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ABSTRACT.We present a method for evaluating reduced matrix elements of two particle transfer,
one and twa-body operators which are necessary for many applications within the SU(3) scheme.
The procedure is applicable for nuclear states with an even number of particles which are coupled
at spin zero and belong to the leading SU(3) ireeps. Explicit expressions of the highest-weight
states are constructed and a Mathcmatica code is used for evaluating the matrix elements.

RESUMEN. Se presenta un método para evaluar los elementos de matriz de los operadores de
transferencia de dos partículas, de uno y de dos cuerpos, que son necesarios en varias aplicaciones
dentro del esquema SU(3). El procedimiento es aplicable a estados nucleares con un número par de
partículas, que estén acoplados a espín cero y pertenezcan a la irrep líder de SU(3). Se construyen
expresiones explícitas para los estados de máximo peso, y se usa un programa en ~fathematica
para evaluar los elementos de matriz.

PACS: 02.20.Qs; 02.70.Rw; 03.65.Fd

l. INTRODUCTION

The standard problem in analyzing the stcucture of heavy deformed nuclei within the
nonrelativistic spherical sheU model is how to reduce the dimensionality of the Hilbert
space. In the past decade various truncation schemes [11 have been proposed which ex-
ploit symmetries of the interactions that dominate the low-energy structure. There is
experimental ev¡dence that strongly supports the view that the nuclear e/fective interac-
tion appropriate to low-energy excitations must haye strong correlation with the pairing
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and quadrupole-quadrupole (Q . Q) interactions. Uncovering an 5U(3) symmetry in the
structure of the higher major shells is therefore crucial to the truncation issue.
The nuclear shell structure is not much different from the three-dimensional harmonic

oscillator (HO) up to the ds-shell, thus 5U(3) was proposed by ElIiott [2] as a reasonable
ds-shell symmetry, which has proven to be useful for truncating the full space down to
a tractable size. The quadrupole-quadrupole interaction Q . Q is dominant when many
valence nucleons are present, and can be expressed in terms of C2 which is the second order
Casimir invariant of 5U(3) and L2 which is the square of the orbital angular momentum,
as Q. Q = 4C2 - 3L2. Considering the quadrupole-quadrupole interaction with a negative
sign, the states which lie lowest in energy belong to the irreducible representation (irrep)
of 5U(3) with the largest eigenvalues of C2, which is called the leading irrep. These basis
states are those which have the largest intrinsic quadrupole dcformation and represent a
severe truncation of the shell model space. The 5U(3) coupling scheme is a good approx-
imation when the asymptotic Nilsson quantum numbers [1)Il,A]n for the single particle
states are approximately good and when the Nilsson spin-orbit doublets with n = A :J: !
are nearly degenerate. Full space ds-shell model calculations have confirmed that the
leading irrep do indeed comprise 60 - 80% of the yrast (lowest state of a given spin)
eigenstates [2].
For higher shells the magnitude of the spin-orbit splitting is so large that the deformed

Nilsson n = A :J: !levels are widely separated and 5U(3) is not a good symmetry. In ad-
dition, the spin-orbit interaction pus hes the state of maximum j down into the next lower
shell. But the normal parity levels that remain have the same total angular momentum
content as the leveis of an oscillator shell of one less quantum and the orbits with j = /-!
and j' = (/ - 2) + !are nearly degenerated [3]. The pseudo 5U(3) scheme exploits this
degeneracy. As an example consider the '1 = 4 harmonic oscillator shell. The 99/2 orbital
is pushed down by the spin-orbit interaction into the 1)= 3 oscillator shell. This accounts
for the fact that 50 rather than 40 defines a shell closure. The remaining normal parity
levels are relabeled by the mapping

(1)

where 1 + s = j = i+ ¡¡ and the pairs of orbits (97/2, d5/2) and (d3/2, SI/2) are close
in energy. This mapping defines the pseudo (jjí, i¡ = 3) shell. The hIl/2 intruder orbit
of the next (1) = 5) harmonic oscillator shell that is pushed down into this regio n by
the spin-orbit ter m is called the ,mique or abnormal parity level [4]. The mathematical
formalism necessary for performing these transformations was developed recently [5] and
the mapping is related with a supersymmetry transformation [6].
It has been shown [71 that diagonalizing a general one plus two-body interactions in a

