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ABSTRACT.The present article reviews a quantum-statistical approach to dynamic problems in
salid mechanics, when rnacroscopic defects, nucleation and propagation are not decisive in the
irreversible deformation and fracture of a solid. The basic principies to construct quantum and
quantum-statistical models of an irreversible deformed or fractured solid are discussed. A general
quantum-statistical model of irreversible deformations and fracture of a solid under dynamic
(shocking) loading is considered. The connection between the quantum-statistical approach and
fractal solid mechanics is discussed. 1t is shown that the quantum-statistical approach is useful
for an adequate description of various behavior patterns alld fracture phenomena in irreversible
deforrned salid under dynarnic loading. Sorne future research trends in this area are suggested aS
well as potential applications in basic and applied research.

RESUMEN. En el presente artículo se revisa un enfoque estadístico cuántico de problemas
dinámicos en mecánica de sólidos, para el caso cuando la nucleación de defectos macroscópicos
y su propagación no son relevantes en la fractura y la deformación irreversible de un sólido. Se
discuten los principios básicos que permiten construir modelos cuánticos y estadístico-cuánticos de
la fractura de sólidos, y sólidos deformados de manera irreversible. Se considera un modelo general
cuántico-estadístico de la deformación irreversible y la fractura de un sólido bajo condiciones de
carga dinámica (impacto). Se discute la conexión que existe entre el enfoque cuántico-estadístico y
la mecánica fractal de sólidos. Se muestra que el enfoque cuántico-estadístico es útil para describir
adecuadamente varios tipos de deformación y fenómenos de fractura de sólidos deformados de ma-
nera irreversible bajo condiciones de cargas dinámicas. En esta área se sugieren algunas tendencias
de investigación a futuro, así como aplicaciones potenciales en investigación básica y aplicada.

PACS: 05.30; 05.70: 62.20

l. INTnODUCTION

The relationship between the structural parameters of a material and its dynamic strength
is displayed largely under conditions when (in contrast to the quasi-static loading) the
inf!uence of defect nucleation and propagation is not decisive in the deformation and
fracture of solids [1,21. In particular, such conditions are created by high velocity impact,
or shock loading, when the rate of loading is higher than that of defect propagation [2-6].
Irreversible dynamic deformations and fracture of solids under such loading belong to
the class of processes in which a complex oehavior at the microscopic level is behind the
lllacroscopic e!fects [1,2,4). The staoility of real structures that opera te under cOlllplex
conditions, therefore, can be prcdicted rcliably only with a clear understanding of the
nature and kinetics of the quantulll processes in a dcformed solid [7-91. The nature of
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the relations between processes of different scales constitute the central problem in solid
mechanics [1,10-12].
As noted in ReL [13], at present, a theory of deformed solid similar to quantum physics

or chemistry is urgently required. Such a theory would make it possible to calculate the
physicomechanical properties of materials using only their fundamental physical parame-
ters and to answer briefly the following questions: What is the nature of a given crystal:
brittle, plastic, or superplastic? What is the rnechanism of irreversible deformation and
propagation of microcracks in a given crystal under the monotonic loading and unloading,
under the dynamic loading, under the cyclic loading, under the stationary loading over a
long period of time, or at elevated temperature, etc.?
Traditionally, the analysis of processes that control plastic deformation and fracture

of sol ids at the microlevel has been confined to consideration of models that take into
account only paired interatomic bonds [7,8,13-15].
At the same time, strong correlation of the relative positions of atoms at distances

that significantly exceed the interatomic distances -a correlation that ensures the shear
stability of solids- is characteristic of states of condensed matter [1,21. Therefore, the
rheological behavior of solids is determined by the dynamics of collective excitations
induced by an external factor [1]. Thus plastic deformation and fracture are collective,
far-from-equilibrium processes, whose kinetics are governed by the self-organization of
dissipative structures that ensure an optimal (for specified loading) level of dissipation of
energy of an external action (see, for example Refs.[1,2,16]). Therefore, in developing a
physical theor)' of the dynamic strength of solids it is necessary to exhibit the mechanisms
of microscopic processes limiting the defect dynamics, because it is this which determines
the process of plastic deformation of a solido
The difficulties encountered in theoretical and experimental investigations of the dy-

namic behavior of microscopic defects are due to the great variety of factors influencing
their mobility. Furthermore, any physicomechanical action moves a deformed solid away
from a state of the thermodynamic equilibrium [1]. In turn, as a consequence of shear
stability, in a nonhydrostatically stressed solid, the additivity property of energy and
entropy (the latter begins to depend on the shape of the body) is violated. Thus, the
response of a solid is determined by the processes of entropy prod nction and energy re-
distribution, both witllin the sol id and between the deformed body and the surrounding
medium. t\otice, that a deformed solid as a whole is by nature, a thermodynamically
closed system (except for some special cases) for which the corresponding formulations
of the laws of thermodynamics, the principie of Prigogine, the Clausius-Duhem relation,
etc. are valid [1,2]. However, the approximation of a continuum is never strictly valid,
because of the existence of nonuniform fluctuations in the density and shape even in the
state of equilibrium [1,9-12]. In fact, in sorne cases these effects can be neglected, but
generally, the space occupied by a deformed solid does not possess the homogeneity prop-
erty. At the same time, for deformed solids, the property of scaling invariance should be
valid [1,12,17-20J. It is the scaling invariance that provides the possibility of calculations
of the macroscopic parameters of deformed solids on microscale [1,21-24].
A quantum-statistical approach to dynamic problems of solid mechanics was proposed

in our works [24-26] (see also Refs. [1,25,16]). This review is focused on systematic accou]!t
of the basic concepts and fundamental principIes of this approach. The most important
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results associated with shock loading and armor piercing, which were obtained by using
quantum-statistical approach, are also discussed.

In this section, below, we consider same classical aspects of shock loading and high
velocity penetration problems. In Sect. 2, the common principIes of construction of quan-
tum fracture mechanics models of a deformed solid are analyzed. As a result we conclude
that real processes of plastic deformation and fracture of solid materials unusual from the
point of view of quantum fracture models which are based on the consideration of pair
wise interatomic potentials. In Sect. 3, general quanturn-statistical model of a irreversible
deformed solid is considered. The applications of this model to some problems of solid
mechanics are briefly discussed. The fractal effects in phenomena of plastic deformation
and fracture of a solid are also discussed. In Sect. 4, the advanced applications of quan-
tum statistical model to the problem of irreversible deformations of a solid under shock
loading is considered with respect of the results of the experimental investigations. In
Sect. 5, we consider the results of application of quantum statistical model for derivation
of microscopic expressions for parameters which governs the processes of armor piercing.
The possibility of some other applications of the reviewed quantum statistical approach
and the necessity of further study in this direction are emphasized in conclusion.

1.1 The shock loading problem

The problem of adequate description of the processes occurring in solid under impact (or
shock) loading is of fundamental and applied importance. In this problem, as in any other
dynamic problem, the main question concerns the forces that characterize motion, that
is the forces that determine the dynamic strength of a material.

The overwhelming majority of physical phenomena are so complex that, even with the
current state of science, one can rarely crea te a universal theory of one or another of them.
A single course remains at the disposal of the investigator: To experimentally identily the
main parameters governing the phenomenon within their range 01 variation, abstracted
lrom the less important parameters, and to construct the simplest possible model 01 the
phenomenon, c1early revealing its physical essence, lor the conditions under consideration.
Excellent example of a solution found using this methodological approach is the classical
theory of shock waves.

It was shown that if macroscopic mass velocity of the atoms of a solid, u, is less than
critical value UE then the transverse and longitudinal elastic waves propagate through the
solid with the velocities Ct and Cl correspondingly. The pressure in the elastic wave is

(1)

where F'¡¡EL is the Hugoniot elastic limit [3,4,271.
However, when u> UE a shock wave develops, and energy of external action is localized

in the front of shock wave, with velocity

D = Ca +bu,

where b is a constant of a material [27-291.

