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ABSTRACT. The present article reviews a quantum-statistical approach to dynamic problems in
solid mechanics, when macroscopic defects, nucleation and propagation are not decisive in the
irreversible deformation and fracture of a solid. The basic principles to construct quantum and
quantum-statistical models of an irreversible deformed or fractured solid are discussed. A general
quantum-statistical model of irreversible deformations and fracture of a solid under dynamic
(shocking) loading is considered. The connection between the quantum-statistical approach and
fractal solid mechanics is discussed. It is shown that the quantum-statistical approach is useful
for an adequate description of various behavior patterns and fracture phenomena in irreversible
deformed solid under dynamic loading. Some future research trends in this area are suggested as
well as potential applications in basic and applied research.

RESUMEN. En el presente articulo se revisa un enfoque estadistico cudntico de problemas
dindmicos en mecdnica de sélidos, para el caso cuando la nucleacién de defectos macroscépicos
y su propagacién no son relevantes en la fractura y la deformacién irreversible de un sélido. Se
discuten los principios bdsicos que permiten construir modelos cudnticos y estadistico-cudnticos de
la fractura de sélidos, y sélidos deformados de manera irreversible. Se considera un modelo general
cudntico-estadistico de la deformacién irreversible y la fractura de un sélido bajo condiciones de
carga dindmica (impacto). Se discute la conexién que existe entre el enfoque cuadntico-estadistico y
la mecénica fractal de sélidos. Se muestra que el enfoque cudntico-estadistico es 1itil para describir
adecuadamente varios tipos de deformacién y fenémenos de fractura de sélidos deformados de ma-
nera irreversible bajo condiciones de cargas dindmicas. En esta drea se sugieren algunas tendencias
de investigacién a futuro, asi como aplicaciones potenciales en investigacién basica y aplicada.

PACS: 05.30; 05.70: 62.20

1. INTRODUCTION

The relationship between the structural parameters of a material and its dynamic strength
is displayed largely under conditions when (in contrast to the quasi-static loading) the
influence of defect nucleation and propagation is not decisive in the deformation and
fracture of solids [1,2]. In particular, such conditions are created by high velocity impact,
or shock loading, when the rate of loading is higher than that of defect propagation [2-6].
Irreversible dynamic deformations and fracture of solids under such loading belong to
the class of processes in which a complex behavior at the microscopic level is behind the
macroscopic effects [1,2,4]. The stability of real structures that operate under complex
conditions, therefore, can be predicted reliably only with a clear understanding of the
nature and kinetics of the quantum processes in a deformed solid [7-9]. The nature of
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the relations between processes of different scales constitute the central problem in solid
mechanics [1,10-12].

As noted in Ref. [13], at present, a theory of deformed solid similar to quantum physics
or chemistry is urgently required. Such a theory would make it possible to calculate the
physicomechanical properties of materials using only their fundamental physical parame-
ters and to answer briefly the following questions: What is the nature of a given crystal:
brittle, plastic, or superplastic? What is the mechanism of irreversible deformation and
propagation of microcracks in a given crystal under the monotonic loading and unloading,
under the dynamic loading, under the cyclic loading, under the stationary loading over a
long period of time, or at elevated temperature, etc.?

Traditionally, the analysis of processes that control plastic deformation and fracture
of solids at the microlevel has been confined to consideration of models that take into
account only paired interatomic bonds [7,8,13-15].

At the same time, strong correlation of the relative positions of atoms at distances
that significantly exceed the interatomic distances —a correlation that ensures the shear
stability of solids— is characteristic of states of condensed matter [1,2]. Therefore, the
rheological behavior of solids is determined by the dynamics of collective excitations
induced by an external factor [1]. Thus plastic deformation and fracture are collective,
far-from-equilibrium processes, whose kinetics are governed by the self-organization of
dissipative structures that ensure an optimal (for specified loading) level of dissipation of
energy of an external action (see, for example Refs.[1,2,16]). Therefore, in developing a
physical theory of the dynamic strength of solids it is necessary to exhibit the mechanisms
of microscopic processes limiting the defect dynamics, because it is this which determines
the process of plastic deformation of a solid.

The difficulties encountered in theoretical and experimental investigations of the dy-
namic behavior of microscopic defects are due to the great variety of factors influencing
their mobility. Furthermore, any physicomechanical action moves a deformed solid away
from a state of the thermodynamic equilibrium [1]. In turn, as a consequence of shear
stability, in a nonhydrostatically stressed solid, the additivity property of energy and
entropy (the latter begins to depend on the shape of the body) is violated. Thus, the
response of a solid is determined by the processes of entropy production and energy re-
distribution, both within the solid and between the deformed body and the surrounding
medium. Notice, that a deformed solid as a whole is by nature, a thermodynamically
closed system (except for some special cases) for which the corresponding formulations
of the laws of thermodynamics, the principle of Prigogine, the Clausius-Duhem relation,
etc. are valid [1,2]. However, the approximation of a continuum is never strictly valid,
because of the existence of nonuniform fluctuations in the density and shape even in the
state of equilibrium [1,9-12]. In fact, in some cases these effects can be neglected, but
generally, the space occupied by a deformed solid does not possess the homogeneity prop-
erty. At the same time, for deformed solids, the property of scaling invariance should be
valid [1,12,17-20]. It is the scaling invariance that provides the possibility of calculations
of the macroscopic parameters of deformed solids on microscale [1,21-24].

A quantum-statistical approach to dynamic problems of solid mechanics was proposed
in our works [24-26] (see also Refs. [1,25,16]). This review is focused on systematic accoupt
of the basic concepts and fundamental principles of this approach. The most important



QUANTUM-STATISTICAL APPROACH TO DYNAMIC PROBLEMS OF SOLID MECHANICS 149

results associated with shock loading and armor piercing, which were obtained by using
quantum-statistical approach, are also discussed.

In this section, below, we consider same classical aspects of shock loading and high
velocity penetration problems. In Sect. 2, the common principles of construction of quan-
tum fracture mechanics models of a deformed solid are analyzed. As a result we conclude
that real processes of plastic deformation and fracture of solid materials unusual from the
point of view of quantum fracture models which are based on the consideration of pair
wise interatomic potentials. In Sect. 3, general quantum-statistical model of a irreversible
deformed solid is considered. The applications of this model to some problems of solid
mechanics are briefly discussed. The fractal effects in phenomena of plastic deformation
and fracture of a solid are also discussed. In Sect. 4, the advanced applications of quan-
tum statistical model to the problem of irreversible deformations of a solid under shock
loading is considered with respect of the results of the experimental investigations. In
Sect. 5, we consider the results of application of quantum statistical model for derivation
of microscopic expressions for parameters which governs the processes of armor piercing.
The possibility of some other applications of the reviewed quantum statistical approach
and the necessity of further study in this direction are emphasized in conclusion.

1.1 The shock loading problem

The problem of adequate description of the processes occurring in solid under impact (or
shock) loading is of fundamental and applied importance. In this problem, as in any other
dynamic problem, the main question concerns the forces that characterize motion, that
is the forces that determine the dynamic strength of a material.

The overwhelming majority of physical phenomena are so complex that, even with the
current state of science, one can rarely create a universal theory of one or another of them.
A single course remains at the disposal of the investigator: To ezperimentally identify the
main parameters governing the phenomenon within their range of variation, abstracted
from the less important parameters, and to construct the simplest possible model of the
phenomenon, clearly revealing its physical essence, for the conditions under consideration.
Excellent example of a solution found using this methodological approach is the classical
theory of shock waves.

It was shown that if macroscopic mass velocity of the atoms of a solid, u, is less than
critical value ug then the transverse and longitudinal elastic waves propagate through the
solid with the velocities C; and C) correspondingly. The pressure in the elastic wave is

P = pCyu < PygL = pClug, (1)
where Pygy, is the Hugoniot elastic limit [3,4,27].