space with frozen unique parity states is equivalent to diagonalizing a phenomenological
Hamiltonian comprised of products of generators of 5U(3) coupled to angular momentum
zero, which in the SU(3) ~ 0(3) basis contains only five independent operators, two of
them independent of J( and L, one which produces the L(L + 1) splitting of L states but
remains independent of J(, and two with both J( and L dependence. Slow variations ill'the
five parameters associated with the aboye mentioned operators are able to give a complete
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and very accurate description oI the ground and gamma band rotational structure oI rare
earth and actinide nudei, with the concomitant interband and intraband £2 strengths,
as well as the 1+ states with strong MI transitions, and the £2 and M3 transitions oI
these nudei, providing a rigourous test Ior the pseudo SU(3) rnodel [7,8].
In this work we will give the mathematical Iorrnalism needed in addition to that given

in 17,8] in order to evaluate the matrix elements oI a general two-body interaction. The
necessary technology Ior perIorming calculations in the SU(3) scheme has been widely
developed in the past years. Clebsch-Gordan [9]' Wigner and Racah [lO] and 9-(~ll) [Il]
coefficients are available. Expansion oI one and two-body operators in terms oI their
SU(3) components are given explicitly in the Appendix oI the work oI Draayer et al. [7)
and Castaños el al. 18]. The Wigner-Eckart theorem allows one to evaluate any matrix
elements oI tensorial operators in terms oI SU(2) and SU(3) Clebsch-Gordan coefficients
and a reduced rnatrix element. Reduced matrix elements are explicitly given in [8] Ior
sorne one-body operators. In the general case, these can be evaluated m terms oI triple-
barred reduced rnatrix elements oI the creation operators using the coefficients oI Iractional
parentage introduced by Hecht [12). A special computer code is also available, where the
highest weight states are obtained solving a systelll oI linear equations [13].
The rnain contribution oI this work is to give a simple method Ior evaluating reduced

matrix elements Ior one and two-body operators in the SU(3) scheme. The method is valid
Ior states with even number oI partides, coupled pairwise to spin zero, and belonging to
the leading SU(3) irrep (~Il). Although this may seem quite restrictive, these states are
the most important ones Ior even-even nudeL Our method utilizes the SU(3) cylindrical
basis Ior explicitly constructing the highest-weight state Ior a given number oI partides,
in a way making simple the evaluation oI the matrix elements. This procedure has been
intensively used in the recent years [14].
The structure oI this paper is the Iollowing: In Seco 2 the necessary notation Ior describ-

ing the states and the SU(3) tensorial expansion oI the operators is given, together with
a brieI review oI the Wigner-Eckart theorem. The highest weight sta tes are constructed
explicitly in Seco 3, Seco 4 contains the expressions Ior the matrix elements oI the two-
partide transIer, and one and two-body operators between the highest-weight states. In
Seco 5 these rnatrix elements are used to obtain the re,!t,ced lIIatrix elements, induding
some nurnerical exalll'lles. Final condusions are drawn in Seco 6. Appendix A resumes the
U(3) group properties and the cylindrical basis, in Appendix 13we indude the Iormulas
describing the cylindrical to spherical transIorrnation brackets and in Appendix C sorne
SU(3) rnultiplicities are discussed.

2. STATES ANO OPERATOltS IN TIIE SU(3) SCIIEME

The many-partide states oI N nlldeons in a shell oI dimension O are characterized by a
totally antisymrnetric irrep oI a unitary group oI dimension O, that is [15]'

u (O) ~ gro up syrnbol,

[1NI ~ irrep labe!'
(2)
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The basis states are specified in terms of the group chains

U(S1Ñ) -+ U(S1Ñ/2)

[In,,] [fu]
x U(2) -+ SU(3) X SU(2) -+ 0(3) X SU(2) -+ SU(2)

[iu] Pu(>'uJ1u) Su KuLu J'f.¡.
(3)

Under each group the quantum numbers that characterize its irreps are given. The indices
P and f3 are the multiplicity labels of the indicated reductions. Note that the decomposition
of U(S1N) into U(S1N/2) X U(2) is a factorization of the normal parity space into orbital
and spin degrees of freedom. This is an LS-coupling scheme, where 0(3) is the orbital
angular momentum group and the final SU(2) refers to the total angular momentum.