Ca = j"f; ~CI, (2)
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If D < C¡ shock wave has a two-wave structure with the elastic precursor which moves
with the longitudinal wave velocity el > D. Mass velocity in the front of the elastic
precursor is constant UE [291. The macroscopic structure of the shock has been studied
thoroughly in terms of phenomenological models (see, for example, Refs. [6,27-30]).
The quantum-statistical model of deformation of a solid under shock loading was devel-

oped in our works [24-26]. The microscopic expressions for the parameters that determine
the kinetics of the various regimes of shock propagation in solid were derived in the
framework of this model [1,2,5,6,9]. \Ve consider the results of these works in Sect. 4.

1.2. High-velocity penetration (armor piercing) problems

Voluminous literature is devoted to problems of impact interaction between deformed
solids. The heightened interest in the high velocity interaction of deformed solids has been
stimulated both by fundamental problems of the physics of high pressure, the synergetics
of deformed media and material science, and by the expanding range of applied problems
that can be sol ved with the use ofaxisymmetric and elongated cumulative charges. Be-
cause of this, high velocity impact and penetration were traditional subjects in Russian
technical literature on mechanics and physics for many years. The term "high-velocity
penetration" denotes a dynamic process in which the penetration velocity of a projectile
(the displacement velocity for the projectile-target interface) is higher than the velocity
of defect propagation [4-6,30-331.
Significant advancement has been observed in these studies beginning in the 1940's and

1950's (see, for example, Refs. [5,32-38]). The development of apparatus and methods
for investigating rapidly occurring processes, and the appearance of laboratory ballistics
devices have contributed to an improvement in the effectiveness of experimental investi-
gations. The theoretical approach has evolved both due to a more precise definition of the
physical nature of the phenomena under consideration, an as result of refinement of com-
putational methods of computer mechanics, and the development of personal computers.
Sorne recent papers in this field are cited in the list of references of the present review
(see Refs. [32,33,39-52]).
The classic hydrodynamic theory of high velocity rods striking solids is based on an

incompressible inviscid flow model (see Refs. [34-38]). According to this model, the kinetic
energy of the projectile goes entirely to the kinetic energy of the target and the projectile's
material flow. The hydrodynamic approach implies that the work of plastic deformation
and increase in internal energy are negligible as compared to the kinetic energy of the
flow. The penetration parameters are determined by the pressure in stagnation point K
(see Fig. 1):

2P _ POU
Ko - -2-' (3)

where Po is the target density and u is the penetration velocity, ¡.e., velocity of the contact
surface (the zero subscript refers to the uncompressed target material). It follows that the
resistance of the target to the penetration is determined by the inertial forces. The relation
for penetration velocity is given by the Bernoulli equation which equates the pressure PKo
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FIGURE 1. Schemalic represenlalion oCpenelralion process as an incompressible f1ow:in lhe resl
coordinale syslem (a) and in lhe coordinale syslem allached lo lhe poinl, K, oC branching oC
f1uxes (b).

at the points where the f10ws branch to either side oC the surCace oC contact oC the rod
(the length oC which is much larger than its diameter) and the target:

(4)

where Vo is lhe impact velocity and p, is the rod density. From Eq. (4) it Collows that

)..VO
(5)u=--1+)..'

where

)..=j1i; (6)

and at the given density and length oC the rod the penetration depth Lo depends on the
target density only:

Lo = ),,10. (7)

Because the relations (5), (6) and (7) do not agree with experimental data (see, Cor
example, ReCs. [35-43]), sorne empirical modifications were proposed to the hydrodynamic
model, in which the Bernoulli Eq. (4) was augmented by another term, taking into account
the stress-related resistance to the penetration oC the rod into the target (see, Corexample,
ReCs. [5,6,38,40,41,42,43]). The most popular Corm oC such modification is

(8)
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This tactics resulted in the modification of relations (5) and (6) in the form

U=~(A-A2 - I
Mi)1+ 2(A2 - 1)-2 'p,vo

(9)

where tlH = H, - [{o. Correspondingly the penetration depth is given by the equation

Lo = QAlo, (
tlH)-l

Q= 1+2--2Pou
( ID)

Relations (9) and (ID) give a good description of the experimental results of Refs. [36-401
with the use of only one adjustable parameter tl[{. However, the lack of any valid justifica-
tion for the additivity of the strength-related component of the resistance of penetration
motivated a search for other modifications of the hydrooynamic mooel. For example,
in Re£. [431 it is proposed a modification of the hydrodynamic model of high velocity
penetration of long rods into sol id targets that gave the formula

u = AVo JI _ 2tl~
I + A P,vo

(11)

a comparison of which with formula (9) shows that for both cases the rod ceases to
penetrate the target at the same critical velocity,

( 12)

but the way in which the strength influences the penetration is described oitTerently.
Specifically, if the same value of tlH is lIsed (ordinarily the strength of the roo is ignored,
ano it is assumed that tlH = H, is the dynamic hardness of the target, equal to

3(1 - 2v)
H, = ----P¡IEL,

1- v ( 13)

where p¡'¡EL is the Hugoniot elastic limit, and v is Poisson's ratio), then according to
Eq. (9) the reduction in the velocity of penetration below that of formula (4) begins
at somewhat higher velocities Vo than according to Eq. (lI). That is, with mooel (11)
the strength mechanism is "tllmed on" more abruptly. Attempts to determine why the
Eq. (lI) is better by comparing calculations with experiments of the existing accuracy
in controlling Vo ano determining u cannot, in our opinion, be considereo successful,
since by varying within adjustable parameter, one can produce directly contradictory
conclusions as to which is better, (9) or (11). There also exist many other modifications
of the hydrodynamic model of high velocity of penetration of long rod into solio target,
whose results can be approximated by the relation of the form

(14)
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where " is a constant coefficient that characterizes the momentum transfer from the rod
to the target, while for the quantities in the parentheses, "1 and b are constants of the
material and P' is a function of impact velocity, Va, which takes into account the effect
of the strength (usually, P' = t:J.H/p,u2). Therefore, according to Ref. [38], even when
the target and the rod are made of the same material, (>' = " = b = 1), H, and H,
do not coincide, but 2.5 < H,/ll, < 3 and "Ir = -t:J.H/p,V5, where t:J.H = O.66H,. A
more correct way of taking into account the geometric factor, developed in our work [44]'
showed that with small corrections for the strength of the target (H,/P,v5 « 1), and of
the cumulative knife (H,/ P,v5 « 1) the following relations hold in the first approximation:

H, = ~ [31n (2J3 Z,~)-ln2],
H,= ~ [1 + In ( J3 4~;f) ] ,

(15)

( 16)

where Hf and llf are the dynamic yield points of the materials of the target and the plane
cumulative knife, and G, and G, are their shear moduli. For the case of the penetration
of an axisymmetric rod into a semi-ilIfinite target:

(17)

The theory of high velocity penetration of porous targets was developed in our
works [51,521. It was shown that the predictions of this theory are in a good agreement
with results of experimental investigations [34,42,531.
The method for determination of the parameters which governs processes of high velo c-

ity penetration on the basis of quantum statistical models of irreversible deformed solids
was proposed in our works [1,5,24,251. The most important results of these works are
considered in Sect. 5 of the present review.

2. QUANTUM-FRACTURE-MECIIANICAL MODELS OF DEFORMED SOLID

The usual approach to constructing the quantum fracture mechanics of irreversible de-
formed solid is based on the use of an interatomic pair wise potential U(r) (see, for
example, Refs. [1,7,8,15]) which, independently of the type of interatomic force, has the
shape shown in Fig. 2 and characterized by:

1) Minimum in U(rij), which corresponds to the equilibrium interatomic distance rij at
zero absolute temperature (T = O K) and is determined by the competition of the
forces of attraction and repulsion.

