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ABSTRACT. Quantization of Chern-Simons theory is considered. Canonical quantization is ana-
lyzed and it is shown that it cannot be consistently done unless renormalization of integrated
connections is taken into account. Otherwise quantization at the level of Wilson loop algebra can
be done consistently.

RESUMEN. Se estudia la cuantizacién de las teorias de Chern-Simons en 3 dimensiones. Se analiza
la cuantizacién canénica y se muestra que no puede ser hecha consistentemente a menos que se
tome en cuenta la renormalizacién de las conexiones integradas. De otra manera, la cuantizacion
del dlgebra de lazos de Wilson puede ser realizada consistentemente.

PACS: 03.50.Kk; 03.70.4k; 11.15.Tk

1. INTRODUCTION

Chern-Simons (CS) theories in 3 dimensions have been object of study due to their mul-
tiple applications: 3D gravity [1,2], knot theory (2,3] and 2D (rational) conformal field
theories [3,4].
Let A;, i = 0,1,2 be a Lie algebra valued connection of a group G on the 3 dimensional
manifold M, the corresponding CS theory is described by the action
k
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where k is the coupling constant with dimensions of action and tr is the bilinear form of
the Lie algebra of the group G. CS theories are topological field theories, invariant under
spacetime diffeomorphisms and independent on the metric of the corresponding manifold.

Under gauge transformations, CS action is gauge invariant up to an additive topological
constant, that is

A =U'U+UTTAU (2)
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The second term on the r.h.s., a total derivative, is a surface term whereas the third,
locally also a total derivative, is proportional to the winding number of the transforming
group element U € G

W(U) == Ltr da.’BEijk (U_laiU Uﬁla'UUglakU), (5)
2472 M ’

which is given by the homotopy group 73(G), for compact groups an integer number.
Pure C-S theories describe “trivial” motions given by flat connections as can be seen
from their equations of motion:

Fy = 0i4; - 9;4; - [4i, 4;] = 0, (6)

which are gauge covariant, consistently with the gauge invariance of the action.

In all the mentioned three cases of applications of CS theories, Wilson loops play
an important role in defining the corresponding degrees of freedom. The reason is the
topological character of the theory, which can be studied only by means of nonlocal
objects.

Thus, for the group ISO(2,1), if = (M) # 0, CS theory contains nontrivial degrees
of freedom described by Wilson loops [2], integrated along noncontractible curves and
which represent motions of point particles. In fact, the resulting theory is equivalent to
3D Einstein gravity [1].

For quantum CS theories with compact groups, with nonvanishing values of the winding
number (5), the expectation values of Wilson lines along knotted closed curves give the
corresponding Jones polynomials.

Finally, the quantum Hilbert space of a 2D spacelike section punctured by the inter-
section of Wilson loops, describes the space of conformal blocks of the WZW model with
gauge group G [3].

Therefore, the calculation of the commutator algebra of Wilson loops is an important
issue. In Ref. [5], this commutator algebra has been considered for the group ISO(2,1).
As usual, a foliation of M = R x T has been chosen so that time runs along R and ¥ is
a spacelike two-manifold. In this case the topology of M is summarized by the one of X,
and it is enough to study spacelike Wilson loops.

The study of this algebra has been further pursued in Ref. [6] for 3D de Sitter gravity,
that is, CS theory of the groups SO(3, 1) and SO(2,2), where the resulting observable
algebra has been quantized obtaining, after suitable reparametrizations, two copies of
SU(2),. Further work has been done, in the genus one sector of the theory, to calculate
the Wilson loop algebra for the following cases: 3D gravity [7], conformal gravity [8] and
the Sitter supergravity [9). Generalizations to include the remaining handles of ¥ in the
case of the Sitter gravity, have been pursued in Ref. [10].

In all these works the quantized observable algebra turned out to have the structure
of a quantum algebra. In Ref. [17] this structure has been considerate for the classical
Wilson loop algebra as well as for the quantized one, with an operator product depending
on one parameter. In both cases, the structure of the theory turned out to be the same,
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differing only the deformation parameter, in the last case having a nontrivial dependence
on the Planck constant.