In the description of even-even nudei it is usual to make the following additional as-
sumptions [8]:

i) The most important normal parity configurations are those with highest spatial sym-
metry, [f] = [2nN /2]. This implies that S. = Sv = O; that is, only real (light nudei)
or pseudo (heavy nudei) spin zero configurations are taken into account.

ii) Leading SU(3) irreps in the proton and neutron spaces will dominate. For these
representations P. = Pv = 1.

One-body and two-body operators acting in a single harmonic oscillator shell '1 can be
expanded in terms of their SU(3) tensorial components using the SU(3) Clebsch-Gordan
coeflicients and usual SU(2) algebra [7,81.

\Ve obtain for the one- body terms

{aliib}JM = L
L,S

{

la

U ~
1 '}
1 Ja
2' Jb
S J

{
t _ }(~,")KL,S'JM

X '" ((r¡,O)la;(O,r¡)lbll(A,J1)KL) =1 a( O) 1 a(O ) 1 'L p 11, '2 ,1] '2
(~,,,)K

(4)

where { }O means standard angular momentum coupling (u = J Mor LM¿), spin cou-
pling (u = SMs) or SU(3), spin and angular momentum coupling (u = (A, J1)K LS, J M),
the sub-index in the creation and annihilation operators represent a whole set of single
partide labels (a == 'la, la,ja) and the others symbols are explained below.

There is a similar expression for the two-partide transfer operator

{alaW
M

=L
L,S

t ja}
2' Jb
S J

L { t t }(~,")KL,S;JM
X ((r¡,O)la;(r¡,O)lbll(A,J1)KL) =1 a( O) 1 a( O) 1 '

P 11. • 2 1],. 2
P,,,)K

(5)
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The two-body operator has a more involved expression [71:

{
la t ja} {le t je} {Lab Sab¿ U lb 'i jb U Id 'i jd U Led Sed

L.,LodLOS.,Sod Lab Sab J Led Sed J Lo Lo

¿ ((7), O)la; (11,O)lb 11 (,xab, Pab)KabLab) p=l
(A .•b ,It",b) K ••b;( Aca ,Jlcd) K ca

(6)

\Ve have introdueed the ii annihilation operator whieh has the appropriate transforma-
tion properties under the SU(3) - 0(3) sehemes, ¡.e.

- = (_l)q+l+m+~+m.
a(O,11)lm;~m. - a(fJ,O)l-m;~-m.' (7)

The U{-) are SU(2) unitary (Jahn-Hope) 9-j coefficients; in Eq. (6) the tirst two
of them allow the to reeoupling of the pairs of ereation or annihilation operators from
the jj to the L-S seheme, respeetively, and the third one gives the total eoupling to zero
angular momcntum, in arder to assurc the intcraction is a scalar under rotations (spherical
symllletry). This last ass\lmption has important cffeets: it implies Lo = So and restriets
the available orbital angular momentum. Additionally, for even-even nuclei the normal
parity states have zero total spin, and this requires that only Lo = O tensor eontribute.
The (-; -11-) are isosealar SU(3) eoupling eoefficients, giving eaeh pair of operators
detinite SU(3) tensorial properties, and eoupling thelll to a total SU(3) irrep (,xo,po).

In order to evaluate the matrix elements of the aboye operators between states of the
leading SU(3) irreps, for any weights K,L,M, we will use the Wigner-Eckart theorem.
Representing any SU(3) tensor operator by T~o~°':J);MSo ,the \Vigner-Eckart theorem foro o o, So
the SU(3) algebra states that

((,x,I'), KLM; S = 0IT~o(L.lo~fo).;1r"1 (,x',p'), K'L'M'; S = O)
o o' 0, So

= óSo,o ¿((,x',p'), I\'L'; (,xo,/'o), KoLoll(,x,p), I\L)p(L'M', LoMoILM)
p

x((,x,/,); 5= OIIITpo(>'ol'o);Solll(X,p');S = O)p' (8)
where P and Po are multiplieity labels.
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In the rest of this work we will describe a method to evaluate the reduced matrix
elements that enter in this expression. The next step is the explicit construction of the
highest-weight state in each irrep, in a form that al!ows us to evaluate the ful! matrix
elements. Then by means of the Wigner-Eckart theorem we will obtain from these results
the reduced matrix elements.