However, when u > ug a shock wave develops, and energy of external action is localized
in the front of shock wave, with velocity

/B
D = Cy + bu, Co= ;Scl, (2)

where b is a constant of a material [27-29].
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If D < C) shock wave has a two-wave structure with the elastic precursor which moves
with the longitudinal wave velocity C) > D. Mass velocity in the front of the elastic
precursor is constant ug [29]. The macroscopic structure of the shock has been studied
thoroughly in terms of phenomenological models (see, for example, Refs. [6,27-30]).

The quantum-statistical model of deformation of a solid under shock loading was devel-
oped in our works [24-26]. The microscopic expressions for the parameters that determine
the kinetics of the various regimes of shock propagation in solid were derived in the
framework of this model [1,2,5,6,9]. We consider the results of these works in Sect. 4.

1.2. High-velocity penetration (armor piercing) problems

Voluminous literature is devoted to problems of impact interaction between deformed
solids. The heightened interest in the high velocity interaction of deformed solids has been
stimulated both by fundamental problems of the physics of high pressure, the synergetics
of deformed media and material science, and by the expanding range of applied problems
that can be solved with the use of axisymmetric and elongated cumulative charges. Be-
cause of this, high velocity impact and penetration were traditional subjects in Russian
technical literature on mechanics and physics for many years. The term “high-velocity
penetration” denotes a dynamic process in which the penetration velocity of a projectile
(the displacement velocity for the projectile-target interface) is higher than the velocity
of defect propagation [4-6,30-33].

Significant advancement has been observed in these studies beginning in the 1940’s and
1950’s (see, for example, Refs. [5,32-38]). The development of apparatus and methods
for investigating rapidly occurring processes, and the appearance of laboratory ballistics
devices have contributed to an improvement in the effectiveness of experimental investi-
gations. The theoretical approach has evolved both due to a more precise definition of the
physical nature of the phenomena under consideration, an as result of refinement of com-
putational methods of computer mechanics, and the development of personal computers.
Some recent papers in this field are cited in the list of references of the present review
(see Refs. [32,33,39-52]).

The classic hydrodynamic theory of high velocity rods striking solids is based on an
incompressible inviscid flow model (see Refs. [34-38]). According to this model, the kinetic
energy of the projectile goes entirely to the kinetic energy of the target and the projectile’s
material flow. The hydrodynamic approach implies that the work of plastic deformation
and increase in internal energy are negligible as compared to the kinetic energy of the
flow. The penetration parameters are determined by the pressure in stagnation point K
(see Fig. 1):

PKO == (3)

where pg is the target density and u is the penetration velocity, i.e., velocity of the contact
surface (the zero subscript refers to the uncompressed target material). It follows that the
resistance of the target to the penetration is determined by the inertial forces. The relation
for penetration velocity is given by the Bernoulli equation which equates the pressure P,
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FIGURE 1. Schematic representation of penetration process as an incompressible flow: in the rest
coordinate system (a) and in the coordinate system attached to the point, K, of branching of
fluxes (b).

at the points where the flows branch to either side of the surface of contact of the rod
(the length of which is much larger than its diameter) and the target:

P, = 0.5 pou® = 0.5 pe(vg — u)?, (4)

where vg is the impact velocity and p; is the rod density. From Eq. (4) it follows that

Avp
= 5
YEIe (5)
where
A= &-; (6)
Po

and at the given density and length of the rod the penetration depth Lo depends on the
target density only:

Lo = M. (7)

Because the relations (5), (6) and (7) do not agree with experimental data (see, for
example, Refs. [35-43]), some empirical modifications were proposed to the hydrodynamic
model, in which the Bernoulli Eq. (4) was augmented by another term, taking into account
the stress-related resistance to the penetration of the rod into the target (see, for example,
Refs. [5,6,38,40,41,42,43]). The most popular form of such modification is

Pk, = ';5.001112 + Hy = %pr(vﬂ —u)? + H;. (8)
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This tactics resulted in the modification of relations (5) and (6) in the form

“:A;\iﬁll(’\“\ﬁ”(’\z“l)ifg)’ (9)
where AH = H; — Hy. Correspondingly the penetration depth is given by the equation
Lo = all =11 2A—H— B (10)

0 = QAlg, a (+p0u2) .

Relations (9) and (10) give a good description of the experimental results of Refs. [36-40]
with the use of only one adjustable parameter A H. However, the lack of any valid justifica-
tion for the additivity of the strength-related component of the resistance of penetration
motivated a search for other modifications of the hydrodynamic model. For example,
in Ref. [43] it is proposed a modification of the hydrodynamic model of high velocity
penetration of long rods into solid targets that gave the formula

Avg AH
= Sl e 11
=3 X 1 2Prvg (11)

a comparison of which with formula (9) shows that for both cases the rod ceases to
penetrate the target at the same critical velocity,

Uer = 2AH: (12)
Pr

but the way in which the strength influences the penetration is described differently.
Specifically, if the same value of AH is used (ordinarily the strength of the rod is ignored,
and it is assumed that AH = H, is the dynamic hardness of the target, equal to

3(1 -2
H; = %PHEM (13)

where Pygp, is the Hugoniot elastic limit, and v is Poisson’s ratio), then according to
Eq. (9) the reduction in the velocity of penetration below that of formula (4) begins
at somewhat higher velocities vy than according to Eq. (11). That is, with model (11)
the strength mechanism is “turned on” more abruptly. Attempts to determine why the
Eq. (11) is better by comparing calculations with experiments of the existing accuracy
in controlling vy and determining u cannot, in our opinion, be considered successful,
since by varying within adjustable parameter, one can produce directly contradictory
conclusions as to which is better, (9) or (11). There also exist many other modifications
of the hydrodynamic model of high velocity of penetration of long rod into solid target,
whose results can be approximated by the relation of the form

Lo = kAlg(1 £ 4P*)®, (14)
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where £ is a constant coefficient that characterizes the momentum transfer from the rod
to the target, while for the quantities in the parentheses, v and b are constants of the
material and P* is a function of impact velocity, vg, which takes into account the effect
of the strength (usually, P* = AH/p,u?). Therefore, according to Ref. [38], even when
the target and the rod are made of the same material, (A = Kk = b = 1), H; and H,
do not coincide, but 2.5 < Hy/H, < 3 and yP* = —/_\H/prvg, where AH = 0.66 H;. A
more correct way of taking into account the geometric factor, developed in our work [44],
showed that with small corrections for the strength of the target (H,/p,v < 1), and of
the cumulative knife (H,/p,v? < 1) the following relations hold in the first approximation:

H, = H—\/t; [3111 (2\/51%) —In 2} , (15)
HP G;
H, = B [1+ln (\/§4HP):|, (16)

where HP and HP are the dynamic yield points of the materials of the target and the plane
cumulative knife, and G; and G, are their shear moduli. For the case of the penetration
of an axisymmetric rod into a semi-infinite target:

AH = HP [§+1n (;{—GD)] (17)
t

The theory of high velocity penetration of porous targets was developed in our
works [51,52]. It was shown that the predictions of this theory are in a good agreement
with results of experimental investigations [34,42,53].

The method for determination of the parameters which governs processes of high veloc-
ity penetration on the basis of quantum statistical models of irreversible deformed solids
was proposed in our works [1,5,24,25]. The most important results of these works are
considered in Sect. 5 of the present review.

