

USillg this \Ve caH ealculate

(15 )

\vhere ~o.;(""I.a) =:i:l is thc signatllre oftlIe rclativc oriclItation of"( alld a ami is respollsiblc
fol' tlle alltisYllllIlctry of the POiSSOll brackcts. Thcrcforc, \Ve cau take tlle limil f - O
of (15):

Of course, Eq. (lG) depeuds ou the baoe poiuts of the 1001'S ., aud a. This depeudeuce
is a rdiectiotl of liJe gallgc co\"ariance of this result. Indcecl, lindel' a base poillt changc,
illtcgratt'd COllllectiollS trallsform lInder thc adjoilll rcprCSclltatiOll

(17)

\Vhere G is the grollp elemeut correspoudiug lo a curve which joius the t\Vo difrereut base
points.

The iuvariauce uuder (I7) of the Casimir elemeut

(18)

allows 115to rcwritc lile algchra (16) in a closcd [onll. Indccd, gi\'Cll 1\\'0 crossillg illCquiv-
alcnt loops 1 and a, we can ah ....ays choosc thClll lo have a COllllllOll ba.se poillt n, differcnt
from the crossiug l)()iUIe (Fig. 2), iu sllch a \Vay thal in the limil , - O lhe curve 1'3"3

is conlractible aud the correspouding group elements coincide: Ijf(3) = ljf(a3)' After lhis
gaugc fixiug, lhe algebra (lG) becomes braid-like:

\\'hcrc

(20)
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FIGUHE 2. Gaugc fixing fur thc cyclcs I and a. n is the COlll1ll01l base point alld e is the crossing
point.

Cousisteucy of such braid equa(ious, iu our case (he Jaeohi ideulities, ,,"ould usuaJly
illlply dassical Yaug-I3axter equatious for the Illatrix r¡2(¡. a). It is easy to see that
the Illeutiolled equatiou, are 1I0t satisfied by (20). lu faet, the correspoudiug algebra is
seemiugly gellerated by the Illatrix demeuts of 'li(¡) aud 'li(a) aud such au algebra, e\'en
ill the dassical theory, is not ,,"eJldefiued. For iustauce "'e expcct lhat the Poisson braeket
{'li 1 ("'(), 1112(I)} I'Il vallishes. Au explicit computa lío u of il caullol be doue unless \Ve adopt
a sort of regularizatiou \Vhich takes ca re of the infinity of crossiug poiuls of"'( \Vith itself,
for exalllple by

(21 )

\Vhere "'(' belongs to the hOlllotopy elass of" The uecessity of such a reglllarizatiou call be
sceu if \Ve try to check the Jacobi identitics fOl' the algehra generaled by 'li(¡) and 'li(a)
in a formal \Vay. ludeed, if \Vesuppose that the Illatrix elellll'nts of 'li(¡) conlluute allloug
thcm, we gel

{{'li¡(¡), 'li2(a)}, 'li3(¡)} + {{'li2(a), 'li3 (¡)} , 'li¡('¡)} + {{'li3(¡), 'li¡('¡)}, ¡¡'2(a)}

[rd,. a), r23(¡,a)j'li¡ (¡ )'li2(a)'!I3(¡)

= 4;r¡abcT ¡¡,( ) QT '!I( ) QT '!I( )k2 a "'( b a C 1, (22)

\vlJich lioes Bot idcllt.ically yallish.

As IIll'IltioIlC<i, ill order lo avoid sllch problclllS, we call take tbrec diffen.-'lIl, but eqllally
hased dellleuts, say ¡¡,(¡), ¡¡/(a) and '!I(a'), \Vhere a illld a' \J('loug lo lhe Silllle hOlnotopy
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FIGURE 3. Point splitting regularization of two cycles a into a and a'. The points e are crossing
points.

dass (Fig. 3). Iiowever, the gauge (19) cannot be implemented simultaneously for al! the
loops involved. For each of the brackets we must use (11) and from Fig. 3 we get

{'lJ¡(-y), \jI2(a)}pB = r12(-y,a)\jI, (-y) \ji2 (a),

{\ji, (-y), \ji 2(a')}pB = \jI,(-y)\jI2(a')r12(-y, a').