3. TIIE IIIGIIEST-WEIGIIT STATES

The generators of the U(r) group can be expressed in the cylindrical basis as

(9)

assuming we are dealing with configuration space states in a single shel! r¡. Using the
second quantization formalism the generators of U(3) given in (51) of Appendix A can be
expressed in terms of those of U(r) as

The weight generators have the simple form

(10)

Cq '" enl nO"_1
q = 0 nq "1"0"-1'

nI "On_l

q=l,O,-l, (11)

exhibiting the weights as additive quantities for multipartiele systems. As an example,
the 10 one-partiele states of the r¡ = 5 shel! are enumerated and listed in the first two
columns of Table 1. They are ordered in the usual way, giving the maximum weight to the
state which has the highest ni weight; given they were equal, the highest no weight and
so on. The first column enumera tes the states and the second one gives their cylindrical
weights.
We can now construct the state of maximum weight of a given irrep [2'i] (n even) of

the group U(r). In as much as the states are coupled to spin S = O,we introduce here the
fol!owing operator, antisymmetric under permutation of the spin s [151:

(12)

where the Jl are spatiallabels, and the numbers 1 and 2 account for the two possible spin
projections m6 = !and -! respcctivcly.
The two-partiele system ineludes al! the irreps available by the direct product (r¡, O,0)0

(r¡, O,O). Continuing with the r¡= 5 example we have

(5,0, O) 0 (5, O, O) = (10, O, O) EIJ(9, 1, O) EIJ(8,2, O) EIJ(7,3, O) EIJ(6,4, O) EIJ(5,5, O). (13)
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TABLE 1. Weights of the 10 one-particle and 10 one-hole states in the '1 = 5 shell. The /irst and
third colurnns ennurnerate the weights, colurnns 2 and 4 give the cylindrical weights ni, no, n_l
for particles and hales, respectively.

1'( i) h Ji(h)

ni no n-l ni no n_l

1 5 O O 1 O O 5
2 4 1 O 2 O 1 4
3 4 O 1 3 1 O 4
4 3 2 O 4 O 2 3
5 3 1 1 5 1 1 3
6 3 O 2 6 2 O 3
7 2 3 O 7 O 3 2
8 2 2 1 8 1 2 2
9 2 1 2 9 2 1 2
10 2 O 3 10 3 O 2

or, in the more familiar ()"I') notation,

(5, O) <9(5, O) = (10, O) El (8, 1) El (6,2) El (4,3) El (2,4) El (0,5). (14)

\Ve have stated aboye that there are physical reasons, related with the operator Q . Q
and its expression in terms of the Casimir C2, for selecting from this set of irreps only
the irrep with highest (), + 1') value. In this case, for two particle in the '/ = 5 shell, this
means the (lO, O) irrep. \Ve will sho\\' no\\' that the state of highest weight of this irrep,
i.e., the state with \\'eight (lO, O, O) is

(15 )

where Ji(i) are the cylindricallabels nI, no, n-l of the i-th one-particle state, as listed in
Table 1. It is easy to show that this state is of highest weight of U(21), because the raising,
operators ¿,; cannot further raise the label (5, O, O) (it is the state of highest weight for
one-particle). This state must also be the highest-weight state of SU(3), in the leading
irrep for two particles in the fifth oscillator shell. In this particular case this is also easy
to sho\\' beca use the raising operators e?, c11, COl all give zero \\'hen acting on it, the first
two because it is not possible to raise the nI label aboye lO, given we haye twice 1/ = 5
phonons, and the third because it is not possible to lower the n_l label below O.
Systems with more particle pairs present slightly more dimculties. Given the additivity

of the weights, the state of highest weight must haye a pair of particles in the state 1,
another in the state 2, and so on, up to complete their total number. And because the
particles are fermions, one can put only two in each state, one with spin up and the
other with spin clown. But Que can have combinations of pairs giving thc same wcight,
r l A 12 A 12 1 A 12 A 12 Th"lar examp e '-"(5.0,0)(5,0.0)'-"(4,1,0)(4,1.0) an, '-"(5,0,0)(4,1,0)'-"(5,0,0)(4,1,0)' ere 15 an Important
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TABLE Il. The maximum weights, characterizing the leading irreps in the r¡ = 5 shell for n = 2
to n = 16 even particle states. Columns 2, 3 and 4 give their cylindrical weights ni, no, n_l
respectively, while columns 5, 6 give their assodated labels AmtJlmo

n ni no n-l Am I'm
2 10 O O 10 O
4 18 2 O 16 2
6 26 2 2 24 O
8 32 6 2 26 4
10 38 8 4 30 4
12 44 8 8 36 O
14 48 14 8 34 6
16 52 18 10 34 8

result which will help us salve this ambiguity:

6~~, 6~~,1 ) = -6~~ 6~f~,1 ). (16)

The proof of this statement can be obtained by expressing the 6's in their crea tia n and
annihilation operator components, rearranging them, and recognizing that two identical
creation operators acting over the vacuum give zero.

