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ABSTRACT. We study the behavior of optical pulses propagating in optical fibers possessing pe-
riodical gain profiles which do not satisfy the adiabatic amplification conditions. We demonstrate
that it is possible to obtain first and higher order soliton solutions, and we predict their final
asymptotic amplitudes and widths as well as some of their transient characteristics. These pre-
dictions agree with results of numerical simulations and allow to describe the global behavior of
optical fiber devices that use periodical gain profiles, such as high gain doped fiber amplifiers.

RESUMEN. Estudiamos el comportamiento seguido por pulsos luminosos que se propagarn en fibras
Gpticas que poseen perfiles de ganacia pefodicos que no satisfacen las condiciones de adiabaticidad.
Demostramos que es posible obtener soluciones del tipo solitén, tanto de primer como de érdenes
mds altos, de los cuales predecimos sus amplitudes y anchuras asintdticas, asi como algunas de
sus caracteristicas transitorias. Estas predicciones concuerdan con resultados numéricos y permiten
caracterizar de una manera general a los dispositivos de fibra optica sujetos a procesos periodicos de
ganancia, como es el caso de los amplificadores de fibra optica activada con impurezas resonantes.

PACS: 42.81.Dp; 42.65.Bp

1. INTRODUCTION

There are many physical and practical situations where an optical pulse is subjected to
repetitive cycles of gain and loss in optical fibers. We can classify them into two main
and broad groups according to the fundamental problem they dealt with. In the first
group we consider those where the amplification offset the energy loss caused by the pulse
propagation through long enough lengths in an optical fiber, and into a second group
those where absorption controls the optical gain given to the pulse by an external source.

The first group is at the core of long distance optical fiber communications, and it
includes the special case of soliton-based systems. There, the solitons are subject to such
a periodical loss-gain cycle not only to recover its original energy but also to maintain its
characteristics shape [1]. The stability of the solitons under these kind of models; that is,
its perfect recovering after each cycle, has been successfully accomplished in laboratories
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when Raman Stokes conversion is used as the source of gain [2]. Physically, the stability of
the solitons occurs because both the absorption and the amplification process are carried
out in an adiabatic way, and the amplitude and the duration of the pulse are smoothly
adjusted through each cycle, leaving its hyperbolic secant profile basically unaffected (3].
From the mathematical point of view, the stability of the soliton through a periodical
adiabatic absorption-amplification process has also been proved (4], and it occurs provide
the following two conditions are satisfied: i) the absorption (or amplification) coefficient
times the soliton period will be much less than unity, and ii) that the amplifiers separation
will be less than the soliton period [5].

On the other hand, we can label the second group as optical fiber lasers as those that
require of losses to control the pulse amplification caused by an active medium. There,
an optical fiber doped with active atoms acts as the gain source and the output mirror
represents the loss mechanism. A soliton laser, the special case in which the output pulses
are optical solitons, is of remarkable practical interest but, in order to be usefull, it needs
also to reach the stability criterion. Experimental works on erbium doped fiber laser gave
evidence of stability [6], and a physical argument for supporting such a stable results
was given later [7]. The key idea for obtaining a uniform soliton train at the output of
a doped-fiber soliton laser is that the average of the pulse intensity given to the pulse
within the active fiber has to be identical to that of the soliton.

In this paper we study, both analytically and numerically, the behavior of a soliton
subjected to a periodic gain profile in conditions of sudden amplification. We show that,
after a transient regime, an initial pulse should evolve into a soliton. Our analysis predicts
that the fundamental characteristic of the resulting soliton, its order and its width, just
depend on the spatial average of the energy transferred to the pulse by the gain profile.
We also show that it is possible to get physical information on the transient process. In
Sect. 2 we detail the physical model we are concerned, and in Sect. 3 we reduce, using
perturbation theory, the equation of motion to an exact NLSE. The asymptotic soliton
solutions are given and the influence of a specific gain profile is discussed. In Sect 4 we will
test the predicted soliton parameter with the results of numerically solving the original
equation of motion. Finally, Sect. 5 contains the conclusions of our study.

