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ABSTHACT. \Ve study the bchavior of optical pulses propagating in optical fiber:; possessing pe-
riodical gain profiles which do Ilot satisf.y the adiabatic amplification cOllditiollS. \Vc dcmollstrate
that it is possible to obtain first and higher order soliton solutions, and wc predict their final
asymptotic amplitudes all<l widths as well as some of their transient charactcristics. These pre-
dictioIls agree with resu1ts of IIllmerical simulations ami aUnw to describe the global behavior of
optical fiber devices that use pcriodical gain profiles, Sllch as high gain doped fiber amplifiers.

HESUMEN. Estudiamos el COlllportamiento seguido por pulsos luminosos que se propagan en fibras
ópticas que poseen perfiles de gallacia peíodicos que no satisfacen las condiciones de adiabaticidad.
Demostramos que es posible obtener soluciones del tipo solitón, tanto de primer comO de órdenes
más altos, de los cuales predecimos sus amplitudes y anchuras asintóticas, así como algunas de
sus características transitoria.s. Estas predicciones concuerdan COIIresultados numéricos y permiten
caracterizar de una manera general a los dispositivos de fibra óptica sujetos a procesos períodicos de
ganancia, como es el caso de los amplificadores de fibra óptica activada con impurezas rcsonautes.

rAes, 42.81.Dp; 42.G5.IJp

1. INTIlODUCTION

There are many physical aud practica! situatious where an optica! pulse is subjected to
repetiti,.e cycles of gain aud loss iu optical fiber,. \Ve can classify them iuto t\Vo main
aud broad groups according 10 the fundamental problem they dealt with. Iu the first
group \Veconsider those where the amplificatiou offset the euergy !oss caused by the ¡mise
prupagatioll through IOllg clluuglt lengtlts in <tll uptical fibcr1 alld illt.o a s(,colld group
those \vherc absorptioJl <:oll1.rolsthe optical gaill givcJI to the pulse by aH ext.ernal sourcc.

The first group is at. the ('ore of long dist.aJicc opt.ical fiber COllllllHllicatiolls1 ami it
iucludes the special (:;c'" of soliton-based systems. There, the solitous are subject to such
a periodical loss-gain cycle Bot only to rccover its original cllcrgy but aIso to mailltain its
charactnistics shape [JI. The stability of the solitous under these kind of models; that is,
its perfcct recoverillg aftcr cach cycle, has berll sl1ccessfully accomplisll('d ill laboratories
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when Raman Stokes conversion is used as the source of gain 12]. Physically, the stability of
the solitons occurs because both the absorption and the amplification process are carried
out in an adiabatic way, and the amplitude and the duration of the pulse are smoothly
adjusted through each cycle, leaving its hyperbolic secant profile basically unaffected [3).
From the mathematical point of view, the stability of the soliton through a periodical
adiabatic absorption-amplification process has also been proved [4]' and it occurs provide
the following two conditions are satisfied: i) the absorption (or amplification) coefficient
times the soliton period will be much less than unity, and ii) that the amplifiers separation
will be less than the soliton period [5].
On the other hand, we can labe! the second group as optical fiber lasers as those that

require of losses to control the pulse amplification caused by an active medium. There,
an optical fiber doped with active atoms acts as the gain source and the output mirror
represents the loss mechanism. A soliton laser, the special case in which the output pulses
are optical solitons, is of remarkable practical interest but, in order to be usefull, it needs
alBOto reach the stability criterion. Experimental works on erbium doped fiber laser gave
evidence of stability [6], and a physical argument for supporting such a stable results
was given later [7]. The key idea for obtaining a uniform soliton train at the output of
a doped-fiber soliton laser is that the average of the pulse intensity given to the pulse
within the active fiber has to be identical to that of the soliton.
In this paper we study, both analytically and numerically, the behavior of a soliton

subjected to a periodic gain profile in conditions of sudden amplification. \Ve show that,
after a transient regime, all illitial pulse should evolvc iuto a solitou. Our analysis prcdicts
that the fundamental characteristic of the resulting soliton, its order and its width, just
depend on the spatial average of the energy transferred to the pulse by the gain profile.
\Ve also show that it is possible to get physical information on the transient process. In
Sect. 2 we detail the physical model we are concemed, and in Sect. 3 we reduce, using
perturbation theory, the equation of motion to an exact NLSE. The asymptotic soliton
solutions are given and the influenee of a specific gain profile is discussed. In Sect 4 we will
test the predicted soliton parameter with the results of numerically solving the original
equation of motion. Finally, Sect. 5 contains the conclusions of our study.

