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Rotation matrices and spherical harmonics
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ABSTRACT. Making use of the action of the rotation group SO(3) on the sphere, the Wigner
D-functions are expressed in terms of the spherical harmonics and of the spin-weighted spherical
harmonics.

RESUMEN. Usando la accién del grupo de rotaciones SO(3) sobre la esfera, las funciones D de
Wigner se expresan en términos de los armoénicos esféricos v de los arménicos esféricos con peso
de espin.

PACS: 02.20.Qs; 02.30.Gp

1. INTRODUCTION

As is well known, the ordinary spherical harmouics of order L ¥ (e =041, ... , £I),
form a basis for a unitary irveducible representation of the rotation group SO(3). The cor-
responding matrix elements —known as generalized spherical functions, Wigner functions
or D-functions- - can be calculated making use of the homomorphisin of SU(2) outo SO(3)
(see; e.g., Refs. [1,2]).

L this paper we find an expression for the generalized spherical functions making use
of the action of SO(3) on the sphere. The procedure followed here is applicable to find
representations of other Lie groups and in Ref. [3] it has been employed in the case of the
group of rigid motious on the plane. In Sect. 2 we show that if SO(3) is parametrized by
Euler angles, the generalized spherical functions can be written in terms of the spherical
harmonics. In Sect. 3, we show that the generalized spherical functions are also related to
the spin-weighted spherical harmonics [4-G); this relationship was previously established
in Ref. [2] by comparing the explicit expressions of both functions.

2. THE ROTATION MATRICES

The ordinary spherical harmouics. Y),,. are functions defined on the sphere that form
bases for representations of SO(3). Indeed, taking into account the fact that the cartesian
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components of the angular momentum operator, L = —ir x V, are infinitesimal generators
of rotations about the coordinate axes, the relations

LB) 'Im

LY, = \ﬁ(! + 1= milm % 1] Y srs (1)

= m ).Vlﬂl‘.

where Ly = L, £ 1Ly, signify that under any rotation, the function Y7, transforms into a
linear combination of spherical harmonics of the same order .
Alternatively, using that Yy, 18 an eigenfunction of L? with eigenvalue [([ +1):

E2Yi, = 10 +-1) Yo (:

o
e

and that the operator L* is invariant under rotations (which can be deduced from the
fact that L2 comunutes with the compouents of L) it follows that if B € 50(3) and R Ypx
denotes the result of rotating the function Y, by means of R,

(R Yim](¥) = Yim(I ™ (r)), (3)

then Y, is also an eigenfunction of L? with eigenvalue [(1 + 1); hence,
L 5 g

It Yo,

{
Z Dfn'm(R) Yf”'" (1)
m'==l1

where U‘:“fm(!f) are complex munbers that depend on 1. For a fixed 1, the matrices of
order 21 4 1 with elements D, (R) (m'ym = 0,41,...,%l) form a representation of

ﬂlt"”i
SO(3) in the sense that

D'y (RiR:) = 3 Diy(R1) Dy (Ra), (5)
r=-l1
which follows from Eqs. (3-4). The functions Df”,m . SO(3) — C are called generalized
spherical functions, Wigner functions or D-functions.
The expression
)= [ [ F@ g0.0)sim0d0ds, (6)
Jo Jo

where €, ¢ are the usual spherical coordinates and the bar denotes complex conjugation,
defines an iuner product for the complex-valued functions defined ou the sphere. The
ivariance of the solid angle element sin @ d@ dg under rotations implies that

(1ef, Ry) = (f,9)- (7)
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Then, the orthonormality of the spherical harmonics, (Yo, Y ) = 8506y, and Eqs. (4)

and (7) imply that the representation (D!, ) is unitary:

) -1 o
Dm’m(R ) = Df—nm'(R)' (b)
and using Eqs. (4-5) and (8) one finds that
! e [ o
Z [I? )';'m](SLQI) [I?)Em](gl‘wQZ) - Z Yim(els ¢1)}/JJH(9?! 02)1 (9)
m=—1 m=-—I

for any It € SO(3).