2. QUANTUM-FRACTURE-MECHANICAL MODELS OF DEFORMED SOLID

The usual approach to constructing the quantum fracture mechanics of irreversible de-
formed solid is based on the use of an interatomic pair wise potential U(r) (see, for
example, Refs. [1,7,8,15]) which, independently of the type of interatomic force, has the
shape shown in Fig. 2 and characterized by:

1) Minimum in U(r;;), which corresponds to the equilibrium interatomic distance r;; at
zero absolute temperature (7' = 0 K) and is determined by the competition of the
forces of attraction and repulsion.

2) Position r, at which the force of interatomic interaction (proportional to (8U/dr))
reach a maximum, i.e., 82U/8r?|, = 0.
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3) Energy spectrum of this potential represents a set of energy levels, ¢,; in the ground
state, an atom, owing to zero oscillations, possesses a finite energy

mh /U(ri;)

T‘,;J‘ m

, (18)

reckoned from U(r;;) = 0. Here k = 1.05 x 1073¢ J x s is the Planck’s constant and
m is the mass of an atom.

4) The amplitude of the zero atomic oscillations is equal to

(&r) — M_Ca_, (19)
mU(rl-j)
where
mh
C, = (20)
m'r,-j

is the mazimum velocity of a finite motion of atoms in the potential well U(r) at this
energy level, and

_(Ar)  mGC,
AB B Tij B mU(r.-J-), (21)

is the De Boer’s parameter (for solids Ag < 1 and for quantum crystals Ag ~ 1 [54]).

5) Because of the Heisenberg’s uncertainty principle, the energy levels of the atoms in
the pairwise potential have a finite width. It is easy to show that the energy width of
the ground level is equal to

(22)

We note that écg is equal to the kinetic energy of an atom for which the de Broglie
wavelength Ap is equal to interatomic distance, te.

Ap = 2rij.

This equality corresponds to the velocity of atomic motion u = C, of the atom.

6) Because of the asymmetrical shape of the potential, U (), the degeneracy of the levels
n=1,2,...,is lifted. So that the difference in the energies of the neighboring levels,
Aen = €py1 — €, decreases with growing n. Each energy level is characterized by its

stable atomic configuration and specific interatomic spacing, rf-;-'). As a rule,

HH) S )



QUANTUM-STATISTICAL APPROACH TO DYNAMIC PROBLEMS OF SOLID MECHANICS 155

Fr

FIGURE 2. The shape of an interatomic pair wise potential and energy spectrum on it.

This condition determines the thermal expansion of a solid.

7) In this analysis, the state of a quantum crystal is realized if
Agg < bey. (23)

It is well known that under certain conditions helium changes into a quantum-crystal
state. The physics of quantum crystals is described, for example in Refs. [54-56].

Using quantum fracture mechanics to solve a problem of the initiation of cracks and dis-
locations makes it possible to predict the brittle-plastic nature of a specific crystal [9,13].
The difficulties encountered in experimental and theoretical investigations of the dynamic
behavior of dislocations are due to the great variety of factors influencing their mobility.
Under a given external load the deformation conditions depend on the type of a crystal, the
crystal structure of the lattice, the nature of the moving dislocation, and on numerous
mechanisms of the interaction related both with the microstructure of the stress field
(determined by the characteristics of the real material and by the lattice defects) as
well as with various quasiparticle excitations. In discussing this problem it is usual to
separate the main dislocation drag mechanisms into two groups. The first group deals
with the effect of barriers created at a local obstacle such as impurities, point defects,
other dislocations, radiation damage, etc., or by the Peierls potential relief, which is an
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unavoidable concomitant of the periodic structure of the lattice. As is well known, such
barriers are overcome by thermal or quantum fluctuations. The second group comprises
dynamic dissipative processes of the interaction between dislocations and elementary ex-
citations in a crystal, primarily phonons and electrons. This type of interaction is viscous
and at low dislocation velocities the drag force is a linear function of the velocity, the
coefficient of proportionality representing the viscosity of the quasiparticle gas.

The shortcomings of the quantum theory of solid state and quantum fracture mechan-
ics are associated with the use of interatomic pairwise potential. Actually, however, the
states of condensed matter, namely crystalline, amorphous, quasicrystalline, and liguid
are characterized by strong correlation in the relative positions of atoms at distance, Lo,
much greater than rg'-l). In various states of condensed matter the energy of a volume
element of the system is a function of the relative arrangement of the atoms. At a given
density, the difference between the energies of different local configurations of atoms is
large in comparison with the characteristic thermal energy; i.e., the relative positions
of the atoms are correlated in a mesoscopic element of the system, which implies the
shear stiffness or resistance of a condensed system (including the local shear stiffness of
viscous liquids). In condensed matter, only certain configurations of particles occur with
an appreciable probability, implying that a definite local structure exist. In a crystal at a
sufficiently low temperature the relative positions of atoms are determined to within small
fluctuations by the elementary translation vectors of the ideal lattice. The local structure
satisfies the conditions of the Fedorov’s theorem. At higher temperatures, where the dis-
placement amplitudes of atoms from their local-equilibrium positions become significant,
the concept of local structure may be defined [57] and we can treat the instantaneous
arrangements of atoms in an element of the condensed matter as a result of displacements
from certain ideal positions. Therefore, the rheological behavior of real deformed media
is governed by the dynamics of collective excitations. This fact has also predetermined
the successful use of the ideas and methods of synergetics in solid mechanics (see, for
example, Refs. [1,22,47,58-60]).

3. QUANTUM-STATISTICAL FRACTURE MODEL OF DEFORMED SOLID

The spectrum of structural ezcitations (defects) in deformed solids can be determined
correctly from the solution of the non-steady-state equations of stochastic mechanics (see
Refs. [1,2,61]) with the potential Vj;(r) that is formed by an ensemble of atoms. This
potential determines the “structural memory” of the deformed solid. Analytical solution
of the equations of stochastic mechanics in the general case is, obviously, impossible. How-
ever, the main properties of the collective motion of excitated atoms can be established
prior to the complete solution of these equations. Probably, it would be sufficient to use
the approximation of the potential relief V;; in the following general form:

Vis(r) = V£ (r), (24)

where f(r) is a periodic (quasiperiodic) function with period 2aq that is defined on the
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scale of the order of ~ Ly, and

Vij =

{U(T), Iri — 1] < ag,
(25)

Volrs = 7517%,  Iri — rj] > ao.

Here U(r) is a V-shaped potential which is defined by interatomic interaction within the
first coordination sphere of radius ag; this determines the compressibility of the solid,
which is characterized by the bulk modulus B, as

B x jg U(r)d®r,
a3

(1]

while Vg|r; — 7|7 takes into account the long-range interatomic correlation, which de-
termines the shear stiffness of solid, characterized by the shear modulus G = pC?, where
p is the density of the matter and Cy is the velocity of transverse acoustic waves (in a
liquid Cy = v/Lg, where v is the dynamic viscosity and Lg is the characteristic length of
energy dissipation).

The following properties can be shown in this general case:

1. Because two atoms cannot located in the same site of the potential relief which is
formed by the system of atoms, the lattice sites closing follows the Fermi statistics. In
most crystals the thermal movement of the atoms at temperatures considerably below the
melting point has the character of small vibrations about the crystal lattice nodes. The
smallness of the vibrations implies that the mean thermal displacement of an atom from
the node is very small in comparison with the lattice constant ay, i.e., (Ar) < ag. In this
case

Ap < 1, (26)

and in an ideal crystal at the temperature T = (0 K, all the atoms are in the lowest energy
level (ground state)

e0 =~ 2K4Op, (27)

where Ky = 1.380662 x 10~2® J/K is Boltzmann’s constant and ©p is the Debye temper-
ature of a solid.