(23)

(24)

Taking this into account it is easy to show that the Jacobi identities of (11) are fulfil!ed
since wc obtaill

{ {\ji, (-y), \ji 2(a )}PB' \jIJ( a') } PB = r12 \ji, (-y) \ji2 (a )\jIJ(a')r'J,

{{\jI1 (a'), \ji2 (-y)}PB' \jIJ(a)} PB= -r12\j1,(-y)\jI2(a)\jIJ(a')rlJ.

(25)

(26)

Another consistency check is related to the deterrninant. If the elelllents of the group
we starled wilh have determinanl one, then lhe algebra (19) lllusl lel the determinant
invarianl. In fact, il is nol difficult lo show that this is indeed the case. Let us wrile for
an n x n Inatrix

(27)

or

(28)

Then, if we use lhe idenlity

(29)
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we obtain

(30)

which vanishes because, as a conse<¡uence of the faet that the determinant is one, the Lie
algebra generators are traceless.
The algebra of integrated connections obtained in this section is not gauge covariant,

it depends on a gauge fixing which cannot be illlposed for any situation. lf we wish to
avoid sueh problellls we must restrict ourselves to invariant quantities as Wilson 1001's.

3. WILSON LOO/' ALGEBRA

\Vilson 1001's are traces of integrated connections. Thus, they do not depend on the base
point of the curve along which the connection was integrated and taking the trace of (lG)
their algebra can be written as

where

q,(-y) = W(-y¡)W(-y3),

q,(a) = w(17¡)W(173)

(31 )

(32)

(33)

are the integrated connections corresponding to 'Y and a but with base point located at
the crossing of the two curves.
The expression (31) can be written more explicitly in terms of Clebsch-Gordan coef-

ficients. Let us consider the tensor product of the irreducible representation D(>')(a)
exp aaTa with itself and its decolllposition in irreducible representations. \Ve have

Expanding both sides of this expression in powers of the group parameters aa and com-
paring the <¡uadratic terms we obtain for the Casimir element (18)

(35)
Of course, in general this expressioll is quite cOlllplieuted to hundle. Fortunately, for
the fundamental representatioll, as considered in CS theories, explieit expressions in
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terms of the invariant tensors of the group are known. For example for SU(n) the group
parametrization can be chosen so that

(36)

and so on.
As we are rather coucerned on the quantization of the theory, in the following we will

restrict ourselves to the simplest non-abelian case of G = SL(2, R) which eneloses many
of the cases discussed in the literature. !ll this case we have

(37)

and the resulting algebra is [5,6]

(38)

The algebra generated by (38) eloses due 1,0 the followil1g l\landelstam identity, satisfied
by 2 x 2 matrices [5,G,13]:

tr(AB) = tr(A) tr(B) - (det A) tr(A-1 B). (39)

In our case the determinant is one and we have for example 1I'(¡2a) = - lI'(a) +
II'(¡) 11'(¡a). Using these identities it is possible to show that the only il1dependent
generators are [5,ti]

-
Xl = II'(-¡), X2 = lI'(a), X3 = II'(-ya),

which satisfy the algebra [G]

{X;,Xj}PB = 'i:(E;jX;Xj + E;jkXd,

(40)

(41 )

where E;} = -Ej;, <12= E23= E3l = 1 and E;jk is the 3D Levi-Civita symbol.
In Ref. [17] it has been shown that (41) can be identified with the quantulll algebra

SU(2)q. This algebra can be brought to the canonical fonn of Drinfeld and Jimbo by
means of the following nonlil1ear reparametrization [17,14]:

resultillg

v ; (-~II ~II)
~'\.3= 2" e k - e k ,

(42)

(43)

(44)

(45 )
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that i51 tlle dcformatioll paraulCtcr is real alld is given by

(46)

wherc \Ve must have in mind tilat the right IIlcaningful combinatioll is thc one which
appears in the algeLra, that is ,/', k-l having dimensions of action.
Therefore, as mentioned in HeL [1iJ, the "quantum" symmetry of es theory is not

related to quantization, it SCClllS rather to be rclated lo the llintcractions" associatcd to
thc Ilonabelian gaugc group, in a \vay similar lo the case of the Heiscllucrg fcrromagllct
Inodel whctl anisotropics are illlroduccd.