The rotation group will be parametrized by Euler angles in the following mauner. Given
a systemn of cartesian coordinates in R®, we shall denote by R(a, 3,7) the rotation obtained
by composing a rotation about the z axis through an angle «a, followed by a rotation
through an angle 5 about the resulting y axis, and finally by a rotation about the new 2"
axis through an angle 5. Thus, with respect to a fixed system of coordinates, under the
rotation R(a, 3,7v), a point of the sphere with coordinates (0, ¢) is mapped into a point
with coordinates (¢, ¢') given by

g = arccos[cos 3 cos 0 — sin Fsin cos(¢ + 7)),

sinf#sin(¢ + +)
cos 3siné cos(¢ + ) + sin Fcos |’

¢ = a+ arctan { (10)

therefore, using the fact that [R(a,3,7)]7! = R(—~, -3, —a) and Eq. (3), for a function
f defined on the sphere

[R(a, B,7)f)(0,0) = f (arrms{cos Beos ) + sin Bsin 0 cos(¢ — ),

sinfsin(¢ — a) )
— 7 + arcte e - . 11
i R [('()S Bsinf cos(¢p — a) — sin 3 cos 9} (11)
Since V,,,,(0, ¢) = [(21 + 1)/45]”20,,,9. Eq. (9) applied to R = R(¢,, 0, v) vields

; gy T8 Ly e

[1?((DISHI~HJ")}fU](()Bl(r'{“'.‘) = l:f)]+ IJ Z }/.!111(011{f)1)}}lrr({)‘..’nfp'z)- (12)
- m=—1
By comparing Eq. (12) with Eq. (4) one finds that
4 M

! Y — .
DHI'U(“-J- J’) a [-)[ + IJ )lm"{ﬁj'“)~ (13)
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where, as in what follows, Dfn,m(a-.ﬁ,'y} = Dfn,m(R(n,ﬁ,'y)). Taking into account that

Yio(0.6) = [(21 + 1)/47)Y/2 P(cos ), from Egs. (11-12) one obtains the addition theorem
of spherical harmonics

{
Z )/’lm(glaél) )Ylm(ah (892): (11)

m=-—l

47

Picos0) = ST

where cos © = cos 0, cos 8, + sinf sinfy cos(pz2 — ¢1).
Using Eq. (11) and the chain rule one finds that the angular momentum operators

Ly = e (£dp +icot88y), Lz= —idy, (15)
satisfy the identities
0, [R(e, B, = Rla, B.7)(=idef).
—eFV (24 + i ese 3dy — icot BY,)[Ra, B.9)f] = R(a. 3, v)[eE(£dy + i cot 8 Dp) f],
(16)

which relate the action of SO(3) on itself with its action on the sphere Awmong other
things, these equations imply that the operators

My = —eF(£05 +icsc 39, —icot f0,), Mz =id,, (17)
satisty the same commytation relations as Ly and L, namely,
(M3, My] =My, [My,M_|=2Ms, (18)
as can also be verified by a direct computation using the explicit expressions LT,

By applying M3 and My to both sides of Eq. (4), making use of Eqs. (1), (4) and (16),
one obtaius

‘J‘I;.’»Din'm =m 1)£|n'm'- (19)
MyDL, = I+ 1) = m(m 1) Dl sy (20)

(¢f. Eqgs. (23) of Ref. [3]). Equation (20) implies that

) (L —n)! 12 .
D:‘u’m - {m (JI]—{—) D{n'[]' m > 0.

therefore, using Eqgs. (13) and (17),

a7 (1 —m)nH*
A ey EP __ﬂ. B ru)/,”’ 6’, : () 21
204+ 11+ m)!] (=M_)"Yiw (8, @) m > (21)