The width of the ground energy level is defined by Eq. (5). It is necessary to note that
even in the case Ap < 1 the energy of the zero-point oscillations is not small. If the
temperature of a solid

T < 20p, (28)

then the energy of zero-point oscillations is higher than energy of thermal oscillations.
For the majority of materials £y has the order 0.2 H,,,, where H,, is the melting energy,
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and approximates to the energy of structural transformation if it exist. For example, for
titanium:

eo/Hm =0.29, eo/Hq—p = 0.71;
and for zirconium:
go/Hm = 0.20, £gfHo—p = 0.71.

Here H,_p is the energy of a — 3 phase transition from hexagonal structure to body
centered cubic structure [2].

2. For quantum crystals, such as helium quantum crystal, the magnitude of zero-point
oscillations (see Eq. (19)) is comparable with the interatomic distance r;; and

Ag ~ 1. (29)

For example, 3He has Ag = 0.49, *He has Ag = 0.43, Hy has Ag = 0.28, and Ne has
Ag = 0.1. There are other example for which Ag > 1 (see Refs. [54-56]). This refers to
admixtures of light elements in matrices of heavy metals. Owing to their small mass and
weak interaction with the atoms of the matrix, the atoms of the impurity are characterized
by a parameter Ag > 1. For example, this happens for hydrogen in matrices of niobium,
zirconium, palladium, etc.

In all these cases the fundamental assumption of solid state quantum theory that par-
ticles and crystal nodes correspond, breaks down. Because of this, any defects in quantum
crystal are delocalized and all atoms of quantum crystal are in the state of zero-motion,
that is accompanied by transfer of the atoms between sites of crystal lattice therewith the
number of atoms is not equal to the number of sites in crystal lattice. On the other hand,
the particles forming the crystal are generally identical. In quantum mechanics identical
particles are indistinguishable. A situation arises in which a multitude of identical particles
exists in a discrete crystal lattice, the wave functions of which overlap strongly owing to
the large magnitudes of amplitudes of the zero-point vibrations. The overlap of the wave
functions implies that the atoms are actually converted into moving quasiparticles in the
space of the crystal lattice. One can no longer say that each particle corresponds to one
definite lattice node. Any atoms can exist at any node.

Evidently, two particles cannot exist simultaneously at the same lattice node. Therefore
an infinitely large repulsion exists when the coordinates of two quasiparticles coincide.
This is described by an “impenetrability” potential of quasiparticles at the same lattice
node. Therefore it is important to take into account the correlation between particles as
they approach one another.

Thus numerous crystals exist that clearly manifest the following features:

a) the energy of the ground state of the crystal is altered by the presence of a large
repulsion between the quasiparticles;

b) the atoms are converted into moving quasiparticles in lattice space;
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¢) the wave functions of the atoms overlap, leading to a finite probability of tunneling
of atoms from one node to another, and as a result, the quasiparticle (“vacancion”)
band is formed as the analog of the conductivity band for electrons in metals (see,
for example Refs. [54]).

At non-zero temperature the crystal tends to have a minimal free energy. Hence it
can lose a little energy while slightly increasing in disorder. The conflict between this is
minimal when a certain number of vacancies exists —nodes not containing atoms. Owing
to the large amplitudes of zero-point vibrations of the atoms, these vacancies become
vacancions— quasiparticles characterized by a certain value of the energy ¢ and quasimo-
mentum p. Thus, a quantum crystal contains a gas of vacancions® whose displacements
are equivalent to the displacement of atoms.

Vacancions can exist even at absolute zero temperature: zero-point vacancions. In this
case they also can move in the crystal in the equilibrium state. One can picture a quantum
crystal as though it contained within itself a liquid consisting of zero-point vacancions,
and hence capable of moving easily through the crystal lattice. The flow of this liquid is
accompanied by transport of matter. In contrast to an ordinary liquid, here the direction
of mass transport opposes the direction of flow of the vacancion liquid. The vacancions
lower the energy of the ground state of the crystal [56]. The bottom of the vacancion band
lies below the energy of the ground state of the crystal. Energy width of the vacancione
band is proportional to the quantum tunneling frequency (Tg)‘l of atoms in crystal
lattice:

_ i
A x ('rg) I x 7 (30)

where J is the jump integral which governs the momentum of quasiparticles in a quantum
crystal:

p = hmagJ. (31)

In a certain sense, quantum crystals having zero-point vacancions are analogous to metals,
i.e., crystals containing a liquid consisting of electrons. The electron liquid in a metal also
can move easily through the crystal lattice. But every change in the electron density is
accompanied by appearance of charge density, which gives rise to very strong electric
fields, owing to which the spatial redistribution of mass of the material does not occur.
In a metal a vacancy is an electrically neutral object.! The flow of the vacancion liquid in
a quantum crystal can be accompanied by a change in the spatial distribution of matter.

Quantum crystals are strongly anharmonic even at absolute zero and therefore possess
unique properties, in particular, an essentially new motion of the atoms is possible in
them: quantum diffusion (see Refs. [1,2,54-56]).

*It is more properly to use the term “vacancion liquid” because the motion of vacancions has more
direct analogy with liquid flow (there is not the charge of volume).

'In ionic crystal a vacancy has electrical charge (see, for example, Ref. [62]) and by this reason the
discussed phenomenon of mass transfer by vacancions flow in ionic crystals is more complex.
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Any defects in crystals in which the parameter Ag is not a small quantity in comparison
with unity are delocalized and become quasiparticles —defectons, which are characterized
by a certain value of the energy and quasimomentum.

A light impurity atom in a quantum crystal also behaves like a quasiparticle —an
impuriton or mass-fluctuation wave [54].

A quantum crystal is a highly specific state of matter. As we have noted above, its
density distribution is periodic in space. That is, in symmetry it resembles an ordinary
crystal, but in the character of motion of quasiparticles it occupies a position intermediate
between a liquid and a solid. A first form of motion has the property of motion in a liquid
—this is the flow of the vacancion liquid with immobile lattice nodes. In a gravitational
field a quantum crystal can flow from vessel to vessel analogously to liquids. However,
the flow here is peculiar: the transfer of matter from top to bottom is effected by flow
of the vacancion liquid from bottom to top over the crystal lattice nodes. The motion
of the above stated quasiparticles is a quantum diffusion in lattice space, which has
been found experimentally in Khar'kov, Russia (Grigor'ev, Esel’son, Mikheev, Shul'man)
and in Sussex, England (Richards, Pope, Windom) in 1977. The diffusion coefficient is
an important, experimentally measurable characteristic of the gas of quasiparticles (see
Ref. [56]).

Depending on the statistics of the original atoms comprising the crystal, the quasipar-
ticles in a quantum crystal obey either Bose-Einstein or Fermi-Dirac statistics. Both of
these excitations can be found in a crystal in different concentrations or in the form of a
solution of Fermi-Bose quasiparticles. A striking example of a quantum crystal is the 3He—
“He solution. Phenomenological equations of hydrodynamics describing the macroscopic
motions in quantum crystals have been proposed by Andreev and Lifshitz (see Ref. [63]).

3. It is apparent that for crystals with defects there is discordance between the number
N, of atoms and the number Nj of potential sites on a lattice. As indicated below, if
concentration of defects has more than the critical value, this discordance gives rise for
delocalization of defects in crystal lattice even in the case A < 1.