2. THE PHYSICAL MODEL

We consider an optical pulse propagating in the anomalous dispersion region of an optical
fiber consisting of M segments of length L. In each segment a given gain profile ¢(Z),
containing both amplification and absorption, acts on the pulse. Figure 1 shows the two
specific gain profiles which we will considered through this paper. In (a) a simple step-
like distribution, representing constant amplification followed by constant absorption, is
presented. In (b), an harmonic distribution is assumed. The first one becomes of practical
interest in the limit L, — L, where it can describe the conditions found in rare-earth
doped fiber lasers. In such a limiting case, the resulting abrupt loss should represent the
output laser mirror. On the other hand, the gain profile of Fig. 1b becomes of fundamen-
tal importance for describing the general case of an arbitrary spatial gain profile which
is expanded in fourier series. Let us assume that the adequate physical conditions are
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FIGURE 1. Periodical gain profiles considered through the paper. In (a) a step-like profile with
constant amplification and absorption regions and in (b) a sinusoidal gain profile.

satisfied [8] to make unnecessary the further consideration of high-order effects. Then, the
evolution of the complex pulse envelope ¢(Z,T) is accurately described by

aq _1 62(] 2 1
57 =2am2 T lgl*q +159(Z)q, (1)

where Z = z/Lq and T = (t—z/Vy)/to are the normalized propagation distance and local
time, respectively. Lq = t2/|B2| is the dispersion length, to the initial pulse duration, Vg
the group velocity and /3, the group velocity dispersion at the wavelength A.

We do not consider any physical or mathematical restriction on the shape of g(Z),
other that being periodic with period L. However, Eq. (1) implies an exponential grow
for the pulse energy, W(z) = f lq|* dT, given by

W(Z) = Wyexp [[ﬁ g(s) ds} ; (2)
0

where W is the initial pulse energy. Therefore, in order be able to achieve soliton propa-
gation we require W (L) = Wy as a stationary condition for the pulse energy. From Eq. (2),
such a condition imposes the additional restriction

L
/ g(s)ds =0 (3)
0
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to the gain profile g(Z). For the step-like gain profile (Fig. 1a) Eq. (3) means that the am-
plification and absorption coefficients are related by goLao = v(L — L,). For the sinusoidal
gain profile of Fig. 1b Eq. (3) is automatically satisfied regardless its gain amplitude g
or its period L.

In addition, we are not restricted to adiabatic amplification or absorption process,
which requires |go| < 1 in Eq. (1). Indeed, we are namely interested in cases of high gain
at short propagation distances with respect to the dispersion length Ly, because its direct
applications to doped optical fiber lasers. Under conditions of high gain, |go| > 1, the
parameters of an initial pulse are considerably affected during one propagation period, In
Fig. 2a we show the temporal evolution of an initial pulse of the form ¢(0,T) = sech T as
it propagates through a fiber of length L = 7/2 (= zp, the soliton period), which posses
the harmonic gain profile of Fig. 1b with Q = 2r/L = 4 and gg = 2. In order to quantify
the pulse evolution we plot in Fig. 2b the spatial behavior of (a) the pulse energy W(Z2).
of (b) the pulse peak intensity I,(Z) and of (c) the normalized pulse width (FWHM)
a(Z).

As it can be seen, the pulse amplitude increases faster than the pulse width reduces, a
typical behavior of a sudden amplification process. However, uotice that the pulse energy
reaches its initial value at the end of the period according to Eq. (3). It is clear that
the pulse at Z = 7/2 does not reproduce the initial pulse and a question arises whether
subsequent propagation through similar segments of fiber will lead to a stationary solution.

Recent numerical work on high-gain erbium-doped fiber lasers [7] has revealed that
stationary single pulse solution should exist for the periodic gain profile distribution of
Fig. la taking in the limit L, — L. Such a solution is possible if the following two
conditions are satisfied: i) that L <« Ly and ii) that the average (peak) power of the
pulse within one period equals the fundamental soliton power. In the next section we
analytically demonstrate that, after a transient regime, soliton solutions to Eq. (1) indeed
exist. As we can see later, these theoretical soliton solutions require a generalization of
the physical conditions (i) and (ii) given above.