Tre et

DL, (a,B,y) = [
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For a function f that does not depend on v, from Eq. (17) we see that
(~M_)*f = e7(—83+icsc B0a — icot 3,)e (=5 +icsc BDa)f
= ¢"[e"(~dp +icsc 30a)(~p +icsc Ba)f + €7 cot B(—Ds + i esc 5a)f]
= ezi7’[(—85 +1csc B0y + cot B)(—0 +icsc 5 8,)f]

= egh[sin B(—03 + icsc 5 0,) .1 (—dg+icse fdy)f]
sin 3
20 2 1 : L ; :
SETHR A ~ sin *’3(0"'j B siu@aﬁ)] /

and, in a similar manner,

1 1
% P
Sinﬁ( i sin 3

(—M_)"f =™ gin™ 3 [— 30)] E

thus, since Y,/ (8, a) does not depend on v, using Eq. (21) we can write, for m > 0,

DL, (a, B, ) = { 4w ("‘ — 7”‘) ] v uny m g [_ 1 i i ) ):| " Y (Da )
i S 2041 (1 +m)! i sinﬁ( B sing ° it Letacis
(22)

Similarly, from Eqgs. (13), (17) and (20) it follows that, for m < 0,

/2
i . ( i 7”)‘:' 1 m nyl
P L 3y) = M
Dm m(Q,,j, f) {([—T?T)' ( L. ) Dm
dr (I +m Lz E
= [ ol + 1 ([ — ?n; ] (_AIJr)_m)i-m’(aaﬁ)
ar (I+m)NY? ) 1 1 N ;
— IR 0 RN L DR ot uny —m z z 7 i i
N+1(1— m)!J s B | g9t )| Yiw(Ba)

(23)

Equations (22-23), together with the relation Y, = (=1)"Y; _,,, imply that the D-
functions satisfy the relation

Dt = ( 1)7?1+m D{—m’ ,—m? (24)

m'm

and using the fact that Yjo(8, a) = [(20+1)/47])/2 P(cos 3) does not depend on a, Egs. (22-
23) give

l y qr (M2
Dhuler i) = (-1 |7 | Tl (25)
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Since [R(a, 3,7)]7! = R(-v, -8, —a), Eq. (8) amounts to

‘D:'u'm.(w’}(’_f@! —Q‘) = Dl (O‘, ﬁ’ ‘}') (26)

mm/

Thus, taking the complex conjugate of Eqgs. (19-20) and replacing (a, 3,7) by (=7, =5,
—a) one gets

I{ititn'm = ?n"Din"m!
I\’ipfn’m = \/l(l -+ l) - 'm“’('rn’ + 1) Dfrt’:}:l.m’ (27)
where (¢f. Eqs. (17)) g
Ki=eT (285 +icsc B0y —icot fds), K3 =ila. (28)

Since I+ and K3 are obtained by taking the complex conjugate of M4 and My, substi-
tuting (o, 3,7) by (=7, 3. —a), the operators Iy and K7 also obey the commutation
relations (18),

[K3, K1) = xRy, [Ky, K_|=2Kj;. (29)
Furthermore, one finds that
[M;, K] =0, ij5=12,3, (30)
where
My = My xiMy, Ki=K,Fil,. (31)
From Egs. (19-20) and (27) it follows that
MDL, = K®D'.. =1+ 1)D (32)

where M? = M? + MZ2+ M? = MM, + M;? + My and K?= KX+ K2+ K =
K_K, + K + K3. In fact,

| P 1 2 o2

ds(sin 3 9p) + — 23(8(. —2c0s 0.0y +9,) ¢ - (33)

sin / sin

M2~K2=w{

The operators M, and I, also arise in the study of the symmetric top in quantum ine-
chanics; except for a constant factor, they correspond to the components of the angular
momentum of a rigid body with respect to the body axes and to the space axes, respec-
tively (see, e.g., Ref. [7]; note, however, that Eqs. (28) and (33) differ from Eqs. (44.28-29)
of Ref. [7] and our expressions (17) and (28) are not equivalent to Egs. (3.18) and (3.16)
of Ref. [2], despite the fact that in all cases the rotations are parametrized in the same
form.)
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3. RELATIONSHIP WITH THE SPIN-WEIGHTED SPHERICAL HARMONICS

The spin-weighted spherical harmonics [4-6], sYim, can be defined by

[([ _‘_"_ b)IJ v sin® @ [— (83 + ;:Bd,)r Yi (9 (;5) 5.2 10
Yim(6, ) = I+ s)! sin @ sin ¢ m\V, @), = U, .