If the ratio

n=—<1, (32)

then the Hamiltonian of the system can be written in the form of the Hubbard Hamilto-
nian [64]

H =Y Uyd}d;. (33)
ij

Here U;; describes the transition of an atom localized at a site j to its nearest neighbor
?; and

df = (1+afa;)a}, (34)

+

where a;", a; are the atom operators.
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Equation (33) yields the following expression for the average energy:

(H) = Y U(k){d} d;);, (35)
k

where U(k) and (d;-*dj),-c- are the components of the Fourier transform of Ui; and (d} d;),
respectively, Here,

(10 = [ Rate)de (36)

(see Ref. [65]), where

Ru@) = [1ren (FF)] T ((ald Wepris— (@he) . @D

E—0

 is the chemical potential, and ((d,- /dj )) k. are the components of the Fourier transform

of the Green’s functions, ((di f df )) These Green’s functions are given by the equation

((de/ ) = 520~ ) + (e /dF)),. (38)
We shall set

(daH)-147)), = 4 Ul(defa*3), + B asfaty), )
t
In our case, the actual form of the coefficients A and B is irrelevant. As a result, we obtain

1~
(didf ), = (e —e(R))’ (40)

and

(= n)be - e(k)
Ble) = 3 explle - @)K -

The ground-state energy is given by equation
1 "
€0 = N Ek (1 =n)U(k) ©u — (k)] (42)

where

1, x>0,
0= (43)
0, = <0.
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Using the approximation of the density of the atom states in the form

1 _
= Za[s —U®K) =Ug?, el <0.5U5,
k

(44)
0, le] > 0.5Up,

we obtain the expression for the ground-state energy
g0 = 0.5Upn(1 — n). (45)

We can write Hamiltonian (33) in the following form:
H = ZU;} af aj, (46)

where U is effective transfer integral. From Egs. (35) and (46) it follows that
4(1 —n)

&= —Uij. 47
U‘J (2 - n)2 UJ ( )

That is the increase of the concentration of defects must occur with an increase of effective
transfer integral. As a result, if

N < Mer, (48)
then
Ug > Up = mC,C, = mC3, (49)

and atoms of a solid are delocalized. This is reflected in the fact that vacancione band
in solid is formed as a analog of the vacancione band in quantum crystal. By this means
mass transport in solid with defects can be accounted for in two ways:

a) as a result of the motion of atoms, accompanied by the displacement of the sites of
crystal lattice,

b) as a result of an atom stream on fixed sites of lattice (analogous to the liquid flow).
The parameter

CS =/ CaCt (50)

is the stability of crystal lattice mass velocity. As we shall show below, if the momen-
tum of atoms in crystal lattice p > mCg then these atoms are delocalized. This means
that crystal lattice loses its stability and a crystal goes over to the non-equilibrium
state.
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Notice that for a crystal that satisfies condition (26) under standard quasistatic loading,
condition (32) is beyond reach, since the crystal disintegrates at a smaller concentration
of defects. But already in the classic work of Bridgman [66] it was established that under
the simultaneous action of hydrostatic and shear stress diffusion processes intensify to an
extreme extent and solid flow like as liquid, while remaining in a crystalline state.

4. The effect of interatomic action at a distance results in a power dependence of the
correlation function of atoms in condensed matter [63],

(n(a)n(a —r)) ~r7¢, (51)

which is characteristic of fractal structures (see, for example, Refs. [1,12,67]). The expo-
nent in Eq. (51) is determined by the fractal dimension D of the wave functions v; of the
atoms formed the solid and the topological dimension d of the Euclidean space (1,21,67):

a=d-— DF. (52)

As a result the structural ezcitations in crystal can be either irrotational (curl@ = 0),
for example vacancies, interstitial atoms, edge dislocations, etc. or solenoidal (div @ = 0),
for example screw dislocations and disclinations; the latter type also caused significant
rotational modes of deformation, studied, for example in [68]. However, only a restricted
set of atomic configurations can be realized with a significant probability in the elements
of a condensed matter having volume of the order of ~ L3, where Ly is the mean length
of relaxation of momentum of atoms in crystal lattice [1].

Because of this, in order to determine Dp for Eq. (52) the discussion may be shifted
from the atomic level to the mesoscopic level, where the exponent a can be expressed
in terms of Poisson’s ratio v, which specifies the change in volume during longitudinal
deformation of a solid:

a=1-2v (53)

Hence, using Eqgs. (52) and (53) and bearing in mind that d = 3, we obtain the relationship
for fractal (metric) dimension of the wave functions of atoms in the form

Dp = 2(1 + »). (54)

Since 0 < v < 0.5, where the lower and upper limits are a consequence of the Le Chatelier-
Brown principle of stability for elastic lattice, we have 2 < Dy < 3.

5. Typical energy spectrum of atom excitations in a crystal lattice is shown in Fig. 3a.
When T > 0 K, some of the atoms enter higher energy states corresponding to different
kinds of quasiparticle (vacancies, interstitial atoms) and collective structural excitations
(dislocations, disclinations, etc.). These transitions are accompanied by the emission and
absorption of the collective Bose excitations (density and shape fluctuations) with dis-
persion curves of the type shown in Fig. 3b. The interaction of the excitations causes a
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FI1GURE 3. The energy spectrum of atoms in a crystal with defects and changes in the spectrum
as a result of kinetic phase transitions at the critical values of the momentum of atoms (these
changes cause changes in the behavior patterns of dynamic deformation of a solid) [25]: (a) in a
state of thermodynamic equilibrium, (c) for mCs < p < mCy, (d) for mC., > p > mCj; and a
spectrum of Bose-type excitations in crystal with defects (b).

splitting of the energy levels which is responsible for the formation of the mobility bands
(these bands are the analogs of vacancion bands in quantum crystals and also analogs of
the conductivity bands of electrons in semiconductors and dielectrics).

6. The wave function %, of atoms in crystal satisfies the Schrodinger equation

2

h
—AY +ey = - ZV?;' ¥, (55)
J

2m

with the potential governed by Egs. (24),(25). When short- and long-range interactions ex-
ist, spatial dependence of the wave function is characterized by a hierarchy of lengthscales,
which obviously determine the spatial scales of the structural levels of plastic deformation
and fracture of solids (see Refs. [1,2,21]).
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TABLE I. Parameters of quantum-statistic model for some materials [25].

Material
Cu Ag Au Al Diamond Si Glass
Ca, m/c (3) 13 6.4 3.5 26 109 30.4 44
Re., 0.93 0.85 1.01 1.14 0.54 0.52 0.58
Ly 0.9 1.6 2:1 0.7 0.35 0.85 =
(0cv/G) x 105 2.6 1.3 0.8 6.4 7.8 18 115

7. The relaxation time TIE") of a momentum of atoms (n = 0) and of structural excitations

of the n—th level is much less than the time of energy relaxation, i.e.,

Tg(n) > Tpn),
where
 ,_% _L (0) _ %0
Tp XA Te o, (56)

Here Lg is the mean length of relaxation of momentum of atoms in crystal lattice and Cs
is defined by Eq. (50). By this means

Lu/ao ~t \/Ct/Ca > 1.

For this reason, localized far-from-equilibrium regions are formed in deformed solid even
under comparatively small loads,

O~ Oy = 0.5pC3. (57)

It can be seen from Table I that oo, ~ 107G ~ 1 MPa (where G = pC? is the shear
modulus), in agreement with experimental data (see Ref [69]).

8. An external influence causes a redistribution of the atoms among the energy states if
the stress obeys o > oy, where o, is defined by Eq. (57). When ¢ > 0.y, the response of
a deformed solid is determined by the superposition of structural (s) and condensate
(c) components associated with mixing of defects in the stress field and with forced
Bose-condensation of induced density and shear fluctuations (analogous to the forced
Bose-condensation of photon in laser). For example, plastic deformation is given by the
expression

€p = € + €(t),

which is in accordance with the scheme wherebly experimentalists (see, for example
Refs. [70,71]) separate €,(t) into sudden and time-dependent components. Thus, structural
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(for example, dislocation), condensation (dilation [72]), and mixed mechanisms for crack
formation may be realized.

