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ABSTRACT. The critical values for the mass of the Higgs bosons, at which the theory becomes
strongly interacting, are calculated using the equivalence theorem. At high energies this allows
us to replace the longitudinally polarized gauge bosons in the S matrix for the corresponding
Goldstone bosons. An appropriate ansatz for defining the would-be Goldstone bosons in the case
of an additional neutral current, beyond the minimal standard model, is also presented.

RESUMEN. Se calculan los valores criticos para las masas de los bosones de Higgs en el limite
en el cual la teoria se hace fuertemente interactuante usando el teorema de equivalencia. A altas
energias se reemplazan los campos de norma longitudinalmente polarizados en la matriz S por los
correspondientes bosones de Goldstone. Se presenta un ansatz para definir los bosones de Goldstone
en el caso de tener una corriente neutral adicional mas alla del modelo estandar.

PAGS: 12:.15.¢

The minimal standard model (MSM) gives an adequate description of the available experi-
mental data on the electroweak interaction, but, theorists believe, there is physics beyond
the MSM and hope that the advent of new accelerators will show some experimental
evidence of this. This new physics should bring the need for new models like the supersyui-
metric models, technicolor or simple extensions to the gauge group. One can think in many
different extensions to the gauge group, some of the most relevant are: the modification of
the Higgs sector (including two SU(2); Higgs doublets, one additional Higgs singlet, one
additional SU(2),, triplet or more complicated Higgs structures [1]), and the use of richer
gauge groups, left-right symmetric models SU(2), @SU((2)r ®U(1) -y, (2], or additional
U(1) groups SU(2), @ U(1) @ U(1)" [3]. However, the origin of the spontancous symmetry
breaking, needed to generate the gauge boson masses, remains unclear.

In the MSM with one Higgs doublet [4] there are three would-be Goldstone bosons
‘eaten’ by the gauge fields, which become massive in the process and leave one neutral
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scalar particle: the Higgs bosons. The current experimental lower bound for the mass
(my) of this bosons stands at about 60 GeV [5]. The actual value of my; is crucial for the
validity of the MSM at high energies, recalling the fact that the unitarity of the theory
is not preserved at high energies if my exceeds a critical value of about 1 TeV [G]. In
this case the scalar sector of the MSM becomes strongly interacting and the perturbative
expansion of the S matrix is no longer valid, thus chiral [7) or effective [8] Lagrangian
approaches may be an appropriate description for the gauge bosons physics since they
only use the symmetry breaking scheme.

This can be seen if we consider the high energy limit (compared with the mass scale of
the particles involved). The polarization vector of a vector boson is

e T HEB k(k-€)
e ( BT M(QH{))" (1)

with & = (Q.k) and K* = M?, where it is easy to see that, at high energies, the dominant
part of the gauge bosons is that of longitudinal polarization which, in the same limit, can
be written as

K*
gh e TR (2)

Moreover, in the 't-Hooft-Feynman gauge (a special case of the so called R¢ gauges which
we will discuss later in a more general form), the gauge fixing term is given by

9. VI +iM¢; =0, (3)

where V, and ¢, are any vector boson field and its corresponding Goldstone boson; one
can replace V; with ¢; in any S matrix calculation at high eunergies,

S[Vi] = S[¢:] + S[O(M/Q)], (4)

therefore the scattering amplitudes for longitudinal W’s and Z’s can be calculated from
the scattering amplitudes of the would-be Goldstone bosons [9], up to order M/Q (only
in this gauge); this is known as the equivalence theorem, proposed by Lee, Quigg and
Thacker in 1977.

The main result of this paper is to present an ansatz for obtaining the corresponding
would-be Goldstone bosons in the SU(2), @ U(1)y ®U(1)" model, with one SU(2) doublet
and two singlets. We also find the upper bound for the mass of the Higgs bosons in the
limit /s > my;, where /s is the c.m. energy, by looking at the scattering process of
two neutral Goldstone bosons. Via the equivalence theorem this 1s a good approximation
for the scattering amplitude of two neutral high energy gauge bosons, with longitudinal
polarization. Finally, we find a relation between the mass of the extra Higgs bosons, the
new neutral gauge field and the mixing angle between the neutral currents.

The SU(2) @ U(1) @ U(1)" model is important because future experiments may find
additional neutral currents and, even if it is not the exact gauge group of the electroweak
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interaction, it provides the minimal model with such an extra current; therefore it might
be useful when considering some superstring theory-based models, specially those with
Eg symmetry or models with left-right symmetry mentioned above. At low energies these
models might behave like SU(2), @ U(1) @ U(1)" [15)].

The most general expression for the electric charge in SU(2);, ® U(1) @ U(1) is

Q = T3 + 5(aY] + bY)), (5)

where T3y, Y| and Y, are the diagonal generators of SU(2)r, U(1) and U(1)’, respectively.
The second term is aY; +bY; = Yows for a given multiplet, where Ygws is the hypercharge
in the Weinberg-Salam model. The most general Lagrangian for the bosonic sector in this
model with one SU(2) doublet and one singlet is given by

r=3 ((D,,@i)T(D“Qn) + [0, - 'uﬂz) +3(2]@)) (010,), 6)

=12

where the parameters \;, i = 1,2, 3, define the Higgs potential, the Higgs field components

are
(—lﬁ (p1 + ?3992))
(I’l = | i )
75 (H +ip3)
¢y = %(X'i*i%): (7)

S

and the covariant derivative is [11]
y I 41 .92 5
D,=3d,-wT- A, —?.?YlB”—z?YgC#. (8)
The Higgs fields have vacuum expectation values
<H>U = W,

(X)o = v,

and then the symmetry is spontancously broken to U(1)g.