(I+sM¥? 1 T

[(f — -ﬁ)-'J e [m{d" a siu(?d‘:')} Yin(0,0), s <0,

(the factor [(I — |s|)!/(I + Is|)!]/2 is a normalization factor such that (Y., Yim) =
Our Syt ). The spin-weighted spherical harmonics are very useful in the solution of non-
scalar partial differential equations (see, e.g., Refs. 2,8 10]). Comparison of Eqs. (22-23)
with Eq. (34) yields

47
20+1

1/2 .
Dfnrnl((l‘,,’j, A,’) = (_I)m [ J etTFIT—Tra}}ér?z.'(ﬁa CE) (35)

or, equivalently, owing to Eq. (26)

4
2041

1/2
'Dfmnf{ﬁﬂy: —rfja ‘“’) = (_1)11; [ } me—m)’lm'(ﬁa 0-) (36)

A relationship equivalent to Eq. (36) was obtained in Ref. [2] by comparing the explicit
expressions of the D-functions and of the spin-weighted spherical harmonics.

Equation (35) enables us to derive some properties of the spin-weighted spherical har-
monics. (Cf. also Ref. [2]. Note, however, that Eqs. (2.7a), (3.10) and (3.18-20) of Ref. 2]
are not consistent.) For example, substituting Eq. (35) into the complex conjugates of
Egs. (27), using the fact that Ky = —N'; and making some obvious changes of indices,
we get

*idu .sYi'm (ij, ﬂ) =1m .sYi’m (rds Q'):

(:h“(:i:f)J ticot B0y — —— ) Yin(8,a) = \/I(f +1) —=m(m 1) Y ,041(8,a)

sin 3
(37)
(¢f. Eqgs. (1)). (The operators appearing in Eqs. (37) are given in Ref. [11] and, as shown

m Refs. [9,10], these operators correspond to total angular momentun. )
In a similar manner, one finds that Eqs. (19-20) are equivalent to

= (O % 2205 F v ot B).Yiu(B,0) = 2\l +1) = s(s £ 1) 44 Yin(Bra).  (38)

sin

(The operators acting on ,Y,, in the left-hand side of Eq. (38) are denoted as & and & in
Refs. [2,4,6].)
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Finally, substituting Eq. (35) into Eq. (4) one obtains the formula

12 L0
Z —m}fhn'(911¢1)Y:!nl'(gzv‘;‘é?% (‘39)

m'==I

4m

}fhn(eaq)) = (—l)nt 2! +1

where cos © = cos 0 cos fy + sin ) sin By cos(¢ga — @), tan @ = (sin Oz sin(@s — ¢1))/(cos )
sin @y cos(@s — @) — sinfy cos ), which is analogous to Neumann’s addition theorem for
Bessel functions and reduces to Eq. (14) when m = 0.

4. CONCLUDING REMARKS

The relations (16), based on the action of SO(3) on the sphere, together with the choice of
the ordinary spherical harmonics as bases for representations of SO(3), lead to the basic
formulae (19-20), which allow us to obtain expressions (22-23) for the rotation matrices.
A similar procedure can be used to find representations of the isometry groups of other
manifolds and to derive addition theorems analogous to Eq. (14) (see. e.g., Refs. [3.12]).
(Note that SO(3) is the group of the orientation-preserviug isometries of the sphere and
that the spherical harmonics are the regular eigenfunctions of —L*, which is the Laplace
operator on the sphere.) It may be noticed that the validity of Egs. (27) follows from that
of Egs. (19-20) owing to the simple relation hetween the Euler angles of R and those
of It.
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