9. If the stress o applied to a solid exceeds a critical value o, irreversible creep occurs,
manifested by a steady increase in the plastic strain €, with time { under a constant
stress and by incomplete relaxation of €(t) to the initial value ¢(0) = 0 when the load
is removed. Depending on the temperature, there can be transient and stress-state creep
with, respectively, a very slow (approximately logarithmic) and a linear increase in the
strain with time. The first type is observed experimentally at temperatures T less than
half the melting point T, and shows a decrease of the strain rate ¢ = de/dt to zero under
constant load. The second type is observed for T > T¢ ~ 0.5T},, and here €,(t) for t — oo
reaches a value R(o) # 0. Far from the melting point, the dependence of R on the applied
stress o is given by a power law

R(o) x o™, (58)

with 3 < n < 4.5, if ¢ is well below the theoretical strength ¢ < oax ~ 0.1 G; and an
exponential

R(o)  exp (c%) (59)

with C = const., if ¢ < oax. When T < T, diffusion creep is observed, with a linear
dependence R(o); this occurs also for small loads o [70].

10. The free energy in the configurational space of states of a solid under a load o > oy is
shown on Fig. 4a. The fractal dimension of the thermodynamic potential in configurational
space of states is dp = Df — 1. In the approximation of central nearest-neighbor interac-
tions, the Cauchy relations give us v = 0.25, from which it follows a = 0.5, Dp = 2.5,
dp = 1.5. Detailed form of the free energy in configuration space with a finner resolution
of the defect structure and corresponding ultrametric space are shown in the Fig. 4b, c.

11. Spatial distribution of collective excitation in a deformed solid is self-similar. The
fractal dimension of inhomogeneous field of such excitations is defined by Eq. (54). There
exists a hierarchy of characteristic spatial scales (of collective excitations in a deformed
solid (n=10,1,2,3,...)) described by the ratios

_ Lapy1 _ curleurld  2(1 —ve)
~ L, graddivi (1 -2v.)’

(60)

where @ 1s the material vector velocity. Such an hierarchy manifests itself in the self-
organization of structural levels of deformation and fracture of solids that are not con-
nected with the initial structure of the material (sce Refs. [1,2,7,25]). Here v, is the
effective coefficient of transverse deformation, which equals v only in the case of elas-
tic deformations. Since the possible values of Poisson’s ratio for solids lies in the range
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FIGURE 4. Free energy in the configuration space of states of a solid containing defects under
a load ¢ > 0., (a); details of the curve of the thermodynamic potential as a function of wave
vector (b) and the corresponding ultrametric space (c).

0.165 < v < 0.475 [73], @ can vary from 2.5 to 3.0, and the value v = 0.3, characteristic
of most natural materials, corresponds to @ = 3.5, which agrees with the empirically
established [21,74] range of variation of relative scales of structural levels of fracture of
solids (see Table II), with the most probable value equal to 3.5.

Notice that the Poisson’s ratio for metals, alloys, and metal compounds in the elastic
region is determined by the structural value, vg, and the constant of the electron-phonon
coupling, A, as [2,75-79]

_w+t (2 — 3v)Af(T)
1- 5(2-3u)Af(T)’

(61)
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TABLE II. Particle discreteness in grain-size analysis for rock grinding products [83].

Processing L% 103, m LngafLn
Crusing 228+ 77 3.1 1.7
74+ 16 49+ 24

15+4 30+14

51 3.3+0.8

1.5+£0.1 40x+1.5

Powdering 170+ 14 23+0.5
74+ 11 23+04

32432 2.7+£0.7

11.7+ 18 3.3+ 1.2

3.0+0.7 3.8+04

where

on

[

() = e
/ dﬁé(&,—; - EF)

is the function determining the temperature dependence of the effective density of electron
states, f(I' = 0) = 1; n is the Fermi function, 7' is the momentum of electron, ¢; is
the electron energy spectrum, Ep is the Fermi energy, and §(...) is the Delta function.
For BCC metals and their disordered alloys vy equal to 0.25, and for metal compounds
with A 15 structure vy = 0.296 [78,79]. As have been shown in these works, theoretical
calculations by Eq. (61) are in an excellent agreement with experiments.

12. The relation (60) characterizes the self-similar regimes of deformation and fracture of
solids observed experimentally under certain conditions. However the existence of not less
than three independent length scales

o\ /2
ao, Lo = ag x (Ft) y Ly = &Ly,
a

even in elastically isotropic solids, give rise to the complicated dynamics of self-organi-
zation of dissipative structures and, in particular, the possibility of formation of incom-
mensurate dissipative structures, having a new set of independent length scales, obtained
as a result of dynamic mixing of the starting scales (see Refs. [1,22]). The incommen-
surate dissipative systems can be formed as a result of the.kinetic phase transitions
—accompanying a change in the parameters of the perturbation— and as a result of the
scale phase transitions (see Refs. [1,47]) —accompanying an increase in the dimensions of
the deformed solid body.
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FiGURE 5. The dependence of specific failure energy on size: 1) quartz, 2) glass, 3) marble,
4) clinker, 5) porphyry, 6) coal, 7) gabbro, 8) diabase, 9) drilling, 10) explosion, 11) rock bursts,
12) impact, 25 m/s, 13) earthquakes. The line represents the analytic expression (63) found by
least-squares fitting.

13. The limiting value potential energy of elastic strains that can be accumulated in

(n)
autolocalized structural excitation of the n—th level is proportional to (Ln)Df , where

2(1 — v{™)
1- 21/.5")

is the dimension of the structural excitations of the n-th structural level, which is de-
termined by the effective structural value of v§ ™ Tt s easy to see that D(n) > 4/3. The
intensity of entropy export from the far- from-equlhbrlum regions where an excessive en-
ergy is autolocalized (controlling the kinetics of self-organization of dissipative structures),
is determined by the fractal dimension of the surface of the far-from-equilibrium regions,

D(” 2(1 + ve )) According to the S-theorem (see Ref. [80]) the self-organization of a
d1551pat1ve structures in open systems is accompanied by a decrease in the entropy and
in entropy rate production, which are normalized to a constant value of the mean kinetic
energy. Analog of the S-theorem for processes of self-organization of dissipative structures
in a deformed medium may be represented in the form of the D-theorem (see Ref. [24]):

(n) _
Dy =

(n) (n+1) (n) (n+1)
DM Vi ol Df" > Df" , (62)
from which it follows that limiting energy density is not invariant, since

(e(r) e(r')) oc r™2n, (63)

The experimental data for dependence of the specific fracture energy on size of solid are
given in Fig. 5. This dependence is in agreement with Eq. (63).
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14. The generalized equations of the transport of mass, momentum, and energy (including
heat) in a deformed solid can be written in the form

% avu
—_— = Dg—, (64)
ot ax7

where Dj is the effective diffusion coefficient (the thermal conductivity, etc.); and 87 /6t7,
d7/at" are the fractional derivatives with respect to time and coordinate. In homogeneous

media 3 and 7 are equal and are determined by the fractal dimension D;"):

By =1+ 20", (65)

and in materials with multifractal microstructure 3/ = 6, where 6 # 1/2 is the exponent
of anomalous diffusion, which is defined by equation: Dy o 7% (see, for example, Ref. [81]).

The use of fractional derivatives permits a simplification of the mathematical form of
the transport equations in far-from-equilibrium systems and gives them a graphical inter-
pretation. To elucidate the physical meaning of a transition to a space with a fractional
dimension, it is convenient to write Eq. (64) in integral form:

t
G(t) = / K(t — 7)u(r)dr, (66)
0

where K (t—7) is a memory function (the relaxation kernel, the creep kernel, etc. (18,82]).