2. TIlE t'IlYSICAL MODEL

\Ve eonsider an optical pulse propagating in the anomalous dispersion region of an optical
liber consisting of M segments of length L. In eaeh segment a given gain profile 9(Z),
containing both amplifieation and absorption, acts on the pulse. Figure l shows the two
speeific gain profiles which we will considered through this paper. In (a) a simple step-
like distribution, representing constant amplification followed by constant absorption, is
presented. In (b), an hannonic distribution is assumed. The first one becomes of practical
illtcrcst in the limit La ----t L, whcrc it can describe the conditions found in rarc-carth
doped fiber lasers. In sueh a limiting case, the resulting abrupt loss should represent the
output laser mirror. On the other hand, the gain profile of Fig. lb becomes of fundamen-
tal importance for describing the general case of an arbitrary spatial gain profile which
is expanded in fourier series. Let us assume that the adequate physical conditions are
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FIGUHE 1. Periodical gain profilcs considered through the papee. In (a) a step-likc profile with
constant amplification and ausorption regiolls and in (b) a sinusoidal gain profile.

satisfiec.l [8J to make unnecessary the further consideration of high-orc.ler effects. Then, the
e~olution of the cOlnplex pulse em'clope q(Z, T) is accurate1y descrihed by

D 2.q1aq 2.1
1DZ = 2 DT2 + 1'11 '1+ ''iy(Z)q, (1)

where Z = z/ Ld and T = (t - z/Yg)/Io are the nonnaJized propagation distance amI local
time, respective1y. Ld = 16/11321 is the dispersion length, lo the initial pulse c.luration, Yg
the group ve10city and 132the group velocity dispersion at the wavelength >-.

\Ve do not consider any physical or mathelllatical restriction on the shape of g(Z),
other that heing periodic with period L. llowever, Eq. (1) illlplies an exponential grow
for the pulse energy, I\'(z) = J 1'112 dT, given by

II'(Z) = 11'0exp [1' g(8) d8] , (2)

where 11'0 is the initial pulse energy. Therefore, in onler be ahle to achieve soliton propa-
galioo we re<¡uire II'(L) = \\'0 as a stationary condition for the pulse en('rgy. Frolll Eq. (2),
sllch a cOllditioll imposes the add.itional restrictioll

rL g(s)ds = O
./0

(3)
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to the gain profile 9(Z). For the step-like gain profile (Fig. la) Eq. (3) means that lhe am-
plification and absorption coefficients are related by 90La = ,(L - L,,). For the sinnsoidal
gain profile of Fig. lb Eq. (3) is anlomatical1y salisfied regardless its gain amplitude !JO
or its period L.

In addition, \Ve are not restrieted to adiabatie amplification or absorption process.
\Vhich requires l!Jol « I in Eq. (l). Indeed, \Veare namely interested in cases of high gain
at sllOrt propagation distallcCs ,,,'it.h respect lo t}¡c dispcrsioll length Ld, becausc its direct
applications to doped optical fiber lasers. Under conditions of high gain, l!Jol > 1, the
parameters of aH illitial pulsr are cOllsiderably affected during 011('propagatioll periodo 111
Fig. 2a \Vesho\V the temporal evolntion of an initial pnlse of the form '1(0, T) = sech T as
it propagates throngh a fil",r of length L = rr/2 (= =0, the sOlitOlI period), \Vhirh poss<'s
the harmonie gain profil,' of Fig. lb wilh íl = 2rr/L =.1 and 90 = 2. In order lo qnantify
the pnlse evolution \Ve plol in Fig. 2b lhe spatial beha,'ior of (a) lhe pnlse energy II'(Z).
of (b) the pulse peak intensity Ip(Z) and of (e) lhe normalized pnlse width (FWH~l)
a(Z).