The aboye result gives us the form of the four-particle highest-weight state (hws) of
U(r). Generalizing this result we obtain, for a system of n (even) particles

(17)

Acting with the raising operators of the U(r) group onto this state will give zero by
construction. There exist only one state of highest weight, therefore we have constructed
its wave function explicitly. The determination of the SU(3) weights of this state is easy.
\Ve need only to sum twice the weights of the single-particle states, up to the numbers of
pairs in the state, i.e.,

n,-
n.(n) =¿2n.(i),

i=l

Am(n) = nl(n) - no(n),

q = 1,0, -1,

(18)

For the example in the r¡= 5 shell, in Table Il we show the highest weights characterizing
the leading irreps for one to eight pairs of particles.

The leading irrep (Am,l'm) contains once and only once the state with the highe~t
angular ffiOIllcntum Lmax = Am + Mm, and magnetic projcction Mmax = Lmax. Again,
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using the uniqueness of this highest-weight state and the fact that it has spin S = O, we
have

( 19)

lf the shell is more than half filled, i. e., 0./2 = r < n ::;o. the aboye described formalism
does no/ describe the highest-weight state. 1nstead, it is necessary to replace particles by
holes. \Ve start with a completely filled ground state Ih), and the highest-weight state is

nh/2
1 I1{12 }t= 2n./2 t.~(h)~(h) Ih),

h~1
(20)

where we defined nh == o. - n and M/:,ax = -Lmax. The hole states are inverscly ordered
than the particles one and, for the Jl-th one particle-state weight, with 0./2 < Jl ::; o.

(nl(h),no(h),n_¡(h))h 1 = (n¡(i),no(i),n_¡(i)) . 1 ;
o es partlc es i = r - h. (21 )

These one-hole state weights are also exhibited in the last two columns of Table I.
An additional useful relationship is

(22)

These are the key results in our construction. Using the Wigner-Eckart theorem we will
be able to evaluate any matrix eleJllents between states in these irreps (Am, 11m), whatever
the weights K, L, Al they could have.

4. TIIE ~IATRIX ELEMENTS FOR TIIE IIIGIIEST-WEIGIIT STATES

In order to evaluate the matrix elements for the highest-weight states of the operators
introduced in Eqs. (4), (5) and (6) we reexpand them in the cylindrical basis. The wanted
expressions are:

= Jz ¿(('10)l/¡,(011)l/211(A,11)KL)p~1 ¿(-wm'(/¡m¡,12-m2ILM)
'112 mlm2

¿ ('1I
¡ mdn¡n~n~l) ('112m2In¡n6n~1)¿a~:nón~l;íqan¡n~n:l;íq (23)

n~n~n~1 ,nfn~n~ I u
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and

= L (('\,I')/(L, (,\', I/)/('L'II ('\0, 1'0)/(oLo) Po
KK'LL'MM'

L ((1)0)111, (1)0)11211(,\I')/( L) p=1((01))113, (01))11.11('\'I/)/(' L') p=1
'1'2'31•

L (1)11mdnln~n~l) (1)12m2In¡n6n~l)

n~n5n:l'n~n~n:l

L (1)13m3Intngn~¡) (1)1.m.ln1n~n~¡)
n~n~n:l,n1n~n~1

(24)

where the (I)lmln¡ non-I) are the transformation brackets between the spherical and cylin-
drical basis [16) and are given in Appendix B. It must be noted that, using Eq. (17),

{ }
S=o It t - - 12a ! a,! = 2 2 Ó-Illl,.