3. SOLITON SOLUTIONS

From Fig. 2 it can be inferred that stationary solutions to Eq. (1), if they exist, will appear
after an initial transient and oscillatory behavior. Let us now look for such an asymptotic
stationary solution. We start by defining a new pulse envelope variable Q(Z, T) through

9(Z,T) = Q(Z,T)exp [% /:g(s)ds} ‘ (4)
0

which transform Eq. (1) to
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FIGURE 2. Propagation of an initial first order soliton through the first period of the gain profile
of Fig. 1b, with go = 2 and L = 7/2 = Zo. In (a) we show the temporal pulse evolution and
in (b) the spatial evolution of the pulse energy, W(Z), the pulse peak intensity, I,(Z) and the
pulse width, a(2).

Then, we denote by

%
G(Z) = exp [/ 9(3)d3] - Go, (6)
0

where Gg is the spatial average of the energy transferred to the pulse by the gain profile

g(Z), and it is given by
1 [t z
Gy = —/ exp [[ g(s)ds] dz. (7
L Jo 0

Using Eq. (6), we can rewrite Eq. (5) as

0Q 19%°Q

i =5 st B IQ*Q +G(2)|QI* Q. (8)
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Let us now assume that for small enough L compared to the dispersion length Ly the
last term in the RHS of Eq. (8) can be treated as a perturbation to the otherwise exact
NLSE. Quantitatively speaking, this occurs if |g0/L < 27, which can be interpreted as a
generalization of the condition L < Ly given in Ref. [7]. Without the perturbative term,
Eq. (8) becomes the NLSE and hence it accepts the soliton solution [9)

Q(Z,T) = Nrsech(rT) exp[—ix?Z/2], (9)

where NV, the order of the soliton, is an integer satisfying /Gy = N + a with la] < 142,
and k£ = 1+ (2a/N) is the soliton form factor. On the other hand, the influence of the
perturbative term in Eq. (8) can be estimated using perturbation theory [10]. There, ¢,
the correction to the phase of the soliton solution, is given by

dep e

== sech(kT)[1 — (xT) tanh(x7T)] Im(6Q) dT, (10)

where, for the specific case of Eq. (8), 6Q can be approximated as
8Q = —iG(2)]Q(0,T)* Q(0,T) dZ. (11)
Substituting 6Q into Eq. (10) and performing the resulting integral we obtain

% = -N32G(2). (12)
However, fOI'G(Z)dZ = 0, as can be noticed from Eq. (6), and hence the net phase
changes on Q(Z,T) caused by the perturbation term in one period become null and the
lowest order solution given in Eq. (9) becomes the general solution to our problem.

Because of its great importance, we concentrate our attention on the fundamental
first-order (N = 1) soliton of Eq. (9), which occurs for 1/2 < /Gy < 3/2, a = VG — 1
and £ = 1+ 2a. For these cases, the resulting first order soliton will also contain a
linear or non-soliton component which will be eventually lost of the pulse by the fiber
dispersive effect. As we will see later, such a process is responsible of the expected transient
effects. Nevertheless, the theoretical result of Eq. (9) confirms the physically argumented
condition given in Ref. [7] for the existence of soliton solutions, but also generalizes such
a condition because it establishes that the asymptotic soliton solution will not have,
In general, the same width than the initial pulse. In fact, the width of the asymptotic
soliton 1/k depends on Gy and in order to get some insight on how G is affected by the
parameters of the gain profiles, let us compute Gy for the specific gain profiles depicted
in Fig. 1.

For the gain profile of Fig. la we have

gOZ if 0 <Z < Lm

Z
g(s)ds = _
/[; gULu lrl - %—L“:l lf L“ < Z S L,

— L
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FIGURE 3. Behavior of v/Gg for the gain profile of Fig. 1a. The three curves corresponds to the
amplification lengths indicated in the figure in soliton units. According to Eq. (1), a soliton period
Z, corresponds to a distance Z = /2.

and from Eq. (7) Gp is given by

(QOLa)(Z - La)

(L - La.) 4z

L 7
Gg = / explgoZ| dZ + explgoLa] exp [—
0 La

= - (explaoLa] = 1) (13)

Figure 3 shows the behavior of VGy as the amplification amplitude go es varied for three
different amplification lengths L,. As it can be seen, the graphs of /Gy basically follow
an exponential profile, with a growing rate decreasing as the amplification length L,
decreases. Therefore, large amplification amplitudes can produce final first-order solitons
only if small amplification lengths are used. Note that negative values of g, which make
VGo < 1, can also produce first-order solitons provide VGo > 1/2. For these cases, the
amplification-absorption process is reversed to absorption-amplification, and the asymp-
totic soliton width becomes greater than unity.
On the other hand, for the harmonic gain profile of Fig. 1b we have

z
/0 g(s)ds = %29 (1 — cos(§22)].