As it call be s('ell, liJc pulse alllplitlldc illCrt'<ls(,s fash'r thall tll(~pulse width redllces. a
typical ochaviol" of a suddell Hlllplificatioll PI'O('l'SS.110\\'(""(,1'.Ilotice tIJat tIJe pulse rll(~rgy
rearhes its initial valne at Ihe end of the period aecording lO Eq. (3). It is e!ear that
thc pulse al Z = 7'[/2 does lIot reproduce the illit.ial pulse alld a questioll arises whet.lH'1'
subsequcllt propagatioll through similar segmt'llts offiber willlcad to a stationary solutioll.

Recenl llllmerical work 011 high-gaill crbiulll-doped filwr lasrl's [71 has re\'caled that
statiollary single pulse sollltioll shollld exist fol' thc pcriodic gaiu profile dist.rihl1tiOIl of
Fig. la laking iu the ¡imit La ~ L. Surh a solutiou is possible if the followiug t\Vo
conditions are satisfied: i) 1hat L « Lo aud ii) that the ",'erage (peak) pO\H'r of the
pulse within olle period rquals the fUlIdameBtal solitoll po\\"cr. In tlle ncxt sectioll we
allalytically dClllonstrate that, after a tl'ansieut. n'gime, solitoll soll1t.iollS to Ec¡. (1) illd('('d
cxist. As \Ve can ~ec later. thesl' theol"l'tical solit.Oll SOIIlt.iolls rcquin' a gellcralizatioll of
the physical rouditions (i) aud (ii) giveu above.

3. SOt.tTON SOLUTIO:"S

From Fig. 2 it can be iuferred thal stationary solutions to Eq. (1), if 1hey exist, will app('ar
after au illitial trallsiellt alld oscillat.ory hchavior. Let. 1151l0W look for slIch an asymptotir
slatiouary soluliou. \Ve slar! by ddiuiug a ue\V pulse enH'lope ,'ariable Q(Z, T) lhrough

whieh trausform Eq. (1) to

.ü(¿ 1 Ü'C¿ [ rZ ].
1 iJZ = 2" iJT2 + exp ./0 y(s) ds IQI2 Q.

(4 )

(5)
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FIGUHE 2. Propagalion of aH illilial 6.1'starder solitoIl through the first period oC tite gain profilc
of Fig. 1b, with go = 2 aud L = 7f /2 = 20. Iu (a) we show the temporal pulse evolution aud
iu (b) the spatial evolutiou (Jf the pulse euergy, 11'(2), the pulse peak inteusity, Ip(2) aud the
pulse width, <7(2).

Then, we denole by

6(z) = exp [lZ 9(S)dS] - Go, (6)

where Go is lhe ,palial average of lhe energy lransferred lo lhe pulse by lhe gain profile
g( Z), amI il is given by

L [Z ]Go = *1 exp 1 g(s)ds dZ. (7)

Using Eq. (6), we can rewrite Eq. (5) as

i~i= ~~~ + Go IQI2 Q + 6(Z) IQI2 Q. (8)
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Let us now assume that for small enough L eompared to the dispersion length Ld the
Jast term in the nHS of Eq. (8) can be treated as a pertmbation lo lhe otherwise exaet
NLSE. Quantitatively speaking, this oeeurs if 1901L « 2", which can be interpreted as a
generaJization of the eondition L « Ld given in neL 17J. \Vithout the pertmbative tenn,
Eq. (8) becames the NLSE and hence it aeeepts the soliton soJution [DI

(D)

where N, the order of the soliton, is an integer satisfying veo = N + a wilh lal < 1/2,
ami" = 1 + (2a/N) is the soliton fonn faelor. Ou the other hand, the inf1uenee of the
perturbative term in Eq. (8) eau be estimated using perturbatiou theory [lO). There. ó,
lIJe correction lo the phas(' of t.}¡e soliton SOllllioll, is giYCll hy

/1> 100
-' = ,eeh("T) [1 - (,,1') tauh(¡;T)] Im(bQ) dI'.
dZ -00

where, for the speeifie eo.se of Eq. (8), bQ can be approximated as

bQ'" -i6(Z) IQ(O, 1')12 Q(O, 1') dZ.