2) Position rm at which the force of interatomic interaction (proportional to (8U /8r))
reach a maximum, i.e., a2U/8r2lrm = o.
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3) Energy spectrum of this potential represents a set of energy levcls, En; in the ground
statc, an atom, owing to zera oscillations, possesscs a finite energy

"Ii JU(rij)
£0= -----,

Tij m
( 18)

reckoned from U(ri]) = O. lIere Ii = 1.05 X 1O-J4 J X s is the Planck's constant and
m is the mass of an atom.

4) The amplitude of the zero atomic oscillations is equal lo

where

()
rij1nC.

6r = -;=====,
JmU(rij)

C. = "Ii
mrij

( 19)

(20)

is the maximum velocity o/ a finite motion of atoms in the potential welJ U(r) at lhis
energy level, and

(21 )

is the De Boer's parameter (for solids Aa « 1 and for quantum crystals Aa _ 1 [54]).

5) Because of the Heisenberg 's uncertainty principie, the energy ¡eveis of the atoms in
the pairwise potenlial have a finite width. Jt is easy to show that the energy width of
the ground level is equal to

(22)

\Ve note that ÓEo ís equa! to the kinetic energy of an ato m for which the de Broglie
wavelength AD is equal to interalomíc distance, i.e.,

This eqllality corresponds to the ve!ocity of atomic motíon lL = C. of the atom.

6) Becallse of the asymmetrical shape of the potential, U(r), the degeneracy of the levels
n = 1,2, ... , is lifted. So that the di£ference in the energies of the neighboring levels,
6En = En+l - En decreases with growing n. Each energy level is characterized by ils
stable atomic configuration and specific interatomic spacing, rl;). As a rule,

r(n+l) > r(n)
lJ 1) .



QUA~TUM-STATISTICAL API'ROACII TO DYNAMIC I'ROBLEMS OF SOLID MECIIANICS 155

u

F

o

r¡j rm

r

FIGURE 2. The shape of an interatomic pair wise potential and cncrgy spectrum Gn it.

This eondition determines the thermal expansion of a solid.

7) In this analysis, the state of a quantum erystal is realized if

(23)

It is well known that nnder eertain eonditions helium ehanges into a quantum-erystal
state. The physies of quantum erystals is deseribed, for example in Refs. [54-561.

Using quantum fracture meehanies to solve a problelll of the initiation of eraeks amI dis-
loeations makes it possible to prediet the brittle-plastie nature of a speeifie erystal [9,131.
The diffieulties eneount,'red in experimental and theoretieal in\'Cstigations of the dynamie
behavior of disloeations are due to the great variety of faetors infiueneing their Illobility.
Under a given extemalload the deformation eonditions depend on the type of a erystal, the
erystal stmeture of the lattiee, the nature of the moving disloeation, amI on numerous
meehanisms of the interaetion related both with the Illierostrueture of the stress field
(determined by the eharaeteristies of the real material and by the lattiee defeets) as
wcll as witli various quasiparticle cxcitatiolls. In discussing this problcm it is usual to
separate the main disloration drag merhanisms into two groups. The first group deals
with thc efTccl of barricr:; creatcd al a local obstaclc such a....o;¡ impuritics, point dcfccts.
other disloeations, radiation damage, etc., or by the Peierls potential relief, whirh is an
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unavoidable concomitant of the periodic structure of the lattice. As is well known, such
barriers are overcome by thermal or quantum f1uctuations. The second group comprises
dynamic dissipative processes of the interaction between dislocations and elementary ex-
citations in a crystal, primarily phonons and electrons. This type of interaction is viscous
and at low dislocation velocities the drag force is a linear function of the velocity, the
coefficient of proportionality representing the viscosity of the quasiparticle gas.

The shortcomings of the quantum theory of so lid sta te and quantum fracture mechan-
ics are associated with the use of interatomic pairwise potential. Actually, however, the
states of condensed matter, namely cTystalline, amoTphous, quasicrystalline, and liquid
are characterized by strong correlation in the relative positions of aloms at dislance, Lo,
much greater than Ti;) In various states of condensed matter the energy of a volume
element of the system is a function of the relative arrangement of the aloms. At a given
density, the difference hetween the energies of different local configurations of atoms is
large in comparison with the characleristic thermal energ}': i.e., the relalive positions
of the atoms are correlated in a mesoscopic e¡ement of the system, which implies the
shear stiffness or resistan ce of a condensed s}'stem (including the local shear sliffness of
viscous liquids). In condensed matler, onl}' certain configurations of particles occur with
an appreciable probability, implying that a definite local structure exist. In a cr}'stal at a
sufficiently low lemperalure the relative positions of aloms are determined lo within small
f1uctualions by the elementary translation vectors of lhe ideal lattice. The local slruclure
salisfies the condilions of lhe Fedorov's theorem. Al higher lemperalures, where the dis-
placement amplitudes of atOJns from lheir local-equilibrium positions become significant,
lhe concept of local structure ma}' be defined [571 and we can treat the instantaneous
arrangemenls of atoms in an element of the condensed matter as a result of displacements
from certain ideal positions. Therefore, the rheological behavior of real deformed media
is governed by the dynamics of collective excilations. This fact has also predetermined
the successful use of the ideas and methods of synergetics in solid mechanics (see, for
example, Refs. [1,22,47,58-60]).

3. QUANTUM-STATlSTlCAL FRACTURE MODEL OF DEFORMED SOLID

The spectrum of stTuctuml excitations (defects) in deformed solids can be determined
correctly from the solution of the non-steady-state equations of stochastic mechanics (see
Refs. [1,2,61]) with the potential V;j(T) that is formed by an ensemble of atoms. This
potential determines the "structural memory" of the deformed solid. Analytical solution
of the equations of slochastic mechanics in the general case is, obviously, impossible. How-
ever, the main properties of the collective motion of excitated atoms can be established
prior lo the complete solution of these equations. Probably, it would be sufficient to use
the approximation of the potential relief V;j in the following general form:

(24)

where f(T) is a periodic (qua..iperiodic) function with period 2ao that is defined on the'
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scale of the order of ~ Lo, and

Ir. - r./ < aoI J _ 1

(25)

Here U(r) is a V-shaped potential which is defined by interatomic interaction within the
first coordination sphere of radius ao; this determines the compressibility of the solid,
which is characterized by the bu/k modu/us B, as

while Volr, - rjl-n takes into account the long-range interatomic correlation, which de-
termines the shear stiffness of solid, characterized by the shear modulus G = pC~,where
p is the density of the matter and Ct is the velocity of transverse acoustic waves (in a
liquid Ct = v/ Lo, where v is the dynamic viscosity and Lo is the characteristic length of
energy dissipation).

The following properties can be shown in this general case:

1. I3ecause two atoms cannot located in the same site of the potential relief which is
formed by the system of atoms, the lattice sites closing follows the Fermi statistics. In
most crystals the thermal movement of the atoms at temperatures considerably below the
melting point has the character of small vibrations about the crystal lattice nodes. The
smallness of the vibrations implies that the mean thermal displacement of an atom from
the node is very small in comparison with the lattice constant ao, i.e., (c.r) « ao. In this
case

AH « 1, (26)

and in an ideal crystal at the temperature T = OK, all the atoms are in the lowest energy
level (ground state)

< ~ ~K ec:;O - 8 B D, (27)

where K. = 1.380662 X 10-23 J/I< is Boltzmann's constant and en is the Debye temper-
ature of a solido

The width of the ground energy level is defined by Eq. (5). It is necessary to note that
even in the case AH « 1 the energy of the zero-point oscillations is not small. If the
temperature of a solid

T < ~en, (28)

then the energy of zero-point oscillations is higher than energy of thermal oscillations.
For the majority of materials f:o has the order O.2/lm, where /lm is the melting energy,
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and approximates to the energy of struetural transformation if it exis!. For example, for
titanium:

EO/ Hm = 0.2D, EO/ HQ_~ = D.n;

and for zirconium:

Eo/Hm = 0.20, Eo/HQ_~ = D.n.