In the case of no memory, K(t —7) = §(t — r), the delta function (a Markov’s process):
B = 2; i.e., the transport field is not self-similar (D = d = 3). With complete memory
K(t —7) is equal to 1 for 7 < t and zero for 7 > t; # = 0, which corresponds to Df = 1.
In the general case,

K(t—71)~(t—r)Pr1

i.e., the fractal dimension of the transport fields in deformed media is determined by the
“memory” of the medium. In this case the invariant is the product

Dj, x sﬁ,’:) = const., =012 s (67)

where E,'S:) is the limiting density of energy that can be accumulated in a volume of the

order of ~ L3. The relation (67) is in agreement with experiment (83].

15. For creep of a solid material it is easy to obtain with the Laplace-Carson transform
(see, for example Refs. [82,84]) an expression for Dp in the form

— 68
2 4+w’ 3B — 3B’ (68)
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where B, G and R(t) are the bulk modulus, shear modulus and relaxation modulus. Thus
we have
4 —w
l<fg=——<3. 69
g 2+w ™ (69)
This result was used in Refs. [20,82] for developing the theory of plasticity with fractal
yield surface.

4. QUANTUM-STATISTICAL MODEL OF DYNAMIC DEFORMATION OF SOLIDS

The relationship between the structural parameters of a material and its dynamic strength
is displayed largely under conditions when the influence of defect nucleation and propaga-
tion is not decisive in the deformation and fracture of solids. In particular, such conditions
are created when the rate of loading is higher than that of defect propagation. From this
standpoint, the investigation of the behavior of solids upon high-velocity impact is of
interest. Below we consider the response of a solid to shock loading which imparts a
momentum p = mu to the atoms (@ is a macroscopic mass velocity of the atoms of a
solid).
By using considered above quantum-statistical model it is easy to show that if

p < mC,, (70)

then the transverse and longitudinal elastic waves propagate through the solid with the

velocities Cy and C), correspondingly (notice that this condition is the generalization of

the classic condition (1)). The pressure in the elastic wave is also given by Eq. (1).
When the momentum of atoms

p > mC, (71)

a shock wave develops. The temperature-independent time of redistribution of the atoms
on the front of shock wave (by means quantum tunnelling in gradient of stress) is

2ag -
T;E X ? (1'2)
In the case
mC, > p > mCs, (73)

in consequence of the relations (56) we have
Tp < T;E < Tes (74)

and energy of external action is localized in the front of shock wave, that moving with
supersonic velocity, D, which is determined by Eq. (2).
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By virtue of Eq. (74) the periodicity of crystal lattice has little or no effect on the
kinetic of quantum tunneling of atoms in the front of shock wave. Because of this, at the
conditions (73) shock wave has a two-wave structure with the elastic precursor.

Here we consider the microscopic expressions for the parameters that determine the
kinetics of the various regimes for high-velocity deformation in solids and for shock prop-
agation. In considered above quantum-statistical model of irreversible deformed solid the
character of the response for p > mC, is determined by the parameter

Ly Hy

Rey = — = —;,
T & C?

(75)
where Hy is the binding energy of the atoms, & is the correlation radius of elastic fields,
Ly is the mean length of relaxation of pulse of atoms in crystal, and the relation

A = Lo/2ag = \/C,/C,

is the analog of the De Boer parameter [see, Eq. (21)]. It is pertinent to note that the

difference in the behavior of solids for which Rec; < 1/v/2 and materials with Re., > 1/v/2

is analogous to the difference in the behavior of the superconductors of the first and second

kinds in a magnetic field (see, for example, Ref. [85]); and the critical parameter Re., is

the analog of the Ginzburg-Landau parameter for superconductors (notice that Re,, is

also the analog of the critical value of Reynold’s number in hydrodynamics (see Ref. [28]).
As indicated in Refs. [1,2,24,25], for ductile materials

Reo > -ﬁ ~ 0.707, (76)
and for brittle materials
Re., < % (77)

As is obvious from the data listed in the Tables IIT and IV, this conclusion is in agreement
with the experimental data.

In the case Re, > 1/v/2 (ductile materials) macroscopic mass velocity in the elastic
precursor ug and the Hugoniot elastic limit Pygy, are given by the equations

ug = C,, PygL = pCsCh. (78)

If the relations (56) are valid an elastic precursor is accompanied by the plastic wave (see,
for example, Refs. [2,6,27,86]), Egs. (78) are in a good agreement with the experiments
(see Tables III and IV).

If Re., < 1/V/2 (brittle solids) then the deformation of a crystal lattice in the front of
shock wave in the case when conditions (73) are valid is dominantly elastic. The Hugoniot
elastic limit and the mass velocity for the elastic precursor for brittle material are defined
by the following equations:

ug = Cs, PygL = pCsCy, (79)
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TABLE I1I. Physico-mechanical properties of plastic materials (Re., > 1/v/2) [1,2]. (For an fcc
structure, the shortest interatomic distance r;; = ag/ V'2; for bee structure, Ti = aoV3 /2; and for
hexagonal structure, r;; = ag, where ag is the lattice parameter).

Material Al Ti Fe Co Cu Pb
iy A 2.022 2.95 2.148 1.775 1.810 2.475
p, g/cm3 2.734 4.5 7.87 8.83 9.02 11.36
Ca = h/ma, m/s 26 15 12 11 13 2.75
C., m/s 3235 3100 3223 2553 2333 1100
Cy, m/s 6794 6038 5751 5414 4833 2420
Cs = vC,Cq, m/s 290 212 195 168 iy 58
Hy x 1073, kJ/kg, experiment 8.2 10.6 7.0 — 53 0.85
experiment 11.9 9.8 7.4 7.3 5.3 0.94
o M 9.5 1.2 6.1 5.3 4.4 0.88
Re.; = Hy/C? 1.14 1.1 0.71 142 0.93 0.78
Cer, m/s, H,/C 1750 1620 1287 1348 1000 388
VCsCi 1400 1130 1060 955 910 365
PygL, GPa, pC.C) 0.48 0.39 0.54 0.53 0.6 0.076
experiment 0.41 1.0-2.0 0.9-14 — 0.8 0.08
pH}/CCP 1.18 1.3 1.2 1.87 1.26 0.1

TABLE IV. Physico-mechanical properties of brittle materials (Re., < 1/v/2) [1,2].

Material Si Mo W SiC B,C Al, O3
p, g/cm? 2:33 10,28 19,3 3,215 2,5 3,99
Hy x 1073, kJ/kg, experiment 16,2 8,65 4.61 20,0 48,0 28,6
experiment 16,8 7,4 —_ — — —
Ci, m/s 5510 3355 2904 7906 8957 6401
C\, m/s 9140 6418 5237 12516 14365 10847
Re,, = HyjC? 0,52 0,6 0,55 0,32 0,6 0,7
Cer, m/s, Hy /Gy 1840 1040 882 1600 3350 2637
experiment — — 900 1600 — 2500
(CLlCs) % 107 5,5 2,3 2,6 0,67 7.6 12
Ce= 00 380 160 150 204 782 700
PygL, GPa, pCsC 7,9 10,5 15 8,2 28 30,3
experiment 7,6 10,0 12 8,3 18 21

where Cg = /C,C) is defined by Eq. (50). When p > mCs, the crystal lattice loses
stability and the crystal enters a coherent nonequilibrium state (see Fig. 3c). As a result,
when

mCs < y < mccrv (80)
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TABLE V. Some properties of brittle materials (Recr < 1/v/2 = 0,707) (46).