Substituting bQ into Eq. (10) and performing the resulting integral we obtain

d" _ \,:l .2C- (Z)
- - -1 '" J .••dZ

( 10)

(11 )

(12)

However, fol. 6(z) dZ = o, as eau be notieed frolll Eq. (ti), aud henee the net phase
chauges ou Q(Z, T) caused by tl1(' perturbation lerm in one period become null and the
lowest order solution given in Eq. (D) beeomes the g('lleral solution to our problem.

[3ccause of its gl'cat illlportallCl', we (,O]H'clltrat.e oul' at.t.PIlt.ioll OH t.he fundalllellt.al
first-order (N = 1) soJitou of Eq. (U). which oeems for 1/2 < veo < 3/2. (f = veo _ 1
alld 1\ = 1 + 2a.. For these cases. tIJe l'(,slIitillg first arder solitOll \,..i!l (lIso cOllt.aill a
linear or non-soJiton eompollent whieh will be eventually lost of t he pulse by the liber
dispersive effeet. As we will see latero sueh a proeess is r('sponsible of t he expeel ('d Iransient
effeets. l\e\'ertheless, Ihe th('ore!ieal re,ult of Eq. (U) eonfirms the physieally argumellted
cOllditioll givell in Bef. 17] fol' the l'xistellce ()f solit.oll solutioll!';, uut 'liso gCJlcralizcs sllcll
a condition bccausc it cstablisht,s that tlH' asYlllptotic solitoll solut.ion \\'ill Bot llave,
in general, the same width than the initial pulse. 111 faet, the width of the '"ymplotie
soliton 1/" depends on Co and in order to g('t some insight on how Co is atfeded by the
parameter, of the gain pro!iles. Jet us compute Co for the speeifie gain pro!iles depieted
in Fig. l.

For the gain profile of Fig. la we have

¡Z !f(") d" = {!fOZ [ Z _ La]
O YOLa 1 - ---

L - Lu

ifO::; Z::; La.

if La < Z ::; L,
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FIGURE 3. I3ehavior of /Ca for the gaiu profile of Fig. la. The three curves corres pouds to the
amplification lcngths illdicated in the figure in soliton units. According lo Eq. (1), a soliton perioo
Zo corrcsponds lo a distallcC Z = 1r/2.

and from Ec¡. (7) Go is given by

Go = ¡LO exp[yoZ] dZ + exp[yoLa]l~ exp [

1
= -L (exp[yoLa]- 1).

Yo a

(yoLa)(Z - La)] dZ
(L - La)

(13)

Figure 3 shows the behavior of .jGQ as the amplifieation amplitude YO es varied for three
different amplification lengths Ln. As it eall be seell, the graphs of .jGQ basically follow
an exponcntial profilc1 \vith a gl'OWillg rate deCl'casing as tlle alnplificatioll Icugtll LIl

deCl'eases. Therefore, large amplification amplitudes can produce final first-order soliton,
only if small amplification lengths are used. I\'ote that negative values of Yo, which make
.jGQ < 1, can also produce first-order solitons provide .jGQ 2': 1/2. For these cases, the
amplifieation-absorption process is reversed to absorption-amplifieation, and the asymp-
totie soliton width becomes greater than unity.

On the other hand, for the harmonie gain profile of Fig. lb we have

z

lo Yo I ' ]!I(") lis = íl 1 - cos(ílZ) .
. o

Substitution of this expression in Ec¡. (7), followed by a power series expansion of the
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FIGURE4. nehavior of ,fGQ for the sinusoidal gain profile of Fig. 1b. The three curves correspolld
to the period lengths indicated in the figure in soliton units.

resulting exponen tia! funetion, leads to

C _ exp(90/rl) 12
• ( ~ (_1)" (90)". " ) d

0- rlL 1+ L.. --,- r;- eos y y,
O n. H

0=1

[

00 1 (90)2"]
= exp(90/rl) 1 + ~ (11,)2 2rl .