Here HQ_~ is the energy of a ~ {3phase transition from hexagonal strueture to body
eentered eubie strueture [21.

2. For quantum erystals, sueh as helium quantum erystal, the magnitude of zero-point
osciHations (see Eq. (19)) is comparable with the interatomic distance roj and

(29)

For example, 3He has As = 0.49, 4!le has As = 0.43, H2 has Au = 0.28, and l'\e has
As ::::0.1. There are other example for which Au ~ 1 (see Refs. [54-56]). This refers to
admixtures of light elements in matrices of heavy metals. Owing to their slllaH lIlass and
weak interaction with the atoms of the matrix, the atoms of the impurity are characterized
by a parameter As ~ 1. For example, this happens for hydrogen in matrices of niobium,
zirconium, palladiuITI, etc.
In aH these cases the fundamental assulllption of solid state <¡uantum theory that par-

tic1es and crystal nodes correspond, breaks down. Beeause of this, any defeets in <¡uantum
erystal are delocalized and aH atoms of <¡nantum erystal are in the state of zero-motion,
that is accompanied by transfer of the atollls between sites of crystal lattice therewith the
number of atoms is not e<¡ual to the number of sites in crystal lattice. On the other hand,
the partic1es forming the erystal are generaHy identieal. In <¡uantum meehanies identieal
partic1es are indistinguishable. A situation arises in which a multitude of identical partic1es
exists in a discrete erystal lattiee, the wave funetions of whieh overlap strongly owing to
the large magnitudes of amplitudes of the zero-point vibrations. The overlap of the wave
functions implies that tbe atoms are actually COllverted ¡uto moving quasiparticles in the
space of the crystal lattiee. One can no longer say that each partic1e eorresponds to one
definite lattice node. Any atoms can exist at any node.
Evidently, two partic1es cannot exist simultaneonsly at the same lattiee node. Thercfore

an infinitely large repulsion exists when the eoordinates of two <¡uasipartic1es coincide.
This is described by an "impenetrability" potential of <¡uasipartic1es at the same lattiee
node. Thercfore it is important to take into aceount the eorrelation between partic1es as
they approach 'lile another.

Thus numcrOllS crystals exist that clearly manifest lhe follo\I,.'ing [('atures:

a) the energy of the ground state of the erystal is altered by the presenee of a large
repulsion between the <¡uasipartic1es;

b) lhe atoms are convcrted iulo 1l10Villg quasiparticlcs in latticc space;
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c) the wave functions of the atoms overlap, leading to a finite probability of tunneling
of atoms from one node to another, and as a result, the quasipartjcle ("vacancjon")
band is formed as the analog of the conductivity band for electrons in metals (see,
for examplc Refs. [54)).

At non-zero temperature the crystal tends to have a minimal free energy. Hence it
can lose a little energy while slightly increasing in disorder. The conflict between this is
minimal when a certain number of vacancies exists -nodes not containing atoms. Owing
to the large amplitudes of zero-point vibrations of the atoms, these vacancies become
vacancions- quasiparticles characterized by a certain value of the energy E and quasimo-
mentum p. Thus, a quantum crystal contains a gas of vacancions. whose displacements
are equivalent to the displacement of atoms.
Vacancions can exist even at absolute zero temperature: zero-point vacancions. In this

case they also can 1II00'ein the crystal in the equilibrium state. One can picture a quantum
crystal as though it contained within itself a liquid consisting of zero-point vacancions,
and hence capable of moving easily through the crystal lattice. The flow of this liquid is
accompanied by transport of matter. In contrast to an ordinary liquid, here the direction
of mass transport opposes the direction of flow of the vacancion liquido The vacancions
lower the energy of the ground stale of Ihe crystal [56]. The bottom of the vacancion band
lies below the energy of the ground state of the crystal. Energy width of the vacancione
band is proportional to the quantull1 tunneling freqllency (Ti})-l of atoros in crystal
lattice:

(30)

where J is the jump integral which governs the momentum of quasiparticles in a quantum
crystal:

p = tlTllaoJ. (31 )

In a certain sense, quantum crystals having zero-point vacancions are analogous to metals,
j.e., crystals containing a liquid consisting of electrons. The electron liquid in a metal also
can move easily through the crystal lattice. But every change in the electron density is
accompanied by appearance of charge density, which gives rise to very strong electric
fields, owing to which the spatial redistribution of mass of the material does not occur.
In a metal a vacancy is an electrically neutral object.' The flow of the vacancion liquid in
a quantum crystal can be accompanied by a change in the spatial distribution of matter.
Quantum crystals are strongly anharmonic even at absolute zero and therefore possess

unique properties, in particular, an essentially new motion of the atoms is possible in
them: quantull1 diffusion (see ReIs. [1,2,54-56)) .

• It is more properly lo use the ter m "vacancion liquid" because the motioll oC \'acancions has more
direct analogy with liquid flow (there is Bol the charge oC valume).
'In ionic crystal a vacancy has electrical charge (sec, for example, ReL [62]) and by this reason the
discussed phenomenoll oC mass trallsfer by vacanciolls flow in ¡onie crystals is more complexo
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Any defects in crystals in which the parameter AB is not a smal1 quantity in comparison
with unity are delocalized and become quasiparticles -defectons, which are characterized
by a certain value of the energy and quasimomentum.
A light impurity atom in a quantum crystal also behaves like a quasiparticle -an

impuriton or mass.ftuctuation wave [541.
A quantum crystal is a highly specific state of matter. As we have noted aboye, its

density distribution is periodic in space. That is, in symmetry it resembles an ordinary
crystal, but in the character of motion of quasiparticles it occupies a position intermediate
between a liquid and a solido A first form of motion has the property of motion in a liquid
-this is the f10w of the vacancion liquid with immobile lattice nodes. In a gravitational
field a quantum crystal can f10w from vessel to vessel analogously to liquids. However,
the f10w here is peculiar: the transfer of matter from top to bottom is effected by f10w
of the vacancion liquid from bottom to top over the crystal lattice nodes. The motion
of the aboye stated quasiparticles is a quantum diffusion in lattice space, which has
been found experimental1y in Khar'kov, Russia (Grigor'ev, Esel'son, Mikheev, Shul'man)
and in Sussex, England (Richards, Pope, Windom) in 1977. The diffusion coefficient is
an important, experimental1y measurable characteristic of the gas of quasipartieles (see
Ref. [56]).
Depending on the statistics of the original atoms comprising the crystal, the quasipar-

tieles in a quantum crystal obey either Bose-Einstein or Fermi-Dirac statistics. 30th of
these excitations can be found in a crystal in different concentrations or in the form of a
solution of Fermi-Bose quasipartieles. A striking example of a quantum crystal is the 3He-
'He solution. Phenomenological equations of hydrodynamics describing the macroscopic
motions in quantum crystals have been proposed by Andreev and Lifshitz (see Ref. [63]).

3. It is apparent that for crystals with defeets there is discordance between the number
N. of atoms and the number No of potential sites on a lattice. As indicated below, if
concentration of defects has more than the critical value, this discordance gives rise for
delocalization of defects in crystal lattice even in the case A « 1.
If the ratio

N.
n = No < 1,

then the Hamiltonian of the system can be written in the form of the Hubbard Hamilto-
nian [641

H =LUij d; dj.
ij

(33)

Here Uij describes the transition of an atom localized at a site j to its nearest neighbor
ij and

d; = (1 + at a¡)at,
where at, ai are the atom operators.