4. QUA;'o:TIZATION

Quantization of es theories cannot be done fo!lolVing the ordinary schemes of field theory:
operator ordering niteria are missing and \Vilson loops do not ha\'e a simple physical
intcrprctatioIl. As él COIlSCqUCIlCC qUftntizat.ioll wiII impI)' a ccrtaill dcgrcc of arbitrariness.

A natural startillg point \\'ould oc canonica! qUilntization, promotillg the COllllcctions
Aun to the status of operators and substituting the Lasic Poisson brackets relations (U)
by COllltlllltators.

If lVe ignore renormalization of integrated connections, possible if \Ve are interested
in the 'luantization of the algeLra of integraled connections (lG), \Ve can conlpute the
corresponding COlllllllltator in the salllC way as for tlle classical case, ouly takillg care of
the noncomlllutativity of the factors. In this case the result is the same:

or after fixing the gauge as in Fig. 1:

(48)

The same is valid for the Jacobi identities \Vhen calculated as in E'ls. (25) and (2G) Lut
based on the algeLra (4i).

So [ar it secms lo be aH right. IIowevcr, olle key argulIlcnt in t}¡c classical tIIeory \Vas
the facl that the determinant could be sel e'lual lo one. If the detel'lninant cannot be
set equal to one, the Mandelstam relations (3U) Lecome vt'ry complicated and we ('annot
restrict oursel\'es lo the algebra generated by IJ!('¡), ,jI(a) and lJ!('¡a) iu order lo get a
consistenl and dosed \Vilson loop algebra.

Indeed, in thc prc<:eding scctioll we haye showll t.IIat tJ¡c .Jacobi idcntitics are satisfied fOf
1J!('y), lJ!(a) and lJ!(a'). 1I0we\'er, if we wish to ('heck them, instead of lJ!(a'), for composite
expressions like IJ! ('ya) \Veneed to ('onsider lhese expl'essions as \Vel! in a regularized fOl'ln
(Fig. 4):

( 4U)
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FIGURE 4. Point splitting rcgularization of two cycles "( and two cyclcs a iuto l aud "(', and a
and (J' rcspcctively. The points e are crossing points. The paths going from crossing points and
back are contractible.

If we must take into account relations more complicated than w(-ya), then it seems not
possible to have a regularization consistent with the gauge (23) and (24). This fact can
be checked if we try to add one more curve 'Y" or a" in Fig. 4 in such a way that it has
the same base point B as the others and respects the gauge fixing leading to (23) or (24).
The reason is that, in order to fulfil the gauge fixing, the closed path going from the base
point to the intersecting point and viceversa must be contractible, i.e. it must no contain
inserted operators. In part!cular, if it contains a portian of an integrated connection, it
will not be contractible.

Once this point clarified, the main problem in the quantized theory is that the deter-
minant is Hol invariant amI cannal be set cqual to oue. llldced, an explicit computation
in the case of G = SL(2, 11) gives

(50)

which obviously does not vanish. \Ve could try to modify the definition of the determinant,
for instance we could take the "regularized" versions

(51)

Of, as in the case of thc qUétlltlllIl group SL(2, R)q

(52)

and so 011. It turns out that lIoac of thcse \'crsions is invariant.
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Alloth"r possibility is to 01",,1"'" th" faet that ill Ihe eompulalioll of (47), aftN th"
limit ( - O. tlw or<i('l' of the OIH'rators 011 the r.h.s. is ambigllol1s. Tilat caH be takell illto
(tCCOtlllt by meau:,; of ¡UI orderillg prescriptioll as dotlc in Ref. (17] fol' the \V¡lson loop
algehra. If wc tak(' 1IIl' gaugl' as in Fig. 1 alld a<iopt tite orcierillg prescriptioll

(53)

we gel. illstead of (.18). the COlllllllltators

(54)

which CHU he H'wrilt(,ll as

",In'n'

[ ]

- I
271'" '2117i

¡'d"a) = -- 1- A( ) i'Ilh, a) i'Ilh, a),
k '1+"

(55)

(5(j)