For a small 90/rl,whieh agrees with the assumed condition 90L « 2rr, we can truneate
the series after the second power tenn, and use.

as a good approximation to Co. Figure 4 shows the behavior of ,¡co as the amplitnde 90
is varied for three different periods L.
There are no qualitative differences with Fig. 3, as expeeted by virtue of the physical

meaning of Co. Note that Fig. 4 also iudicates that if the amplifieation and absorption
regions of the harmonic gain profile are interchanged; that is, if 90 becomes negative, a
first-order soliton, broader than the initia! pulse, should also be obtained.
It is necessary to remark that the asymptotie soliton solution of Eg. (1) is formed by

substitutiou of Eq. (9) iuto Eq. (4). Therefore even when transieut effects are vanished, the
soliton amplitude will develop an oseillating behavior during the amplifieation-absorption
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FIGUHE 5. Temporal lJehavior of all iuitial first ordcr ~olitoll as it propagate~ throllgh él fiber
posscssing the pcriodical gain profilc oC Fig. lb with 90 = 1 atld L = Zo/2. The total propagatioIl
distance is 32L, aud each curve is takcII al the distance interval of 2L.

process, but at the eud of eaeh period L it will reeover ils predieted value N". :\'ote
also that ouee the profile of the aSYluptolie solitou is reaehed, its width 1/" will remain
lIuehanged although this oseillatiou on its amplitude.

4. I\'UMEIUCAL SI~lULATIO"S

In arder lo verify tile t.heoretical predictiollS of thc preccdcllt sectioll \Ve \vill 11m\"procced
to uumerieally soh'e Eq. (1) with the siuusoidal gaiu profile of Fig. lb aud with ,,(O, T) =
5eeh T as the initial pulse. \Ve used the staudard split-step Fourier numeriealmethod [8J
with a uniform tr'mporal grid of 102,1 points alJ(l, in order to aceurately follow the pulse
parameters as it teuds to its stationary soliton profile giveu by Eq. (9) with N = 1, we
used a spatial grid of up to 2000 poiuts. At eaeh propagation step we eomputed the pulse
peak intensity I,,(Z), the relative pulse width a(Z), aud the pulse euergy lV(Z). These
pammeters will be cOlllpared with those predieted by Eq. (9) for the speeific values lIsed
for the amplitude and the period of the gain profile.

Figure 5 shows the pwpagatiou of the ¡nitial pulse through a distauce equivalent to
Z = 32 L. Here the parameters of the gaiu profile are !lo = 1 aud L = 71' /4 (= Zo/2). Eaeh
curve 011 the graph is takcll al the eud of olle gain profilc pcriod, and thcrc is a scparatioIl
of Z = 2L betwccn cach one. As it can be seell, the presence of a transicllt alld decaying
initial process is evident but a statiollarity on the pulse is BOt obvious. fvlore <¡ualltitative
al1d eontundent argumel1ts in favor of statiol1arity is showl1 in Fig. 6, where we plot
the spatial evolutiou of the pulse el1ergy IV, of the pulse peak il1teusity 1,,, al1d of the
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FIGUHE 6. Spatial traces oC (a) lhe pulse euergy, (h) lhe pulse peak iuleusity aud (e) the pulse
width roe the numerical simulatioll depictcu in Fig. 5. The prcdicted values Coc lhe asymptotic
soliton parameters are illdicated by the corrcsponding horizontal liues.

uormalized pulse width a eorrespouding to the mlmerical simulation of Fig. 5. For the gain
parameters used in the simulatiou, Eq. (14) gives Ca = 1.138, and heuee a = 0.0668 aud
the form factor of the predicted asymptotie soIitou becomes " = 1.134. From Eq. (9) this
means that the soliton wiII posses au iuteusity peak of I~"eo = ,,2 = 1.286 aud a duratiou
of at"eo = 1/" = 0.882. These theoretieal values are also graphed in Fig. 6. There is au
exeelIeut coucordance with the values at which the numerical results tend. The average
over the pulse euergy also agrees with the theoretical value of (W(Z)) = \VaCo = 2.28.
The period L defines the duratiou oC the trausient, as expected frol11the approximation

assumption. Iu Fig. 7 we reduce the period of the gain profiIe to 'Ir/8 (= Zo/4) but keepiug
its amplitud e the same, 90 = 1. For these parameters the predicted values are Ca = 1.066,
a = 0.0325, and " = 1.065, and therefore the followiug asymptotie solito n parameters are
expeeted: I,;heo = 1.132, atheo = 0.94 and (\V(Z)) = 2.132. As it cau be seeu byeompariug
Figs. 6 and 7, a reductiou in L resnlts in a smoothing and recluct.ion of the cluratiou of
the trausieut etrects.