The mass matrix obtained from the Higgs potential for the fields @3, @4 (the neutral
would-be Golstone bosons) is identically zero, and it is unknown which of the fields are
‘eaten’ by the longitudinally polarized gauge fields. To get the renormalizable theory, in
the R¢ gauge we need to cancel the mixing terms 1 (BuZh), nzr (8, Z"') and et (8, WH)
from the kinetic Lagrangian of the Higgs fields, where Nz, Nz and @7 are the Goldstone

bosons of the Z,,, Z| and W} respectively. The gauge fixing term in the lagrangian is [12]

1 : 1
IS - __,-t.Zk_- "o F «,2
L(,F 25“ (0;1‘1 ) 2£z (()#Z &zj‘rfz ”J)
| 2 1 + . +12
T (92" - EaMgmz) — & O WHT — il Mwept|, (10)
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and, using the covariant derivative as a function of the real fields [11], we get

g siny sin f cot v
nz = g | A= =

—_— 7 _ 9V, . i -
~ My cosf i sin 2¢ [aY14, — 2YGws, sin 5]) Pis

g cosy Z sin @ tan . "
Nz = vi |ty + ——— [aYiy,, — 2Yqws, sin® 2
. My cos@ ' } sin 2€ ¥ ' &)

1=3,4

where Mz and My are the Z,, and ZL masses respectively and t3; are the T3, quantum
numbers of the Higgs fields. The angles 6, 9 and § are given by

a g.
tanf = — ﬁ.
T by
¢
i 8 = —, ;
smb= (12)
4M2, [ cos? 8 sin é
tan 2y = — w/ (@Y, — sin? €),

M2, + M3 — 2MP, / cos? 0 sin® €

where g1, g2 and e are the coupling constants associated with U(1), U(1)" and U(1)g,
respectively, # is the Weinberg angle and the angle » gives the mixing between the weak
neutral currents. If ¥ = 0 there is no mixing and we get the SM with one additional
multiplet plus one extra term due Z'. According to some recent results from LEP and
the L3 collaboration data [13] the possible values of the mixing angle are in the range
l¥| £ .03-0.01.

From Eq. (7) and the quantum numbers of the Higgs multiplets,

w3 = aijz + Py, wa,= Pz + oy (13)

in the limit when the mixing angle between Z, and Z, is ¢ = 0, we have

2cos B cos My
o= — =~ —1,
LCH!
2cot OM ; ; . :
D= imiloins [* sin€ cos € sinty + sinfcos(aYig, — 2 sin? 5)]
gaYig, vz '

My sin¢

My
5 2 cos B siny My My sin
C g T Mgz
2cot GMy - . ; ; .
gy el B [smﬁcos&cos ¥+ sinfsiny(aYyp, — 2sin? )]
gaYig,v2

/2 COS Y. (14)
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Now let us consider the processes NzNz — Nznz and nznz — Nzze, the scattering

amplitudes are
m m? t U
H
T(nznz — nznz) = [ 7+ ) }
s — mH —my  u—my
zp m t u
2 7+ L
|is—m t—mx u—mx}
io? m t U
T(nzmzr = nzmg) = — g e o
my my  u-—mg
B zﬁ“‘mn s x t 5 u (15)
2 § — mf[ t— m}?{ U — 7an '

51

where mpy, m, are the neutral Higgs bosons masses. Recalling that the mixing angle
between the neutral gauge bosons is small, for simplicity we assume that the mixing

between H and & is zero, i.e., A3 = 0.
The scattering amplitude can be decomposed in partial waves, according to

(o ]
T(s,0) = 16m > _ a;P;(cosh),
7=0

(16)

at high energy (s > mj,

my ) the tree-level contributions to the j

= 0 partial wave

amplitudes are given by
( ) 31 ot m}?{ p%ni
ao\nNznlz — Nzljz) = — )
8v2m v3
(17)
3i [o'mi  Bim}
ag(nzmz — nzmz) = — !
| 82 { v vi
From unitarity requirement the upper bound for the mass of the Higgs is therefore
? 4v? 4m\/2
m¥ — 1z ]
- 3t 3G g costy
; (18)
2 47r'u§ 4mJ§ 47 sin® 2&]\/1%
mi < ~ - & - 4 ;
* 3o 3costy ~ 326G sin? GM?2 cost ¥

where we have made use of the mass relation for Mz obtained in Ref. [11], given by

2p2 tan? g

M2 =
Z 4 sin® 2¢
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FIGURE 1. The region between the horizontal line and the ‘parabolic’ curves gives the allowed
values for the m,, and the mixing angle ¢, for different values of Mz:. The dashed, the doted and,
the dot-dashed curves correspond to the Mz = 150 GeV, 300 GeV and 600 GeV, respectively.

An interesting case occurs when one considers the limit myg < my,

47 sin? 26 M2,

, 20
3v/2 Gysin? OM% (20)

where we find a relation between the m, and the ¢ angle for different values of Mz

In Fig. 1, the region between the horizontal line and the ‘parabolic’ curves gives the pos-
sible values for the m, and the £ angle. For example, if { = m/4 then the m, = 1728 GeV,
3458 GeV and 6916 GeV for Mz = 150 GeV, 300 GeV and 600 GeV, respectively.

In conclusion, a relation between the masses and the mixing angles of the gauge fields
and the would-be Goldstone bosons, for a theory with one additional neutral current, is
found, using the R¢ gauge fixing, and we are able to recover the MSM constraints on the
Higgs mass in the ¥ & 0 case. The latter relation is valid for any extra neutral current
and the differences depend on the coupling constants g1, g2 and the coefficients a, b which
define the electromagnetic charge. This coefficients depend on the fermionic content of
the model and the cancellation of the anomalies.
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