(34)
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Equation (33) yields the following expression for the average energy:

(H) = LU(k)(dtdj)¡¡'
k

(35)

where U(k) and (dtdj)k are the components of the Fourier transform of Uij and (dtdj),
respectively, Here,

(36)

(see Ref. [65]), where

Rk(e) = [1+ exp (~(~;) r (((d;/dj))k,E+iE - ((di))k,<;E) lE_o' (37)

Jl is the chemical potential, and ((d;/dj))k,. are the components of the Fourier transform
of the Creen's functions, ((d;/dj)). These Creen's functions are given by the equation

\Ve shall set

6e((d;/dj)) = 2~(1 - n) + (([diHI_Idj)) •.

((ldiHI_Idj)). = A LU,,((d,Wj)). + B((d;/dj)) •.
t

(38)

(39)

In our case, the actual form of the coefficients A and Bis irrelevant. As a result, we obtain

I-n
((d;/dt))k,. = 2Jr(e - e(k»'

and

Rk(e) = (1 - n)6(e - e(k» .
1+ exp[(e - e(ml [(.TI

The ground-state energy is given by equation

1" ~eo = N L..,.(I - n)U(k) 0[Jl - e(k)],
k

where

(40)

(41)

(42)

{

1,
0=

O,
x> O,

x < O.
(43)
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Using the approximation of the density of the atom states in the form

{

~ ~6[c - U(k)] = Ua-I,

O,
we obtain the expression for the ground-state energy

lel ~ 0.5 Ua,
(44)

ca = 0.5 Ua n(1 - n).

\Ve can write Hamiltonian (33) in the following form:

where Ui} is effective transfer integral. Prom Eqs. (35) and (46) it follows that

e 4(I-n)
Uij = (2 _ n)2 Uij.

(45)

(46)

(47)

That is the increase of the concentration of defects must occur with an increase of effective
transfer integral. As a result, if

then

Ui} > Ua= mC.C, = mCg,

(48)

(49)

and atoms of a solid are delocalized. This is reRected in the fact that vacancione band
in solid is formed as a analog of the vacancione band in quantum crystal. By this means
mass transport in solid with defects can be accounted for in two ways:

a) as a result of the motion of atoms, accompanied by the displacement of the sites of
crystal lattice,

b) as a result of an ato m stream on fixed sites of lattice (analogous to the liquid Row).
The parameter

Cs = JC.C, (50)

is the stability o/ erystal lattiee mass ve/oei/y. As we shall show below, if the momen-
tum of atoms in crystal lattice p > mCs then these atollls are delocalized. This lIIeans
that crystal lattice loses its stability and a crystal goes over to the non-equilibriulII
state.
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Notice that for a erystal that satisfies condition (26) under standard quasistatic loading,
condition (32) is beyond reach, sinee the erystal disintegrates at a smaller eoneentration
of defeets. But aIread y in the classie work of Bridgman [66] it was established that under
the simultaneous aetion of hydrostatie and shear stress diffusion proeesses intensify to an
extreme extent and solid lIow like as liquid, while remaiuing in a erystalline state.

4. The effeet of interatomie aetion at a distanee results in a power dependenee of the
correlation funetion of atoms in eondensed matter [63],

(n(a) n(a - r)) - r-a, (51)

whieh is eharaeteristie of fractal struetur'es (see, for example, Refs. [1,12,67]). The expo-
nent in Eq. (51) is determined by the fractal dimension DF of the wave funetions </Ji of the
atoms formed the solid and the topological dimension d of the Eue/idean space [1,21,67]:

n = d - DF. (52)

As a result the structural excitations in erystal can be either irrotational (eud 17 = O},
for example vaeaneies, interstitial atoms, edge disloeations, cte. or solenoidal (div ,7 = O),
for example serew disloeations and disclinations; the latter type also eaused signifieant
rotational modes of dcformation, studied, for example in [68]. However, only a restrieted
set of atomie eonfigurations can be realized with a significant probability in the elements
of a condensed matter having volume of the order of - L~, where Lo is the mean length
of rclaxation of momentum of atoms in erystal lattice [1].
Beeause of this, in order to determine DF for Eq. (52) the diseussion may be shifted

from the atomie level to the mesoseopic level, where the exponent (} can be expressed
in terms of Poisso,,'s ratio v, which specifies the ehange in volume during longitudinal
deformation of a solid:

n = 1 - 2v. (53)

Henee, nsing Eqs. (52) and (53) and bearing in mind that d = 3, we obtain the relationship
for fractal (metrie) dimension of the wave functions of atoms in the form

DF = 2(1 + v). (54)

Sinee O < v < 0.5, where the lower and upper limits are a consequenee of the Le Chatclier-
Brown principie of "tability for elastie latt;ee, we have 2 < DF < 3.

5. Typieal energy spectrum of atom excitations in a crystal lattice is shown in Fig. 3a.
\Vhen T > O K, some of the atoms enter higher energy states corresponding to different
kinds of quasiparticle (vaeancies, interstitial atoms) and colleetive struetural excitations
(disloeations, disclinations, cte.). These transitions are accompanied by the emission and
absorption of the cotlective Bo"e excitalio"" (density and "hape f1uetuations) with dis-
persion curves of the type shown in Fig. 31>.The interaet;on of the excitations causes a
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as a result 01 kinetic phase transitions at the eritieal values 01 the momentum 01 atoms (these
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state 01 thermodynamie equilibrium, (e) lor mCs < p < mC", (d) lor mC" > p > mC,; and a
speetrum 01Bose-type exeitations in erystal with deleets (b).

splitting of the energy levels whieh is responsible for the formation of the mobility bands
(these bands are the analogs of vaeaneion bands in quantum crystals and also analogs of
the conductivity bands of electrons in semiconductors and dielectrics).

6. The wave function 1/1, of atoms in crystal satisties the Schriidinger equation

(55)

with the potential govcrned by Eqs. (24),(25). When short- and long-range interactions ex-
ist, spatial dcpendence of the wave function is characterized by a hiemrchy o/Iengthscales,
which obviously determine the spatial scales of the structllml levels of plastic deformati9n
and fracture of solids (see Refs. 11,2,21]).
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TABLE 1. Parameters of quantum-statistic model for some materials [25).

Material

eu Ag Au Al Diamond Si Glass
Ca, m/c (3) 13 6.4 3.5 26 109 30.4 44
Recr 0.93 0.85 1.01 1.14 0.54 0.52 0.58
Lo 0.9 1.6 2.1 0.7 0.35 0.85
(",./G) x lO' 2.6 1.3 0.8 6.4 7.8 1.2 11.5

7. The relaxation time T~n) of a momentum of atoms (n = O) and of structural excitations
of the n-th level is mueh less than the time of energy relaxation, i.e.,

where

(O) ao Lo
Tp ~ --

JCaC, Ct'
(O) ao

TE """-' Ca' (56)

Here Lo is the mean length of relaxation of momentum of atoms in erystal lattiee and Cs
is defined by Eq. (50). By this means

Lo/ao ~ JCt/Ca » 1.

For this reason, loealized far-from-equilibrium regions are formed in deformed solid even
under eomparatively small loads,

" ~ "ev = 0.5pC~. (57)

It can be seen from Table 1 that "ev ~ lO-se ~ 1 MPa (where e = pC; is the shear
modulus), in agreement with experimental data (see Ref [69]).

8. An external influenee causes a redistribution of the atoms among the energy states if
the stress obeys " > "e., where "er is defined by Eq. (57). \Vhen " > "ev, the response of
a deformed solid is determined by the superposition of struetural (s) and eondensate
(e) eomponents associated with mixing of defcets in the stress field and with foreed
Bose-eondensation of indueed density and shear f1uetuations (analogous to the foreed
Bose-eondensation of photon in laser). For example, plastie deformation is given by the
expression

<p = <e + <.(t),

whieh is in aeeordanee with the sehcmc wherebly experimentalists (sce, for example
Refs. [70,71]) separate <p(t) into sudden alld time-dependent eomponents. Thus, struetural
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(for example, dislocation), condensation (dilation [72]), and mixed mechanisms for crack
formation may be realized.