Substitution of this expression in Eq. (7), followed by a power series expansion of the
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FIGURE 4. Behavior of /Gy for the sinusoidal gain profile of Fig. 1b. The three curves correspond
to the period lengths indicated in the figure in soliton units.

resulting exponential function, leads to
2r oa
exp(go/$2) (=1)" (yo)“ n
= = v d
Gy oL i 1—{—21 o q) o'y |dy,
n—

= exp(go/) l:l + Z (n_1|)2‘ (29—?2)2”:! .
n=1

For a small go/€,which agrees with the assumed condition goLl < 2w, we can truncate
the series after the second power term, and use

Go = exp(go/Q) [1 o %(90/9)2 o5 é(fm/ﬂ)!‘] (14)

as a good approximation to Gg. Figure 4 shows the behavior of v/ Gy as the amplitude gq
is varied for three different periods L.

There are no qualitative differences with Fig. 3, as expected by virtue of the physical
meaning of Gg. Note that Fig. 4 also indicates that if the amplification and absorption
regions of the harmonic gain profile are interchanged; that is, if go becomes negative, a
first-order soliton, broader than the initial pulse, should also be obtained.

It is necessary to remark that the asymptotic soliton solution of Eq. (1) is formed by
substitution of Eq. (9) into Eq. (4). Therefore even when transient effects are vanished, the
soliton amplitude will develop an oscillating behavior during the amplification-absorption
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FIGURE 5. Temporal behavior of an initial first order soliton as it propagates through a fiber
possessing the periodical gain profile of Fig. 1b with go = 1 and L = Zy /2. The total propagation
distance is 32L, and each curve is taken at the distance interval of 2L.

process, but at the end of each period L it will recover its predicted value Nx. Note
also that once the profile of the asymptotic soliton is reached, its width 1/x will remain
unchanged although this oscillation on its amplitude.

4. NUMERICAL SIMULATIONS

In order to verify the theoretical predictions of the precedent section we will now proceed
to numerically solve Eq. (1) with the sinusoidal gain profile of Fig. 1b and with ¢(0,T) =
sech T as the initial pulse. We used the standard split-step Fourier numerical method (8]
with a uniform temporal grid of 1024 points and, in order to accurately follow the pulse
parameters as it tends to its stationary soliton profile given by Eq. (9) with N =1, we
used a spatial grid of up to 2000 points. At each propagation step we computed the pulse
peak intensity I,(Z), the relative pulse width o(Z), and the pulse energy W(Z). These
parameters will be compared with those predicted by Eq. (9) for the specific values used
for the amplitude and the period of the gain profile.

Figure 5 shows the propagation of the initial pulse through a distance equivalent to
7 = 32 L. Here the parameters of the gain profile are go = 1 and L = 7/4 (= Zy/2). Each
curve on the graph is taken at the end of one gain profile period, and there is a separation
of Z = 2L between each one. As it can be seen, the presence of a transient and decaying
initial process is evident but a stationarity on the pulse is not obvious. More quantitative
and contundent arguments in favor of stationarity is shown in Fig. 6, where we plot
the spatial evolution of the pulse energy W, of the pulse peak intensity I, and of the
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FIGURE 6. Spatial traces of (a) the pulse energy, (b) the pulse peak intensity and (c) the pulse
width for the numerical simulation depicted in Fig. 5. The predicted values for the asymptotic
soliton parameters are indicated by the corresponding horizontal lines.

normalized pulse width ¢ corresponding to the numerical simulation of Fig. 5. For the gain
parameters used in the simulation, Eq. (14) gives Gy = 1.138, and hence a = 0.0668 and
the form factor of the predicted asymptotic soliton becomes x — 1.134. From Eq. (9) this
means that the soliton will posses an intensity peak of I:)he" = k? = 1.286 and a duration

of o'he® = 1/k = 0.882. These theoretical values are also graphed in Fig. 6. There is an
excellent concordance with the values at which the numerical results tend. The average
over the pulse energy also agrees with the theoretical value of (W(Z)) = WGy = 2.28.