In all works mentioned before, quantization has been performed at the level of the
Wilson loop algebra. That is, the Wilson loop Poisson bracket algebra has been converted
into a commutator algebra following canonical quantization, so that ambiguous operator
products are fixed by means of some ordering prescription as already mentioned.

In this work, starting from the algebra of integrated connections, we consider quantiza-
tion of Chern-Simons theories. In order to have this algebra in a closed form, a gauge fixing
is in order [17). This form of the algebra is the one taken here into account. In Sect. 2 we
consider the classical theory. The Poisson brackets algebra of integrated connections has
the structure of a braid-like algebra. Even at the classical level the computation of this
algebra is ambiguous and in order to have a consistent result, satisfying Jacobi identities, a
“regularization” prescription is necessary (17]. In Sect. 3 the algebra of traces of integrated
connections, Wilson loops, is considered, in particular for the group SL(2, R). In Sect. 4
quantization is tackled. Due to the ambiguities in the definition of integrated conexions,
the computations implied are in general not well defined. Thus we have to appeal to
consistency criteria in order to obtain a regularization prescription for the computation
of products of two integrated connections, defined along the same curve. It turns out
that it is not possible to maintain the Jacobi identities and at the same time to have an
invariant determinant. One way to step out of these problems is to avoid the ambiguities
of the definition of integrated connections considering Wilson loops instead. This way was
the one followed in earlier work where quantization was done at this level. In Sect. 5 some
conclusions are drawn.

2. CLASSICAL THEORY

In this section we consider the classical Chern-Simons theory described by the action (1).
We show how the algebra of integrated connections has to be computed in order to have
the Jacobi identities verified.

Integrated connections are defined as follows: if v: I — ¥ is a curve on ¥, the integrated
connection ¥(y):7 — G, is given by the path ordered exponential

Y(y) = Pexp/Adx, (7
4]

is a solution of the differential equation (5]

d—ql— = A;W. (8)
ds

Here the curve v is parameterized by s € [0,1] and A, is the connection tangent to 7y at
s. Integrated connections depend on the homotopy class of the chosen curve, and closed
curves have to be considered in order to produce topological invariants.
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FIGURE 1. Decomposition of two intersecting cycles v and ¢ into v = Y3¥2n and ¢ = o30490;.
The points B are the base points and C is the crossing point.

The canonical Poisson brackets of the theory can be derived [1,11] from the action (1):

2 = 2n e
{Aaa(t, £), A%s(t, 7)}es = “—eap 88 6%(F — ), (9)
k

where a, 3 = 1,2 and a is an index of the adjoint representation of G.

Therefore, Poisson brackets of integrated connections differ from zero only if the corre-
sponding curves intersect. Indeed, as shown in Refs. [5,6], we can consider two intersecting
closed curves vy and o, taken for consistency as the two independent cycles of a one genus
sector of a genus g two-dimensional surface. Taking arbitrary base points for v and o, both
curves can be decomposed into three pieces, the central one being in the neighborhood of
the crossing point (Fig. 1). Thus

V() =¥(n)V(2)¥(n),  ¥(o) = ¥(o3)¥(02)¥(ay). (10)
Taking the canonical Poisson brackets (9) into account we obtain
{0107), ¥2(0) }on = W1(73) a(03) { L1 (72), o (02) }oa ¥4 (1) Ua(0y), (11)
where, as usual, the notation is
UV =v®l, U, =1@ V. (12)

Further, the crossing pieces v, and o, are taken to be of infinitesimal length in such a
way that

spte a
v =1+ [ ds a2 4 o, (13)

0 —€
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von=1+ [ dusafi) 2 + o) (14)
up—¢
Using this we can calculate
it balonhen = [ S [T ey EO W 0z e
- __S(»y, (T ®Ty), (15)

where s(v, ) = +1 is the signature of the relative orientation of v and o and is responsible
for the antisymmetry of the Poisson brackets. Therefore, we can take the limit € — 0
of (15):

{T1(7), Y2(o)}es li_l}(l]‘l’l(vs)‘l’z(as){‘l’l(’m),‘1’2(02)}PB‘1’1(‘!1)‘1’2(01)

—%:E s(v,0)0 (v3)W2(o3)(T* @ To)¥i(71)¥2(01). (16)

Of course, Eq. (16) depends on the base points of the loops v and . This dependence
is a reflection of the gauge covariance of this result. Indeed, under a base point change,
integrated connections transform under the adjoint representation