Actually, takiug (53) illst''i\(1 of (~~) is 1101wry 1",lpful for our pmpoSt'" lu fae!. ,imi!ar!y
lO t}¡c riassical case, the cxplirit [onu of t.1It' r-matrix is !lol I't'le\"iult for tite flllfillllt'llt of
thc .J;u:ohi icil'llt.it.ies. FlIrthel', tltl' ollly t.hiug w(' ('all adjust ill orcipr lo han' aH illVUl'iallt
dctCl'lIlillélllt is tIte gallgl' fixiug. On lhe other si<ie. if tht' g:élll~e ('O\'ariallt pxpr('~sion (4i)
Icts the determillélut iu\'ariant, t.ht'n auy g:allgt' fixp<i ('X¡)I'('ssion wiII do tItr sauH' thing:, It
tUl'llS out tha!. indepcndelltly of tJ¡t~ takt'I1 defillition fol' tia> del('rlllillaJlt. then' is no way
lo haV(' ,illlulta",'ou,ly bolh del ~'(¡) and d,'t ~'(a) ilI\'ariau!.
For inst.aure, follt,wing: Fig, .1 \n' o1>taill t,lit' Cllgebra

[\jII(-,),\jI~(a)J = rlk"a)\jI,(-,)\jI~(a),

[~'I(¡), ~'Aa'-')J = -\jII(¡)\jIl(a'-I)rd-¡,a),

[~'I(-/-I), ~'~(a)] = -1/J,(¡'-t)I/JAa)r,~("a),

[~, I (¡'- I ), ~,~(a'- I )] = i' U (¡, (1) \jidI (¡'- I ) \ji~(a'- 1),

wJ¡iciJ satisfit't' tlll' .Ja('o!li idl'lJ! it if's. 111 t his caSf' \\"t' gt't

(57)

(5~)

(5D)

((jO)

((jI)

1/0\Ve"l'r 1~II(a),det '¡'(¡)I does uol \'anish,
Takillg tiJe JlIl'II!iolH'd "pOilll.splittillg" sort of rt'glllarizatioIl n'qllin' iu raC! cart'flll

COll\'l'lltions l>t'(,<lllsr the limit a' -- (T lIlay lIol gin' tlu' Sillllt' reslIlt as the limil a __ a',
TlIis is a refiectioll of t.he lark of gallgt' ('o\'arialln.' o[ t.lw dl()st'lI algt'bra.
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A soltltioll lo this prohh'1I1 would be lo rl'defilH' illtt'grate<1 COllllt'ctiollS dividing tllt'lll
by lhe square root of t}¡eir detenllillltnt, so that tiu'ir determinant \•...ould he olle. lIowc\'cr.
iJl lhis case lhe algehra eould uol he pul iu the dosed form of lhe type (23) or (2~).
An obscrvatioll is here iu onier. 'Ve call1loí Ilt'glect lile raet that lile cquatiollS (G7-GO)

('aH be writ ten in t he f01'1II of a braid algl'lna:

W,h)W2(a) = Rtky,a)W2(a)Wlh)'

W,h)W2(aH) = w2(a'-t)w,(¡)Rd"a),

(G2)

(G3)

alld so 011. Thc correspollding associativity cOIl<!itioIlS, which usually ¡cad lo tllt~ Yallg-
Baxter ('qllations fOl"lile U 1Ilatrix, are of a more gCII('ra! llature than tlw .!al'oi>i id('lltitics
of (57-GU). lhey are mOl'" n'slrieti,"". It is ('asy to st.e lhal (G2) ami (G3) salisfy iu illll'<¡ually
trh'jal wa.\' thes(' assot'iati\'ity couditiollS. reganl1ess of lhe fonu of tite IIlatric(':; f{ (JI' ñ.
TiJe sallll.' obscrvation is valid for t}¡e eqllally ('qui,"al('llt q-Jacobi identitit's (,OlTespollditlg
to tite 'I-COllllllutatioll rdat.iolls asso<:iated to (02) awl (03).
Therefore