9. If the stress a applied to a solid exceeds a critical value aey> irreversible creep occurs,
manifested by a steady increase in the plastic strain 'p with time t under a constant
stress and by incomplete relaxation of ,(t) to the initial value ,(O) = O when the load
is removed. Depending on the temperature, there can be transient and stress-state creep
with, respectively, a very slow (approximately logarithmic) and a linear increase in the
strain with time. The first type is observed experimentally at temperatures T less than
half the melting point Tm and shows a decrease of the strain rate i == d,/dt to zero under
constant load. The second type is observed for T > Te ~ 0.5Tm, and here 'p(t) for t --+ 00
reaches a value R(a) # O. Far from the melting point, the dependence of R on the applied
stress a is given by a power law

(58)

with 3 :o; n :o; 4.5, if a is well below the theoretical strength a « amax ~ 0.1 G; and an
exponential

R(a) ex exp (C~) (59)

with e = cons!., if a < amax. When T :o; Tm, diffusion creep is observed, with a linear
dependence R(a); this occurs also for srnall loads a [701.

10. The free energy in the configurational space of states of a solid under a load a > aev is
shown on Fig. 4a. The fractal dimension of the thermodynarnic potential in configurational
space of states is dF = DF - 1. In the approximation of central nearest-neighbor interac-
tions, the Cauchy relatious give us v = 0.25, from which it follows <> = 0.5, DF = 2.5,
dF = 1.5. Detailed form of the free energy in configuration space with a finner resolution
of the defect structure and corresponding ultrametric space are shown in the Fig. 4b, c.

11. Spatial distribution of collective exeitation in a deformed solid is self-similar. The
fractal dirnension of inhomogeneous field of such excitations is defined by Ec¡. (54). There
exists a hierarchy of characteristie spatial scales (of eollective exeitations in a deformed
so lid (n = O,1,2,3, ... )) deseribed by the ratios

L,,+I cud cud ü 2(1 - ve)a~= -- = ---- = ----,
. L" grad div ü (1 - 2ve)

(60)

where Ü is the material vector velocity. Such an hierarchy manifests itself in the self-
organization of structural levels of dcformation and fracture of solids that are not con-
nected with the initial strueture of the material (see Refs. [1,2,7,25]). lIere Ve is the
effective coefficient of transvcrse deformation, which ec¡uals v ouly in the case of elas-
tic deformations. Since the possible values of Poisson's ratio for solids lies in the range
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0.165 :5 v :5 0.475 173], re can vary from 2.5 to 3.0, and the value v = 0.3, characteristic
of most natural materials, corresponds to re = 3.5, which agrees with the empirically
established [21,74] range of variation of relative scales of structural leveIs of fracture oC
solids (see Table Il), with the most probable value equal to 3.5.
Notice that the Poisson 's ratio for metals, alloys, and metal compounds in the elastic

region is determined by the structural value, vo, and the constant of the electron-phonon
coupling, .\, as [2,75-79]

"o + b(2 - 3"0)>'f(T)
v = 1 'I - 12(2 - 3vo)>'f(T)

(61)
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TABLE Il. Partide discreteness in grain-size analysis for rock grinding products [83].

where

Processing

Crusing

Powdering

228:1: 77
74:1: 16
15:1:4
5:1:1

1.5 :1:0.1

170:1: 14
74:1: 11
32 :1:2

11.7 :1:1.8
3.0:1: 0.7

Jd- Bnp-
f(T) = BepJ dji6(ep- EF)

Ln+¡JLn

3.1 :1: 1.7
4.9:1: 2.4
3.0 :1: 1.4
3.3:1: 0.8
4.0:1: 1.5

2.3:1: 0.5
2.3:1: 0.4
2.7:1:0.7
3.3 :1: 1.2
3.8:1: 0.4

is the function determining the temperature dependence of the effective density of electro n
states, f(T = O) == 1; n is the Fermi function, ji is the momentum of electron, ep is
the electron energy spectrum, EF is the Fermi energy, and 6( ... ) is the Delta function.
For BCC metals and their disordered alloys Vo equal to 0.25, and for metal compounds
with A 15 structure Vo = 0.296 [78,791. As have been shown in these works, theoretical
calculations by Eq. (61) are in an excellent agreement with experiments.

12. The relation (60) characterizes the self-similar regimes of deformation and fracture of
solids observed experimentally under certain conditions. However the existence of not less
than three independent length scales

(e) 1/2
Lo = Uo x e: '

even in elastically isotropic solids, give rise to the complicated dynamics of self-organi-
zation of dissipative structures and, in particular, the possibility of formation of incom-
mensurate dissipative structures, having a new set of independent length scales, obtained
as a result of dynamic mixing of the starting scales (see Refs. [1,22)). The incommen-
surate dissipative systems can be formed as a result of the. kinetic phase transitions
-accompanying a change in the parameters of the perturbation- and as a result of the
scale phase transitions (see Refs. [1,47)) -accompanying an increase in the dimensions of
the deformed solid body.
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FIGURE 5. The dependen ce of specific failure energy on size: 1) quartz, 2) glass, 3) marhle,
4) clinker, 5) porphyry, 6) coa!, 7) gabbra, 8) diabase, 9) drilling, 10) explosion, 11) rack bursts,
12) impact, 25 mis, 13) earthquakes. The line represents the analytic expression (63) found by
least-squares fitting.

13. The limiting value potential energy of elastic strains that can be accumulated in

autolocalized structural excitation of the n-th level is proportional to (Ln)D~"), where

dn) _ 2(1 - lI~n))

f - 1_ 211~n)

is the dimension of the structural excitations of the n-th structural level, which is de-
termined by the effective structural value of lI~n). It is easy to see that D}n) > 4/3. The
intensity of entropy export from the far-from-equilibrium regions where an excessive en-
ergy is autolocalized (controlling the kinetics of self-organization of dissipative structures),
is determined by the fractal dimension of the surface of the far-from-equilibrium regions,
D~n) = 2(1 + lI~n)). According to the S-theorem (see Ref. [SO)) the self-organization of a
dissipative structures in open systems is accompanied by a decrease in the entropy and
in entropy rate production, which are normalized to a constant value of the mean kinetic
energy. Analog of the S-theorem for processes of self-organization of dissipative structures
in a deformed medium may be represented in the form of the D-theorem (see Ref. [24)):

(62)

from which it follows that limiting energy density is not invariant, since

(63)

The experimental data for dependence of the specific fract ure energy on size of solid are
given in Fig. 5. This dependence is in agreement with Eq. (63).
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14. The generalized equations of the transport of mass, momentum, and energy (including
heat) in a deformed solid can be written in the form

(64)

where D~ is the effeetive diffusion eoeffieient (the thermal eond uetivity, etc.); ami O~/ Ot~,
O' /Oi' are the fraetional deri\'ati,'es with respeet to time and eoordinate. In homogeneous
media /3 and "'1 are equal aud are determined by the fractal dimension D~n):

(65)

and in materials with multifraetal mierostrueture /31"'1 = e, where e ¥ 1/2 is the exponent
of anomalous diffusion, whieh is defined by equation: D¡J ex rO (see, for example, ReL [81]).
The use of fraetional derivatives permits a simplifieation of the mathematieal form of

the transport equations in far-from-equilibrium systems and gives them a graphieal inter-
pretation. To elucidate the physieal meaning of a transition to a spaee with a fraetional
dimension, it is eonvenient to write Eq. (64) in integral formo

G(t) = fa' [((t - r)u(r)dr, (66)

where [((t - r) is a memory funetion (the relaxation kernel, the ereep kernel, cte. [18,82]).
In the case of no memory, [((t - r) = b(t - r), the delta funetion (a Markov's proeess):

/3 = 2; ¡.e., the transport field is not self-similar (DF = d = 3). With complete memory
[((t - r) is equal to 1 for r < t and zero for r > t; /3= O, whieh corresponds to DF = 1.
In the general case,

¡.e., the fractal dimension of the transport fields in deformed media is determined by the
"memory" of the medium. In this case the invariant is the produet

D (n)
13••. x ém = const., n=O,l,2, ... , (67)

where c~) is the limiting density of energy that can be aeeumulated in a volume of the
order of ~ L~.The relation (67) is in agreement with experiment [831.