¥ — GUGY, (1]

where G is the group element corresponding to a curve which joins the two different base
points.
The invariance under (17) of the Casimir element

Cro=T*"@7T,, (18)
allows us to rewrite the algebra (16) in a closed form. Indeed, given two crossing inequiv-
alent loops v and o, we can always choose them to have a common base point B, different
from the crossing point C' (Fig. 2), in such a way that in the limit e — 0 the curve y303

is contractible and the corresponding group elements coincide: ¥(y3) = ¥(o3). After this
gauge fixing, the algebra (16) becomes braid-like:

{W1(7), O2(0)}en = T12(y, o)1 (7) W2(0), (19)

where

2
r12(7,0) = = 7-5(1,0)Cne. (20)
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FIGURE 2. Gauge fixing for the cycles y and o. B is the common base point and C is the crossing
point.

Consistency of such braid equations, in our case the Jacobi identities, would usually
imply classical Yang-Baxter equations for the matrix ra(y,0). It is casy to see that
the mentioned equations are not satisfied by (20). In fact, the corresponding algebra is
seemingly generated by the matrix elements of ¥() and ¥(o) and such an algebra, even
in the classical theory, is not well defined. For instance we expect that the Poisson bracket
{¥1(7), ¥2(7)}es vanishes. An explicit computation of it cannot be done unless we adopt
a sort of regularization which takes care of the infinity of crossing points of v with itself,
for example by

{T1(), P2(7)}es = ’rli_l:f;'{‘ljl(’T)a T (')}ews (21)

where 4" belongs to the homotopy class of 4. The necessity of such a regularization can be
seen if we try to check the Jacobi identities for the algebra generated by W(v) and V(o)
in a formal way. Indeed, if we suppose that the matrix elements of ¥() commute among
them, we get

{{¥1(7), ¥2(0)}, T3(y)} + {{Z2(0), T3(m)}, T1(7)} + {¥3(7), ¥1(7)}, T2(0)} =
[r12(7,0), 723(7,0)] 1 () Y2 (o) ¥3(7)

47
= k—zf"*’fTaw(v) @ T¥ (o) @ T.¥(v), (22)

which does not identically vanish.
As mentioned, in order to avoid such problems, we can take three different, but equally
based elements, say ¥(v), ¥(o) and ¥(¢'), where o and ¢’ belong to the same homotopy
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FIGURE 3. Point splitting regularization of two cycles o into ¢ and ¢’. The points C are crossing
points.

class (Fig. 3). However, the gauge (19) cannot be implemented simultaneously for all the
loops involved. For each of the brackets we must use (11) and from Fig. 3 we get

{¥1(7), Y2(0)}ps = T12(7, @) V1 (7) ¥2(0), (23)
{(U1(7), Ua(a") }es = ¥1(7)¥2(0")r12(7, 0'). (24)

Taking this into account it is easy to show that the Jacobi identities of (11) are fulfilled
since we obtain

{{¥1(7), ¥2(0)}es, Ua(0") } = r12¥1(7)¥2(0)¥3(0")r13, (25)

{{%1(0"), L2(1)}em, T3(0) } = —T12¥1(7) P2 (o) ¥3(0")r13. (26)

Another consistency check is related to the determinant. If the elements of the group
we started with have determinant one, then the algebra (19) must let the determinant
invariant. In fact, it is not difficult to show that this is indeed the case. Let us write for
an n X n matrix

J104 0 _ A1eadn gyl Jn
1In det U = ot Wl 0 (27)
or

1 _ . .
— I B o ) n
det ¥ = E!'E‘“_”JHEI \I’t: o eI (28)

in

Then, if we use the identity

il ikein B i o = {(n—1)! 6;";1 (29)



QUANTIZATION OF 3D CHERN-SIMONS THEORIES 27

we obtain
(T1(3),4et W(@) b = == (3,0 te(T*) T ¥(1)]s det ¥(), (30)

which vanishes because, as a consequence of the fact that the determinant is one, the Lie
algebra generators are traceless.

The algebra of integrated connections obtained in this section is not gauge covariant,
it depends on a gauge fixing which cannot be imposed for any situation. If we wish to
avoid such problems we must restrict ourselves to invariant quantities as Wilson loops.