1
\vc call cOlldude tllat it is llot possible itl our hcuristi(' ,,;ay lo perfonn

the ('anonical quallt.il:atioll of tite thcory, lhe lIlaill prohlem hcillg the ambiguities of t.hc
ddillitiOlI of the illt.egrat.l'd COIIIIl'ctiollS ill tite qn<tllt.lllll tll('or,Y' Actnally, ,....1' had sllpposed
that. we can ignore él possiiJle l'Cllortnalizatioll of integrat.ed COllllCCt.iollS alld ill faet. <l."
fal' as lllllltilincal'ity is rt'SIH'ctt'd, tlH.'H' is 110 prohlell\. Ilowevcr, if t.his (,olltiitioll is llOt.
l'espccted, for instante if \Ve wish lo set t he determillant eqnal to OIle, we ('aH cxpect to
llave problcl11s as tliese.
lt seClllS that lhe only \vay to avoid such proiJlellls is lo proceed ill tllt' S¡.lIl1l' way as

don(' iu eariier work: '1nantizing lhe lheory at tI", le\"('1of lhe Wilson loop algehra.
Of COllrsc, ''':e cOllld !lave st.artcd t.akillg frolll lhe hegillllillg SOllle sort of regularizatioll,

for illstallce eOllsiderillg es lheory ill ¡he franl(' of lauie" field thl'ory. Uufortllllately, slIch
approaciJes are 1lI1lch lIlore illvolvcd alld would lHl the sllbjcct uf a separall'd \Vork.
Tite quantizatioll of t.h(' th('ol'Y at t}¡e level of tite \Vilson loop algebra \Vas givcn in

Hefs. [5]' [G], [10] alld !l7J. tile IlIost gelleral fol'lll ,vas takl'll in the last. \\'ork, where,
aS 1ll(,lltiOIll'd ill t.}¡p illtrodllrt.ioll. t}¡c or<1ering pres<:riptioll (53), in t}¡is case for \\'iIson
loops. was cOlIsil1cred.
Tile Wilsoll loop algehra o1>lai'H'd i" this way is gh."" 1>y

(G~)

wllie\¡ is S}¡O\v1lto 1)(' ('ql1ivah~lIt to t.he S<\Ill(~SU(2)// algebra as ill t.lw c1a:-;sical case

hut witiJ tile defonllatioll parallleter
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Of coursc, our l'l'sults are based 011a llaivc quantizatioll of the traces algebra (19), en~ll
if "'e have introdnced the factor ordering prescription (53). l\evertheless, the resnlting
deformation paramelers are consistent ",ith lhe c1assical ¡¡mit (ti ~ O) as can be seen
in (46) together ",ith (66).

5. CO~CLUSIO~S

Quantization of 3-dimcnsiona! Clll'rn-Simolls t.heory was cOllsidcred frolll él hcuristic point
of vic\\'. First, the general structllre of thc algcbra of intcgratcd COllllcctiollS in thc classical
thco1')' \vas ShO\\'Il. It t.urncd out that ('vell at. lIJe classical level thc computatioll of tltis
algebra is <llllbigllOllS. Further. tIle [aet that the dcterminéillt i:; ill\'ariant allo\Vs to lllake a
COllsistcnt. forUllllatioll. In the qUi:llltulll tl1eory thc illvariancc ofthe dctcnninant ('a1l1101he
insurcd. In fact, lindel' tIte regularizatioll prescriptioll (16), the determinant is ill\'ariant.
lloweyer, ill the q\lalltulll t11eory tllis reglllarization is llot realized rigorollsly, t hat is.
lhe corresponding lilllit , ~ O is not I)('rforllled explicitly. Instead of tltat, by llleans of
general considcrations and guidcd by cOllsistCllCY chccks, \I,'C try to gucss ho\\' thc reslllt
sltonld look like. Tltercfore, in this approach it tllms 01lt that tite only \Vay to consistently
qualltize thc tlteor)' is to (,ollsider ollly illvariant and ta quantizc directly tite \ViIson loop
algebra, tltus igllOring t.he problems reIaled lo the ill\'ariaucc of thc dctennillHnt. Allot.lu ..'r
\Va,)' is tite uue proposeo in Hef. [101 wllcl'e t.hc (,olldition Oll tIte deh'rtuillallt heillg oue
is imposed as a COllstraint. Ncw'rtltelcss, ill tllis work the cOllsist.CllCY of tltis cOllstraint
with the \Vilsoll loop algebra \Vas Ilot SllOWIl.
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