Jl'2 JJ '2

Using the aboye expression, we obtain

{ }
(>',I'),s=o

ji 1 ií 1
(Oq);¡ (Oq);¡ K LM

= - ~ (_1)L-M L((01))1I1,(01))11211('\,I')/(L)p=1 L (1Im¡,12m2IL - M)
'112 mlm2

(25)

The second step is to calculate the matrix elements of the spatially decoupled cylindrical
operators which appear in the right hand of Eqs. (23), (24) and (26) between the highest-
weight states defined in Eq. (17). As we work only with states coupled to S = O, it follo;"s
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that the aboye operators will have rnatrix elernents different frorn zera only if So = O. For
the one-body operator we obtain

([2~], hws "al.! al [2~], hWS) = 26~1~'.:l-- 6~,~(i), (27)L 1-'1'211 1J2'iC1 L
l1 1;1

where if /11 rf /12 when the one-body operator acts over the hws state genera tes a state
which is orthogonal to it and the rnatrix elernent beco mes null, and if /11 = JL2 it counts
the two nudeons occupying the state or gives zera for unoccupied states.

For the two partide transfer operator we need to evaluate

= H [2~], hwsl ("':,;",) I"'~h+1)~(~+1) I[2~], hws) = 26~1~,6,,,~(~+1)' (28)

In this case we used the definition (12) of "'~;~, and (17) of the highest-weight state,
evaluated the cornrnutator and recognized that ([2~], hwsla~( ~+1) = O. The 1'(1+1) are
the cylindrical labels of the 1+ 1 one-partide state.

The rnatrix elernent of the spatially decoupled two body operator is

[ú], hWS)

~
= 6soo(6~1I,.6~'~J:l:6~'~J6~,~.)L (6~,~(i)6~,~(j)+ 6~1~(j)6~,¡,(i»)'(29)

l$j=1

The + sign in the aboye expression holds for intermediate spin S' = O, the - sign for
S' = 1. Evaluating the aboye matrix elements irnplied the iterative use of the commutation
relationships between a and al. This task is difficult when there are, for exarnple, eight
ereation operators in the maximum weight state on the right, plus two ereation and two
annihilation operators in the two-body operator, plus another eight annihilation operators
in the state on the left. A Mathematiea [17] code was developed to do for us this algebraic
rnanipulation. This code is available under request.

Finally the desired rnatrix elernents for the coupled operators given in Eqs. (23), (24)
and (26) are evaluated. Given Lo = So due to the spherical symrnetry of the interaction
and So = O, we obtain irnportant simplifieations in this expression. Specifically, as shown
in Appendix e, this irnplies that only even AO and /lo are allowed.

For one-body eoupled operators the rnatrix elernents are



192 J.G. HIRSCII ET AL.

= -V2 6Soo¿((1]0) II¡, (01])11211(.\0, l'o)l(oLo) p~¡

1112

m

and for the two-particle transfer operators

i;;:l

= -6sooV2 ¿ ((01])1I¡, (01])1I211(.\0>l'0)l(oLo) p~1

1¡12,m¡m2

In these expressions the I'(~ + 1) are again the cylindricallabels of the ~ + 1 one-particle
state, and Lo and Mo rnust respectively satisfy Mo = !'vImax - M{"ax and Lo 2': IMol.
otherwise the rnatrix elernent is zero.

The rnatrix elernents of the two-body coupled operators beco me

I [Ú] (.\m.l'm)ILmaxMmax; S = O)

= 6soo ¿ ((.\,,,)I(L.(.\',,,')I('LII(.\O,I'O)IO) 1
KK'LM PO J2L + 1

J2S + 1 ¿ ((1]0) 111, (1]0)11211('\,,)1( L) p~¡ ((01]) 113, (01])11411(.\/ ,,/)1(/ L) p~¡
1112131-4

".,-

¿ (I¡ mI. 12m2JLM)(13m3. 14m41LM) ¿(1]11mt!,,(i)) (1¡12m21,,(j))
Tn¡m2m3m4 i,j=l
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5. THE REDUCED MATRIX ELEMENTS

As it was mentioned in Sec. 3, using the Wigner-Eckart theorem, Eq. (8), it is easy to
obtain the reduced matrix elements. In matrix notation, one must solve the linear system

A.X=B,

with

(33)

¡-[(o, Lo j - P

Bik = (('>'m, /1m), ILmaxMmax; S = OIT:~oM"">';1l 1('>';", /1;"), IL:"axM:Uax; 8 = O)o o o. So

¡-[(o, Lo k - Po

j - P k - Po.