3. WILSON LOOP ALGEBRA

Wilson loops are traces of integrated connections. Thus, they do not depend on the base
point of the curve along which the connection was integrated and taking the trace of (16)
their algebra can be written as

W) W(@)how = ~2Ls(1,0) 2 [T¥(7)] [T ()], (31)

where
U(7) = ¥(n)¥(r), (32)
¥(0) = ¥(oy)¥(o3) (33)

are the integrated connections corresponding to v and o but with base point located at
the crossing of the two curves.

The expression (31) can be written more explicitly in terms of Clebsch-Gordan coef-
ficients. Let us consider the tensor product of the irreducible representation DM (a) =
exp a®T* with itself and its decomposition in irreducible representations. We have

p*  p@® o > (A, Ama]AM) D), (AM! A, Amy). (34)

mym{ " mam)
AMM'

Expanding both sides of this expression in powers of the group parameters a® and com-
paring the quadratic terms we obtain for the Casimir element (18)

a(A) , my Ta(A) ’mg - —'C(/\)tS

m] m2

T

’
m 2

il e E C(A) (Amy, Amy|AM) (AM | Amy, Amy).
1
A

(35)
Of course, in general this expression is quite complicated to handle. Fortunately, for
the fundamental representation, as considered in CS theories, explicit expressions in
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terms of the invariant tensors of the group are known. For example for SU(n) the group
parametrization can be chosen so that

M

1.
TGTI Tam; :2 7 (_%5111’1 ™ 6m'2m2 + 6m’1m2 6m'2m]) (36)

and so on.

As we are rather concerned on the quantization of the theory, in the following we will
restrict ourselves to the simplest non-abelian case of G = SL(2, R) which encloses many
of the cases discussed in the literature. In this case we have

Tam"1 m Tamf“2 = - %ém’] " 61]1’2m2 T %6mfl T ém'zml ’ (37)
and the resulting algebra is [5,6]
T
(W), W(0)}en = £5(,0) [-3W (W (o) + W (ya)]. (38)

The algebra generated by (38) closes due to the following Mandelstam identity, satisfied
by 2 x 2 matrices [5,6,13]:

tr(AB) = tr(A) tr(B) — (det A) tr(A™' B). (39)

In our case the determinant is one and we have for example W(y%c) = —W(a) +
W (y)W (yo). Using these identities it is possible to show that the only independent
generators are [5,0]

Xi=W(), Xpe=W(o), Xz=W(yo), (40)
which satisfy the algebra [6]
m
{Xi, Xj}oo = 7 (6 XX + €ije i), (41)
where €;; = —¢ji, 12 = €3 = €31 =1 and €;jx is the 3D Levi-Civita symbol.
In Ref. [17] it has been shown that (41) can be identified with the quantum algebra

SU(2),. This algebra can be brought to the canonical form of Drinfeld and Jimbo by
means of the following nonlinear reparametrization [17,14]:

KE = X; £iXqeTE, (42)
Xy =5 (e BH — eiH), (43)
resulting
—2EiH 2n gy
L e k e k
KT K oy = —5 —, (44)
ek —e Kk

[H, K*}pp = £KF; (45)
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that is, the deformation parameter is real and is given by

g=e ¥, (46)

x|

where we must have in mind that the right meaningful combination is the one which
appears in the algebra, that is ¢/, k~! having dimensions of action.

Therefore, as mentioned in Ref. [17], the “quantum” symmetry of CS theory is not
related to quantization, it seems rather to be related to the “interactions” associated to
the nonabelian gauge group, in a way similar to the case of the Heisenberg ferromagnet
model when anisotropies are introduced.

4. QUANTIZATION

Quantization of CS theories cannot be done following the ordinary schemes of field theory:
operator ordering criteria are missing and Wilson loops do not have a simple physical
interpretation. As a consequence quantization will mmply a certain degree of arbitrariness.

A natural starting point would be canonical quantization, promoting the connections
Aua to the status of operators and substituting the basic Poisson brackets relations (9)
by commutators.