15. For ereep of a solid material it is easy to obtain with the Laplaee-Carson transform
(see, for example Refs. 182,84]) an express ion for DF in the form

R(t) 2G
w = 3B :S 3B' (68)
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where D, G and R(t) are the bulk modulus, shear modulus and relaxation modulus. Thus
we have

4-w
1 < {3= -- < 3.2 +w - (69)

This result was used in nds. [20,82J for developing the theory of plastieity with fractal
yield surface.

4. QUANTUM-STATISTICAL ~IODEL 01' DYNA~IIC IlEFORMATION OF SOLIOS

The relationship between Ihe structural paramelers of a material and its dynamic strength
is displayed largely under conditions when Ihe infll1ence of ddect nucleation and propaga-
tion is not decisive in the deforlllalion and fracture of solids. In particl1lar, sl1ch conditions
are created when Ihe rate of loading is higher than that of d"f"ct propagation. From this
standpoint, the in\'('stigation of th" b"havior of solids upon high-\'('Ioeity impact is of
interes!. !lelow we consider the r"sponse of a solid to shock loading which illlparts a
momentl1111 ji = nlll 10 the atoms (1Í is a macroscopic nHI-'Sveloeity of the atoms of a
solid).
!ly using consider"d above quantl1111-statistical model it is easy to show that if

p < mCa, (iD)
then the transverse and longitndinal elastic waves propagate through th" solid with the
veloeities Cl and C" corl'espondingly (notice that this condition is the generalization of
the classic condition (1)). The ]Jl'"ssure in the ela-,tic wave is also given by Eq. (1).
\Vhen the 1ll0mentl11ll of atoms

p > mCa (il)

a shock wave develops. The temperatl1re-independent time of redistribution of the atollls
on the front of shock wave (by means quantulll tunnelling in gradient of stress) is

T 2ao
Ti) ex: -.

II

In the ca-,,,

mCa > p > mCs,

in consequence of the relations (56) we have

(i2)

(i3)

(i4)
and energy of external action is localized in the front of shock wave, that moving with
supersonic velocity, D, which is deterlllined by Eq. (2).
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By virtue of Eq. (74) the periodicity of crystal lattice has little or no elfect on the
kinetic of quantum tunnding of atoms in the front of shock wave. Because of this, at the
conditions (73) shock wave has a two-wave structure with the elastic precursor.
lIere we consider the microscopic expressions for the parameters that determine the

kinetics of the various regimes for high-velocity deformation in solids and for shock prop-
agation. In considered aboye quantum-statistical model of irreversible deformed solid the
character of the response for p > mC. is determined by the para meter

(75)

where Ho is the binding energy of the atoms, (o is the correlation radius of elastic fields,
Lo is the mean length of relaxation of pulse of atoms in crystal, and the relation

A = Lo/2ao = ..jCdC.

is the analog of the De Boer parameter [see, Eq. (21)]. It is pertinent to note that the
difference in the behavior ofsolids for which Re« < l/V? and materials with Re« > l/V?
is analogous to the difference in the behavior of the superconductors of the first and second
kinds in a magnetic field (see, for example, Ref. [85]); and the critical parameter Re« is
the analog of the Ginzburg-Landau parameter for superconductors (notice that Re« is
also the analog of the critical value of Reynold's number in hydrodynamics (see Ref. [28]).
As indicated in Refs. [1,2,24,251, for ductile materials

and for brittle materials

Re« > ~ ~ 0.707, (76)

(77)

As is obvious from the data listed in the Tables III and IV, this conclusion is in agreement
with the experimental data.
In the case Recr > l/V? (ductile materials) macroscopic mass velocity in the elastic

precursor UE and the lIugoniot elastic limit f'¡IEL are given by the equations

l'¡.¡EL = pC.C¡. (78)

If the relations (56) are valid an elastic precursor is accompanied by the plastic wave (see,
for example, Refs. [2,6,27,86]), Eqs. (78) are in a good agreement w¡th the experiments
(see Tables III and IV).
If Recr < l/V? (brittle solids) then the deformation of a crystal lattice in the front of

shock wave in thc case whcn conditions (73) are valid is dominantly elastic. Thc Hugoniot
elastic limit and the mass velocity for the elastic precursor for brittle material are defined
by the following equations:

UE = Cs, (79)
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TABLE 111. Physico-meehanical properlies of plaslic malerials (Re" > 1/,,12) [1,2J. (For an fee
slruelure, lhe shorlesl inleralomie dislanee Tij = ao/V2; for bee slruelure, Tij = ao/3/2; and for
hexagonal structure, Tij = GO, where ao is the lattice parameter).

Malerial Al Ti Fe Co Cu Pb

Tij, A 2.022 2.95 2.148 1.775 1.810 2.4 75
p, g/em3 2.734 4.5 7.87 8.83 9.02 11.36
C. = h/ma, lO/S 26 15 12 11 13 2.75
C" lO/S 3235 3100 3223 2553 2333 1100
C¡, lO/S 6794 6038 5751 5414 4833 2420
Cs = ..;c;:c;, lO/S 290 212 195 168 172 55
Ho x 10-3, kJ /kg, experimenl 8.2 10.6 7.0 5.3 0.85

experiment 11.9 9.8 7.4 7.3 5.3 0.94
Ccr X el 9.5 7.2 6.1 5.3 4.4 0.88

Re" = Ho/C; 1.14 1.1 0.71 1.12 0.93 0.78
Ccr, mIs, Ho/C, 1750 1620 1287 1348 1000 388

v'CsCI 1400 1130 1060 955 910 365
PIIEL, Gra, pC.C¡ 0.48 0.39 0.54 0.53 0.6 0.076

experiment 0.41 1.0-2.0 0.9-1.4 0.8 0.08
pH~/C,CI5 1.18 1.3 1.2 1.87 1.26 0.1

TABLE IV. Physieo-meehanieal properlies of brillle malerials (Re" < 1/,,12) [1,2).

Malerial Si Mo \V SiC B,C AI,03

p, g/em3 2,33 10,28 19,3 3,215 2,5 3,99
Ho x 10-3, kJ/kg, experimenl 16,2 8,65 4.61 20,0 48,0 28,6

experiment 16,8 7,4
C" lO/S 5510 3355 2904 7906 8957 6401
C" lO/S 9140 6418 5237 12516 14365 10847
Re" = Ho/C; 0,52 0,6 0,55 0,32 0,6 0,7
Ccr, mIs, HO/Cl 1840 1040 882 1600 3350 2637

experiment 900 1600 2500
(C./C,) x 103 5,5 2,3 2,6 0,67 7,6 12
Cs = C-¡,/C, 380 160 150 204 782 700
i'¡IEL, Gra, pCsC, 7,9 10,5 15 8,2 28 30,3

experiment 7,6 10,0 12 8,3 18 21

where Cs = '¡C.C¡ is defined by Eq. (50). When p > mCs, the crystal lattice loses
stability and the crystal enters a coherent nonequilibrium state (see Fig. 3c). As a result,
when

mCs < p < mC", (80)
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TABLEV. Sorne properties oí brittle material s (Re" ::;1//2 '" 0,707) [46J.