Experimental data The results of calculation
Material 0, C; i Hy x 1079, @iy Re,,
g/cm? km/s km/s kJ/kg km/s
B4C 2.5 8.95 13.5 48 3.56 0.60
SiC 3.0 79 12.5 20 1.60 0.32
Si0, 2.5 3.07 15.8 9.6 1.85 0.58
Al; O3 3.99 6.40 10.85 28.6 2.64 0.70

where

Co = ¥ CSCla (81)

according to Egs. (47), (49) the conditions (48) is valid and, according to Eqs. (56), (72)
we have

r,-? T (82)

By these means the momentum of atoms in deformed crystal is fixed and by virtue of
the Heisenberg’s uncertainty principle a one-to-one correspondence between the number
of atoms N, and the number of sites on a lattice Ny is violated. In turn, the delocalized
atoms fill the band of mobility. Energy spectrum of atoms of solid which deformed in
regime (80) is shown on the Fig. 3c. As a result, if the conditions (80) are valid the ductile
crystalline solid (Rec, > 1/v/2) is deformed hydrodynamically (but in the nonstationary
regime); while brittle solids (Re., < 1/4/2) experience multiple fracture. The difference
in the behavior patterns of brittle and plastic solids in regime (80) is analogous to the
difference in the behavior patterns of superconductors of the first and second kinds in a
magnetic field H in the case Hey < H < Hcy, where Hcy and Hcs are the lower and
upper critical fields.

It is easy to show (see Refs. [1,25]) that C., is the limiting velocity of crack propagation
in atomic crystal lattice. This velocity is also equal to

Ccr = e (83)

As one might see from comparisons between the experimental and theoretical values of
PygL, Cs and C.;, which appear in Tables IV and V, the results of analytical calculations
by means Eqs. (78)-(83) agree well with the experimental data.

When u > Cy, an induced energy gap opens in the mobility band (see Fig. 3d). Thus, if

mCe < p < mC, (84)

then both plastic and brittle solids behave like quantum crystals (see, for example
Refs. [54-56], and Egs. (21), (29), (30)). It is well known that under certain conditions
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(including high pressure and high deformation velocities, which are realized, for example,
during explosive welding and during the formation of a cumulation jet, see Refs. [6,34]),
a solid flows as liquids do, while remaining in a crystalline state. This flowing state of
a solid, observed in regimes (80) and (84) for plastic solids and only in regime (84) for
brittle materials, however, is not characterized by the complete absence of an increase in
the tangential stresses upon an increase in the shear deformations. That is, beginning at
certain critical shear strains and stresses the solid stops opposing further increase in the
shear, going into a hydrodynamic deformation regime (84). If the Reynold’s number of
the flow Re = ud/v is smaller then Re.., where d is the characteristic size of the flow and
the viscosity is

v = Ofin, = Tog O A%, (85)
then the deformation of solid in hydrodynamic regime (84) is laminar, and for
Re's Re (86)

it is turbulent in character. This also applies to regime (80).
In the case

p > mCy, (87)

the ductile solid Re, > 1/v/2) in the front of the shock wave becomes liquid (when
p < mC) the material melts only in the stress relief wave) as a result of the quantum
tunnel melting in a resonance pressure gradient. This effect is similar to the gigantic
stimulation of tunnel processes by a resonant electromagnetic field examined by Ivlev [87].
This conclusion has been confirmed experimentally [88].

5. APPLICATION OF QUANTUM-STATISTICAL APPROACH TO SOME PROBLEMS OF ARMOR
PIERCING

Below we consider the application of quantum-statistic model to the problems of high-
velocity penetration of long rods into solid targets which were discussed in Sect. 1.2.

In the problem of the high-velocity impact of solids, as in any other dynamic problem,
the main question concerns the forces that characterize motion, that is, the forces that
determine the resistance to penetration. Upon the interaction of solid bodies at velocities
that exceed the velocities of defects propagations, one can expect that the resistance of
a target material to the penetration of a projectile should determined by the strength
parameters of an impact-loader body that are dependent on the physicochemical nature
and on the structural parameters of the target material. Evidently, the impact velocities
of solids should be on the order of magnitude of the velocity of sound in the material
studied, i.e., 103-10* m/s. Keeping in mind this range of interaction velocity, let us turn
to a brief analysis of the models available of the high-velocity impact of solids.

The key question is how the strength term for the target depends on the material
properties of the target. The use of a quantum-statistic model of a dynamic deformation
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TABLE VI. Comparison of results of calculations of penetration velocity of copper rod into targets

made of brittle material with experimental data (see Ref. [46]).

Penetration velocity, u, km/s
The results of The results of
calculation by Experimental calculation by
Material of Impact velocity | Taylor's formula data (Zlatin, Balankin’s
target vg, km/s (5) Kozushko) formula (88)

B,C 8.1 5.3 3.85 3.90
SiC 7.55 4.8 3.60 3.60
SiOq 5.25 4.44 3.0 31
Al O3 7.15 4.29 3.75 3.8
5.90 3.54 2.83 3.1

of a solid makes it possible to obtain the relation determining the penetration velocity and
depth of penetration of an elongated metal rod in a solid target without any adjustable
parameters. In the turbulent hydrodynamic regime (84), (86) of deformation of the rod
and the target, the penetration velocity in the stationary stage is equal to

2
- 1ﬁ,_v,;2 [1 — 1 —[F% 1N 1)] , (88)
where
pr(l + 2(Ref; )]
= \/ptu F2(Ret,) 1] (59)
72 — pt(C(':r)2 - pr(Cé})Q (90)

pe(1 + 2(Ref,)~Mvg

Here indices r and t refer to the rod and target, respectively, and parameters Re and
C., are defined by Eqs. (75) and (81) or (83).

In Table V the values of the velocities of longitudinal and transverse elastic waves and
heat of atomization for some materials are listed. The results of comparing calculations
using the proposed Eqs. (88)-(90) and (78)-(83), with experimental data on the high
velocity penetration of long rods into targets made from various materials are given in
Table VI. We can see that there is very good agreement between the theoretical values of
penetration velocity and the experimental data, given that the scatter in the values of Hy,
C; and C} in the literature is incomparably less than the scatter in the experimental values
for the limiting crack velocity C.; and the Hugoniot elastic limit Pygr,. The solutions for
other regimes of high velocity deformation of materials of target and rod can be obtained
in a similar manner (see, for example, Refs. [1,2,5,6]).
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6. CONCLUSIONS

As we have shown, knowing the elastic properties, matter density and heat of atomization
it is possible to predict the shock strength and dynamic behavior of brittle and ductile
materials, with an accuracy adequate for experiments.

Moreover, quantum statistical approach can be used to obtain microscopic expressions
for the parameters in the models of explosive, high voltage electrical discharge, and fric-
tion welding of metals (see Refs. [89]), of spalling phenomena (proposed in Ref. [90]), of
the process of mechanical alloying (developed in Refs. [91-93]), of compaction of metal
powders using high voltage electrical discharge (see Refs. [89,94]), for the super-deep
penetration phenomenon (considered in Refs. [1,45,95]), and in other cases as well.

However quantum statistical approach is applicable not only to dynamic problems of
solid mechanics but also to some quasi-static problems such as creep of ideal crystals
and amorphous materials (see Egs. (57) and (64)-(69)), superplasticity phenomenon (see
Ref. [96]), to the description of phase transformations of a crystal solid (see Refs. [1,2,97]),
to developing a theory of plastic deformation of ceramic at low temperature (see Ref. [98]),
to the formulation of quantum statistical models of chemical reactions in solid phase (see
Refs. [89]), to the determination of the parameters that govern the electron fracture mode
in solids [99], to the description of the brittle-ductile kinetic transition in the kinetics of
metal fracture [58], and for the determination of strength parameters that govern the
processes of fracture of nanostructural materials (see Ref. (100]).

Furthermore, we believe that further developments of the approach reviewed make it
possible to create microscopic theories of such phenomena as shock synthesis of diamonds
(see Ref. [89]), high temperature self-accelerated synthesis (see Ref. [89]), electro stimu-
lation of plastic deformation of metals (see Ref. [101]), which are of great importance in
advanced metallurgical technologies considered in Refs. (16,89].
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