(34)

(35)

(36)

The U(3) multiplicity appears twice in the aboye expression: in the number N" of times
the coupling ('>'m, /1m) (9 ('>'0/10) = (.>.;", /1;") can occur, labeled with P; and in the number
Nop associated with the operator irrep ('>'0, /10) and labeled by Po. The latter multiplicity
Nop is always equal to one for the one-body and two-partide transfer operators, but can
have values greater than one for the two-partide transfer operators. The A is a N" x N"
matrix, while B and X are N" x Nop matrices. The A matrix must be an invertible
matrix. This property is obtained by construction. System (33) is sol ved for shell number
11, number of partide n and operator TPo(>'o~o);So, each column in A belongs to a different
P, the operator labels [(o and Lo characterize the rows and are selected taking care of
that there are no two linearly dependent ones. Thus A is non-singular.

As an example let us consider the case of n = 4 partides in the 11 = 4 shell. The
highest-weight state (19) is

1[2'i], hws) = 1[22],(12,2)[( = ILmax = 14Mmax = 14,8 = O). (37)

For the tensor operator we select

{

(4,2>',S=0 (0,B),S=0}Po=I(2,2>.;SO=0TPo(>'o~o);So - a t a t a a
- {(4,0>.,~ (4,0),~} { (0,4),~ (0,4>,,~} (38)

In this particular example, the direct product (4,2) (9 (0,8) contains only once the irrep
(2,2). Then Nop = 1 and Po can only take the value Po = 1. By the other side, the coupling
(12,2) (9 (2,2) = (12,2) can occur N" = 3 times, and the v~lues p = 1,2,3 are allowed.
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\Ve are looking for the reduced matrix elements and need to solve the linear eguations

¿((12,2)114, (2, 2)KoLolI(12, 2)114) p(14 14,2 2114 14)
p

([22], (12, 2); 5= 0111{ {aI4,0),~ aI4,0),~} (4,2),5=0 {¡¡(0,4),~ ¡¡(0,4),~} (0,B),5=0} 1(2,2);0

= ([221, (12, 2)11414; S = 01

{
t t (4,2),5=0 _ _ (0,B),5=0} 1(2,2);0

a 1 a 1 a 1 a I{ (4,0)" (4,0),,} { (0,4)" (0,4),,} .
1\0 Lo Mo=O

1[22], (12, 2)11414; S = O). (39)

Given N" = 3 we need three independent eguations. They are obtained selecting Ko =
1, Lo = 0,2,3, which were found numerical1y to generate linear independent eguation. The
right side of the aboye eguation was evaluated using Eg. (32), while the 5U(3) and 5U(2)
Clebsch-Gordan coefficientes are available as computer codes [101. The wanted reduced
matrix elements are exhibited in the first row of Table IV.

The values of many reduced matrix elements for one-body operators are explicitly
given in ReL [81 and we will not repeat them here. Table III exhibits sorne reduced
lIlatrix elements of two-partide transfer operators. In order to check the correctness of
the reduced matrix elements for the two-body operators obtained ill the way described
aboye, we have performed the evaluation of the matrix elements of the two-body operators
N2 and Q. Q, whieh have the wel1 know values n2 amI 4C2 - 3L(L + 1) respectively. \Ve
used the expressions

([2'r]('\m,¡Lm)KLM;S = 0lN21[2'r]('\m,l'm)KLM;S = O)

{

(1],0) (0,1]) (0,0) 111)
= n _ (1]+ 1)(1]+ 2) '\' (1],O) (0,1]) (O,O)

2 ~ ('\,1') ('\',1") (0,0)
(>',~)(>",~') 1 1 1

¿J2S + 1( [2'r] (,\m,/Lm), 5= 011I
5

{
(" ) s ('" ') S} 1(0,0);0t t ,~ '- - ,p ,

a 1 a 1 a la I{ (ry,O)" (ry,O),, } { (O,ry)" (O"I)',}
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TABLE II!. The redueed matrix elements for the two-partiele transfer operator

{ } (>'.I').S
([2'](Af,¡lf);S = 0111 alo.,).l aIO,,),l 111[2,+I](Ai,l'i);S = O)p'

The first two colulllns show '1 and the irrep [2'J, the following three columns give the (A,/l)'S
and the final columns exhibit the reduced matrix elements for the different values of the external
multiplicity p.