Experimental data The results oí calculation

Material p, Ct, C" Ho x 10
, CCrl Recr,

g/cm' km/s km/s kJ/kg km/s
B,C 2.5 8.95 13.5 48 3.56 0.60

SiC 3.0 7.9 12.5 20 1.60 0.32

Si02 2.5 3.07 15.8 9.6 1.85 0.58

Al2O, 3.99 6.40 10.85 28.6 2.64 0.70

where

(81 )

according to Eqs. (47), (49) the conditions (48) is valid and, according to Eqs. (56), (72)
we have

(82)

By these means the momentllm oí atoms in deformed crystal is fixed and by virtue oí
the Heisenberg's lIncertainty principIe a one-to-one correspondence between the nllmber
oí atoms Na and the number oí sites on a lattice No is violated. In turn, the delocalized
atoms fill the band oí mobility. Energy spectrum oí atoms of solid which deformed in
regime (80) is shown on the Fig. 3c. As a result, if the conditions (80) are valid the ductile
crystalline solid (Re" > 1/V2) is deformed hydrodynamically (but in the nonstationary
regime); while brittle solids (Re" < 1/V2) experience multiple fracture. The difference
in the behavior patterns of brittle and plastic solids in regime (80) is analogous to the
difference in the behavior patterns of superconductors of the first and second kinds in a
magnetic field H in the case Hc! < H < Hcz, where Hc! and Hcz are the lower and
upper critical fields.
It is easy to show (see Refs. [1,25]) that Cer is the limiting velocity of crack propagation

in atomic crystal lattice. This velocity is also equal to

(83)

As one might see from comparisons between the experimental and theoretical values of
1'¡IEL, CS and Cen which appear in Tables IV and V, the results of analytical calculations
by means Eqs. (78)-(83) agree well with the experimental data.
When ti > C", an induced energy gap opens in the mobility band (see Fig. 3d). Thus, if

(84)

then both plastic and brittle solids behave like quantum crystals (see, for example
Refs. [54-56], and Eqs. (21), (29), (30)). It is well known that under certain conditions
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(including high pressure ami high deformation velocities, which are realized, for example,
during explosive welding and during the formation of a cumulation jet, see Refs. [6,34]),
a sol id flows as liquids do, while remaining in a crystalline state. This flowing state of
a solid, observed in regimes (80) and (84) for plastic solids and only in regime (84) for
brittle materials, however, is not characterized by the complete absence of an Íllcrease in
the tangential stresses upon an increase in the shear deformations. That is, beginning at
certain critical shear strains and stresses the sol id stops opposing further increase in the
shear, going into a hydrodynamic deformation regime (84). If the Reynold's number of
the flow Re = ud/v is smaller then Ren, where d is the characteristic size of the flow and
the viscosity is

then the deformation of solid in hydrodynamic regime (84) is laminar, and for

Re> Ren

it is turbulent in character. This also applies to regime (80).
In the case

p> ",Gl,

(85)

(86)

(87)

the ductile solid Ren > I/V'i) in the front of the shock wave becomes liquid (when
p < ",GI the material melts only in the stress relicf wave) as a result of the quantum
t unnel melting in a resonance pressure gradient. This elfect is similar to the gigantic
stimulation of tunnel processes by a resonant electromagnetic field examined by I\'Iev [87J.
This conclusion has been confirmed experimentally [88].

5. ApPLlCATION OF QUANTU~I-STATISTICAL APPHOACII '1'0 SOME PHOIlLE~IS OF AI¡~IOH
I'IEHCING

Below we consider the application of quantllm-statistic model to the problems of high-
velocity penetration of long rods into solid targets which were discussed in Sect. 1.2.
In the problem of the high-velocity impact of solids, as in any other dynamic problem,

the main question concems the forces that characterize motion, that is, the forces that
determine the resistance to penetration. Upon the interaction of solid bodies at velocities
that exceed the velocities of defects propagations, one can expect that the resistance of
a target material to the penetration of a projectile should determined by the strength
parameters of an impact-Ioader body that are dependent on the physicochemical nature
and on the structural parameters of the target material. Evidently, the impact velocities
of solids should be on the order of magnitude of the velocity of sound in the material
studied, ¡.e., 103-10' mis. Keeping in mind this range of interaction velocity, let us turn
to a brief analysis of the models available of the high-velocity impact of solids.
The key question is how the strength term for the target depends on the material

properties of the target. The use of a quantum-statistic model of a dynamic deformation
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TABLEVI. Comparison of results of calculations of penetration velocity of copper rod into targets
made of brittle material with experimental data (see Ref. [461).

Penetration velocity, u, km/s

The results of The results of
calculation by Experimental calculation by

Material of Impact velocity Taylor's formula data (Zlatin, Balankin's
target Va, km/s (5) Kozushko) formula (88)

B,C 8.1 5.3 3.85 3.90

SiC 7.55 4.8 3.60 3.60

Si02 5.25 4.44 3.0 3.1

Ab03 7.15 4.29 3.75 3.8

5.90 3.54 2.83 3.1

of a solid makes it possible to obtain the rclation determining the penetration velocity and
depth of penetration of an elongated metal rod in a sol id target without any adjustable
parameters. In the turbulent hydrodynamic regime (84), (86) of deformation of the rod
and the target, the penetration velocity in the stationary stage is equal to

~=

where

~2V [ ]U = 1_ ;2 1- JI - (~2- 1)(Z2 - 1) ,

p,[l + 2(Re~,)-11
pd1 + 2(Re~,)-1]'

Z2 = 2 Pt(C~,)2 - p,(C~,)2 .
P,[1 + 2(Re~,)-1Iv5

(88)

(89)

(90)

Here indices r and t refer to the rod and target, respectively, and parameters Ren and
Cn are defined by Eqs. (75) and (81) or (83).
In Table V the values of the velocities of longitudinal and transverse elastie waves and

heat of atomization for some materials are listed. The results of comparing calculations
using the proposed Eqs. (88)-(90) and (78)-(83), with experimental data on the high
veloeity penetration of long rods into targets made from various materials are given in
Table VI. \Ve can see that there is very good agreement between the theoretieal values of
penetration velocity and the experimental data, given that the scatter in the values of Ho,
C¡ and Cl in the literature is incomparably less than the scatter in the experimental values
for the limiting crack velocity Cn and the Hugoniot elastic limit P¡¡EL' The solutions for
other regimes of high vclocity deformation of materials of target and rod can be obtained
in a similar manner (see, for example, Refs. [1,2,5,6j).
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6. CONCLUSIONS

As we have shown, knowing the elastic properties, matter density and heat of ato miz atio n
it is possible to predict the shock strength and dynamic behavior of brittle and ductile
materials, with an accuracy adequate for experiments.

Moreover, quantum statistical approach can be used to obtain microscopic expressions
for the parameters in the models of explosive, high voltage electrical discharge, and fric-
tion welding of metals (see !lefs. [89]), of spalling phenomena (proposed in !le£. [90]), of
the process of mechanical alloying (developed in Refs. [91-93]), of compaction of metal
powders using high voltage electrical discharge (see !lefs. [89,94]), for the super-deep
penetration phenomenon (considered in !lefs. [1,45,95]), and in other cases as well.

However quantum statistical approach is applicable not only to dynamic problems of
solid mechanics but also to some quasi-static problems such as creep of ideal crystals
and amorphous materials (see Eqs. (57) and (64)-(69)), superplasticity phenomenon (see
!le£. [96]), to the description of phase transformations of a crystal solid (see !lefs. [1,2,97]),
to developing a theory of plastic deformation of ceramic at low temperature (see Re£. [98]),
to the formulation of quantum statistical models of chemical reactions in solid phase (see
!lefs. [89]), to the determination of the parameters that govern the electron fracture mode
in sol ids [99]' to the description of the brittle-ductile kinetic transition in the kinetics of
metal fracture [58]' and for the determination of strength parameters that govern the
processes of fracture of nanostructural materials (see Re£. [100]).

Furthermore, we believe that further developments of the approach reviewed make it
possible to create microscopic theories of such phenomena as shock synthesis of diamonds
(see Re£. [89]), high temperature self-accelerated synthesis (see !lef. [89]), electro stimu-
lation of plastic deformation of metals (see !le£. [101]), which are of great importance in
advanced metallurgical technologies considered in !lefs. [16,89].
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