The period L defines the duration of the transient, as expected from the approximation
assumption. In Fig. 7 we reduce the period of the gain profile to 7/8 (= Z/4) but keeping
its amplitude the same, gy = 1. For these parameters the predicted values are G = 1.066,
a = 0.0325, and & = 1.065, and therefore the following asymptotic soliton parameters are
expected: Ilf,h"0 = 1.132, o*h®® = (.94 and (W(Z)) = 2.132. As it can be seen by comparing
Figs. 6 and 7, a reduction in L results in a smoothing and reduction of the duration of
the transient effects.

Figure 8 shows another example of physical interest, in which the amplification-ab-
sorption regions of the gain profile have been inverted. There, g9 = -2, L = 7/8 and,
from Eq. (14), the averaged euergy given to the pulse is Gy = 0.866. The theoretical form
factor is the x = 0.882, and the theoretical asymptotic pulse width and peak intensity
are othe® = 1133 and I;heo = 0.778, respectively. By comparing this figure with Fig. 7
we can notice a resulting broader and smaller soliton output, confirming the theoretical
predictions.

In addition to the asymptotic soliton parameters we can also predict some of their
transient characteristics. According to Figs. 6-8, the spatial evolution of the peak intensity,
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FIGURE 7. Spatial traces of (a)

the energy, (b) the peak intensity, and (c) the width of a pulse

propagating through a fiber possessing the periodical gain profile of Fig. 1b, with go = 1 and
L = Zy/4. The theoretically predicted parameters are indicated by the corresponding horizontal

lines.
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for example, is made of rapid oscillations modulated by a large-scale oscillating function
which asymptotically vanish. The rapid variation are due to the periodic characteristic of
the gain profile g(Z), and they are established by Eqs. (4) and (9). On the other hand,
the large-scale oscillations represent the transient process and we can physically explain
them as follows. Assume a given Gy which satisfy 1 < /Gy < 3/2. Then a = vGp -1
is positive and the input pulse of the form Q(0,T) = sech(T) can be decomposed in two
parts. One consisting in a first-order soliton of peak amplitude x = 1 + 2a, and the other
formed by a linear component of amplitude a, [9]. This linear component will be dispersed
away and its amplitude will decrease with the propagation distance as 1/v/Z. But here,
the most important fact is that at Z = 0 the soliton and the non-soliton components
are 7 radians out of phase, producing a net amplitude 1 + a. As the pulse propagation
takes place, the soliton component develop a linear phase, as it is indicated by Eq. (9),
and it will be in phase with the non-soliton component after acquiring an extra m phase
shift. When this occurs, both components interfere in a constructive way and produce a
maximum in the pulse amplitude. From Eq. (9) the propagation distance at which this

. 1 . 5
first maximum occurs, Z = pfm)u, 1s estimated to be

(1) 2
N 15
Pmax (1 T 20)2 (15)
An additional phase shift of 7 radians int he soliton component will produce a destructive
interference pattern with the non-soliton component and, therefore, will produce a mini-
mum in the pulse amplitude. Thus, the propagation distance at which the first minimum
in the large-scale oscillation occurs is

(1) _ 47

Pesizi = A+2a7 (16)

For the specific case of Fig. 6, where a theoretical k = 1.134 was found, the first

maximum and minimum in the transient process occur, according to Egs. (15) and (16),

at pg;x ~ 4.89 and at pf]ii)" ~ 9.78, respectively. In Fig. 6 these theoretical values are

marked and we can note that they are good enough approximation to the corresponding
numerical values. Here the relatively small discrepancies result from the fact that the
non-soliton component becomes chirped when dispersed [8]. Then, the linear pulse has an
averaged phase shift that reduced the predicted 7 radians condition to meet in phase or
out of phase the soliton component.

5. CONCLUSIONS

We have found the soliton solutions for pulses propagating in a optical fiber possessing pe-
riodical gain profiles under conditions of high amplification coefficients. The characteristic
parameters of these solitons, 7.e., their amplitude and width, depends on the average of the
energy given to the pulse by the gain profile. This fact corroborates physically argumented
concepts on the stability of high-gain erbium doped fibers, and provides another example
of the robustness of the averaged soliton parameters.
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