Figure 8 shows auother example of ph)'sical iuterest, in which the amplifieatiou-ab-
sorptiou regions of the gain profile have beeu iuverted. There, 90 = -2, L = 'Ir/8 ami,
from Eq. (14), t.he averagecl euerg)' given to the pulse is Ca = 0.866. The theoretical form
factor is the " = 0.882, aud the theoretical asymptotie pulse width aud peak iutensit)'
are at"eo = 1.133 aud I~"eo = 0.778, respect.ivel)'. 13)' comparing this figme with Fig. 7
we can noticc a rcsulting broadcr alld smallcr solitoll output, coufinlling t.he theorctical
prcdictions.

lu additiou to the as)'mptotic solitou parameters we cau aiso predict. some of their
t.rausieut eharacteristies. Aecording t.o Figs. 6-8, t.he spat.ial evolutiou of the peak intensity,
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FIGURE 7. Spatial traces of (a) the energy. (b) the peak intensity, and (e) the width of a pulse
propagating through a fiber possessing the periodieal gain profile of Fig. lb. with 90 = 1 aud
L = 20/4. The theoretieally predieted parameters are indiea!ed by the eorresponding horizontal
Iines.
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FIGURE 8. Spatial traces of (a) the encrgy. (h) the peak intensity, an" (e) the width of a pulse
propagating through a fibcr possessing the periodical gaio peafile of Fig. lb, w¡th 90 = -2 and
L = 20/4. The theoretically predicted parameters are iudicated by the eorrespondiog horizontal
lines.
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for example, is made of rapid oscillations modulated by a large-scale oscillating fundion
which asymptotically vanish. The rapid variation are due to the periodic characteristic of
the gain profile g(2), and they are established by Eqs. (4) and (9). On the other hand,
the large-scale oscillations represent the transient process and we can physically explain
them as follows. Assume a given Go which satisfy 1 < veo < 3/2. Then a = veo - 1
is positive and the input pulse of the form Q(O, T) = sech(T) can be decomposed in two
parts. One consisting in a first-arder soliton of peak amplitude " = 1+ 2a, and the other
formed by a linear component of amplitude (L, [91. This linear component will be dispersed
away and its amplitude will decrease with the propagation distance as 1/VZ. But he're,
the most important fact is that at 2 = O the soliton and the non-solito n components
are" radians out of phase, producing a net amplitude 1 + a. As the pulse propagation
takes place, the soliton component develop a linear phase, as it is indicated by Eq. (9),
and it will he in phase with the non-soliton component after acquiring an extra" phase
shift. \VhCIl this OCCUfS, both compOllents illtcrfere in a cOllslructivc way alld produce a
maximum in the pulse amplitude. From Eq. (9) the propagation distance at which this
first maximuIIl occurs, Z = (Al~~X'is cstimated lo be

(1) 2"
Pmax = (1 + 2a)2' (15 )

An additional phase shift of" radiallS int he soliton component will produce a destructive
interference pattern with the non-soliton component and, therefore, will produce a mini-
mum in the pulse amplitude. Thus, the propagation distance at which t.he first minimum
in the large-scale oscillation occurs is

(1)
PlIlin = 4"

(1+2a)2' ( 16)

For the specific case of Fig. 6, where a theoretical " = 1.134 was fonnd, the first
maximum and minimum in the transient process OCCllr,accarding to Eqs. (15) and (16),
at p~L"" 4.S9 and at P~,:!n "" 9.7S, respectively. In Fig. 6 these theoretical values are
marked and we can note that they are good enough approximation to the corresponding
numerical values. !Iere the relatively small discrepancies result from the fact that the
non-soliton component becomes chirped when dispersed [SI. Then, the linear pulse has an
avcraged phase shift that reduced tite prcdictcd 7r radialls COllditioll lo meet in phasc al'
out of phiL,e the soliton component.

5. CONCLUSIONS

\Ve have found the soliton ,olutions for pulses propagating in a optical fiber possessing pe-
riodical gain profiles under conditions of high amplification coe!ficients. The characteristic
parameters of these solitons, i. e., their amplit.ude and width, depends on the average of the
energy given to the pulse by t.he gain profile. This fact corrolJOrates physically argulllellted
concepts on the stability of high-gain erbium doped fibers, and provides another example
of the robustness of the averaged soliton parameters.
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