If we ignore renormalization of integrated connections, possible if we are interested
in the quantization of the algebra of integrated connections (16), we can compute the
corresponding comunutator in the same way as for the classical case, only taking care of
the noncommutativity of the factors. In this case the result is the same:

27

(Y1(7), ¥a(o)] = —?S(’h o)W1 (v3)¥2(03) (T @ T,)¥1(71)¥a(0y), (47)

or after fixing the gauge as in Fig. 1:
[W1(7), ¥2(0)] = r1a(7, 0) ¥ () ¥ (o). (48)

The same is valid for the Jacobi identities when calculated as in Eqgs. (25) and (26) but
based on the algebra (47).

So far it seems to be all right. However, one key argument in the classical theory was
the fact that the determinant could be set equal to one. If the determinant cannot be
set equal to one, the Mandelstam relations (39) become very complicated and we cannot
restrict ourselves to the algebra generated by ¥(v),¥(o) and ¥(y0) in order to get a
consistent and closed Wilson loop algebra.

Indeed, in the preceding section we have shown that the Jacobi identities are satisfied for
V(7), (o) and ¥(o'). However, if we wish to check them, instead of ¥ (o'), for composite
expressions like ¥(~yo) we need to consider these expressions as well in a regularized form
(Fig. 4):

¥(ya) — ¥(y'o’) (49)
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FIGURE 4. Point splitting regularization of two cycles v and two cycles o into 7 and v/, and o
and o' respectively. The points C' are crossing points. The paths going from crossing points and
back are contractible.

If we must take into account relations more complicated than ¥(vyo), then it seems not
possible to have a regularization consistent with the gauge (23) and (24). This fact can
be checked if we try to add one more curve ¥ or o” in Fig. 4 in such a way that it has
the same base point B as the others and respects the gauge fixing leading to (23) or (24).
The reason is that, in order to fulfil the gauge fixing, the closed path going from the base
point to the intersecting point and viceversa must be contractible, i.e. it must no contain
inserted operators. In particular, if it contains a portion of an integrated connection, it
will not be contractible.

Once this point clarified, the main problem in the quantized theory is that the deter-
minant is not invariant and cannot be set equal to one. Indeed, an explicit computation
in the case of G = SL(2, R) gives

G2
[¥1(7), det ¥(o)] = - —kz—‘lﬁ(v) det ¥(0), (50)

which obviously does not vanish. We could try to modify the definition of the determinant,
for instance we could take the “regularized” versions

dety U(o) = L2 12 U(a) U(o")]2 (51)
or, as in the case of the quantum group SL(2, R)y

det, ¥(0) = U(0); " U(0)s® = q¥(0)1*¥(0)2’ (52)

and so on. It turns out that none of these versions is invariant.
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Another possibility is to observe the fact that in the computation of (47), after the
limit € — 0, the order of the operators on the r.h.s. is ambiguous. That can be taken into
account by means of an ordering prescription as done in Ref. (17] for the Wilson loop
algebra. If we take the gauge as in Fig. 1 and adopt the ordering prescription

1
14+a

[¥1(3)¥s2(0) + a¥s(0)¥1(7)] (33)
we get, lustead of (48), the commutators

[V1(7), ¥a(0)] = r12(7,0) [W1(9) T2 (o) + a¥s(0)¥1(7)], (54)

which can be rewritten as

[‘I(l(ﬂf)!‘pz’(a)] = Tﬁl?(veg)‘pl("f)\lll?(g)v (55}

where
N 2T 2am = _ e
112(7»0):_7 1*m112(’710):| ri2(7, 7). (56)

Actually, taking (53) instead of (48) is not very helpful for our purposes. In fact. similarly
to the classical case, the explicit form of the r—matrix is not relevant for the fulfiliment of
the Jacobi identities. Further, the only thing we can adjust in order to have an invariant
determinant is the gauge fixing. On the other side, if the gauge covariant expression (47)
lets the determinant invariant, then any gauge fixed expression will do the same thing. It
turns out that, independently of the taken definition for the determinant, there is no way
to have simultancously both det W(5) and det U(o) invariant.
For instance, following Fig. 4 we obtain the algebra

[21(7), Va(0)] = ria(7,0) ¥, (7)Wa(a). (57)
[¥1(7), ¥2(0""")] = =91 (1)2(0" ) r1a(7, 0), (58)
[(U1(+" 7). Wa(0)] = =0, (7' )Wa(0)r12 (7, 0), (59)

[Y1(4" 1) Wa(0" )] = r12(3. 0) Wl (") Ty (0" ), (60)

which satisfies the Jacobi identities. In this case we get
[¥(7). det V(o)] =0. (61)

However (W (o), det W(y)] does not vanish.

Taking the mentioned “point-splitting™ sort of regularization require in fact careful
conventions because the limit ¢/ — ¢ may not give the same result as the Lmit o — a.
This is a reflection of the lack of gauge covariance of the chosen algebra.
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A solution to this problem would be to redefine integrated connections dividing them
by the square root of their determinant, so that their determinant would be one. However,
in this case the algebra could not be put in the closed form of the type (23) or (24).

An observation is here in order. We cannot neglect the fact that the equations (57-60)
can be written in the form of a braid algebra:

U (7)¥a(a) = Riz(7y,0)¥a(a) ¥y (v), (62)
Uy (v)Wa(a"Y) = Ta(a' )Wy (7) Ri2(v, 0), (63)

and so on. The corresponding associativity conditions, which usually lead to the Yang-
Baxter equations for the 2 matrix, are of a more general nature than the Jacobi identities
of (57-60), they are more restrictive. It is easy to see that (62) and (63) satisfy in an equally
trivial way these associativity conditions, regardless of the form of the matrices I? or R.
The same observation is valid for the equally equivalent g-Jacobi identities corresponding
to the ¢-commutation relations associated to (62) and (63).

Therefore, we can conclude that it is not possible in our heuristic way to perform
the canonical quantization of the theory, the main problem being the ambiguities of the
definition of the integrated connections in the quantum theory. Actually, we had supposed
that we can ignore a possible renormalization of integrated connections and in fact, as
far as multilinearity is respected, there is no problem. However, if this condition is not
respected, for instance if we wish to set the determinant equal to one, we can expect to
have problems as these.

It seems that the only way to avoid such problems is to proceed iu the same way as
done in earlier work: quantizing the theory at the level of the Wilson loop algebra.

Of course, we could have started taking from the beginning some sort of regularization,
for instance considering CS theory in the frame of lattice field theory. Unfortunately, such
approaches are much more involved and would be the subject of a separated work.

The quantization of the theory at the level of the Wilson loop algebra was given in
Refs. [5], [6], [10] and [17]. the most gencral form was taken in the last work, where,
as mentioned in the introduction, the ordering prescription (53), in this case for Wilson
loops, was considered.

The Wilson loop algebra obtained in this way is given by

ihu

i.\rl,a\'vg] = ——‘.———(.\'1‘\’2 + X3), (54)
hu
1 +ra

which is shown to be equivalent to the same SU(2), algebra as in the classical case

~2H ~—2H
; b G =
ek =i~ (65)
q° —q
but with the deformation paramecter
nik o\
1 = ?-ﬂ'l ' 1h
q = . 1;:.(;1. (66)
1 +a

l+a
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Of course, our results are based on a naive quantization of the traces algebra (19), even
if we have introduced the factor ordering prescription (53). Nevertheless, the resulting
deformation parameters are consistent with the classical limit (b — 0) as can be secen
in (46) together with (66).

5. CONCLUSIONS

Quantization of 3-dimensional Chern-Simons theory was considered from a heuristic point
of view. First, the general structure of the algebra of integrated connections in the classical
theory was shown. It turned out that even at the classical level the computation of this
algebra is ambiguous. Further, the fact that the determinant is invariant allows to make a
consistent formulation. In the quantum theory the invariance of the determinant cannot be
insured. In fact, under the regularization prescription (16), the determinant is invariant.
However, in the quantum theory this regularization is not realized rigorously, that is,
the corresponding limit € — 0 is not performed explicitly. Instead of that, by means of
general considerations and guided by consistency checks, we try to guess how the result
should look like. Therefore, in this approach it turns out that the only way to consistently
quantize the theory is to consider only invariant and to quantize directly the Wilson loop
algebra, thus ignoring the problems related to the invariance of the determinant. Another
way 1s the one proposed in Ref. [10] where the condition on the determinant being one
15 imposed as a constraint. Nevertheless, in this work the counsistency of this constraint
with the Wilson loop algebra was not shown.
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