r¡ [2'] (Af,/lf) (Ai, ¡li) (A,1') p = 1 p=2 p=3

3 [22] (8,2) (12,0) (0,6) -2.10051
3 [22] (8,2) (12,0) (2,2) 1.16110
4 [2'] (8,0) (12,2) (0,8) -5.45108
4 [2'] (8,0) (12,2) (2,4) 2.43780
4 [22] (12,2) (18,0) (0,8) -2.14322
4 [22] (12,2) (18,0) (2,4) 1.25137
4 [29] (0,24) (4,20) (0,8) -3.33789
4 [29] (0,24) (4,20) (2,4) 1.89737
4 [29J (0,24) (4,20) (4,0) -1.41421
4 [210] (4,20) (4,18) (0,8) -2.43504
4 [210] (4,20) (4,18) (2,4) -0.37391 -0.12955 -4.05720
4 [210] (4,20) (4,18) (4,0) -0.96609
5 [2'] (30,4) (36,0) (0,10) -1.60155
5 [2'] (30,4) (36,0) (2,6) 0.93853
5 [2'] (30,4) (36,0) (4,2) -0.80494

and

([Ú](.\m,l'm)I{LM;5 = OIQ. QI[2~]('\m,l'm)I{LM;5 = O)

= (-l)~ v'2¿v'2T+l [4Cz( '1,O) - 31(1+ 1)] ¿{((r¡, O)1/, (O, r¡)1111('\,1') 10) p'=1
1 (>',1')

¿((.\m, l'm)1{ L, ('\, Jl) 1011 (,\"" J'm)1{ L) p

P

[
t _ ] (>',1,),0 }

((,\m,l'm),5=0111 a( 0)1a(0)1 111(,\m,l'm),5=0)
11. '2 .f} '2 P

v'5 ('1 + 3)! '" {(- ? ( _ ),~ (1,1)12, (1, 2)1211('\, 1')10)_ '1 l. P
(>',I')P
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(0,1])
(0,1])

(A2, /l2)
1

(1, 1)
(1,1)
(A,/l)

P
J, )

In Table IV numerical results are shown for n = 4 particles in the shell 1] = 4, and
intermediate spins S = O or 1, for the reduced matrix elements of the two-body operators,
coupled to (Ao, /lo) = (O, O) and (2,2), the only ones needed in the evaluation of N2 and
Q. Q. Tables V, VI and VII exhibit the same matrix elements for n = 6,8 and 10 particles
respectively. Only nonzero values are exhibited. The first columns show the coupled (A, /l)
for the pair of creation operators and the pair of annihilation operators, respectively, the
intermediate spin S their final coupling (Ao, /lo) and the multiplicity label Po of this
coupling. The other columns depict the reduced matrix elements for different values of
the external multiplicity p.

6. CONCLUSIONS

In this contribution we gave an explicit, analytic construction of the reduced matrix
elements of the one-body, two-body operators and two-particle transfer operators within
the leading 5U(3) irrep in one oscillator shell. Partly we used already known results as
5U(3) coupling and recoupling coefficients and transformation brackets from the spherical
lo lhe cylindrical basis. A Mathematica code was developed and used in order lo evaluale
lhe reduced malrix elements, and it is available under request. \Ve gave several numerical
examples and labulated various coefficienls.

Our contribulion has also lo be seen as a useful reference for people not being familiar
with lhe group theoretical manipnlation bul which want lo use these results in order to
lreat many particle syslems in lhe 5U(3) or pseudo 5U(3) models.

ApPENDIX A: A SHORT REVIEW OF 5U(3)

\Ve follow lhe formalism introduced by Moshinsky [151, which we briefly review here.
\Ve slart with the creation operators al and annihilation operators ai which satisfy anli-
commulalion relations,

{aJ,a;) = {ai,ai} = O, (42)
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TABLEIV. Reduced matrix elements for states with n = 4 partides in the '1= 4 shell

1II [2'] (12, 2); S = O)p'
The first five columns give the coupled (A, /l)'s for the pair of creation operators and the pair of
annihilation operators, the intermediate spin S, their final coupling (Ao, /lo) and their multiplicity
label Po, respectively. The others columns exhibit the reduced matrix elements for the different
values of the external multiplicity p.

(A,/l) (N,/l') S (Ao, /lo) Po p=1 p=2 p=3
(4,2) (0,8) O (2,2) 1 0.1512867 -0.2464468 0.1664138
(4,2) (2,4) O (2,2) 1 -0.3482455 -0.2757678 -0.1008070

2 -0.1834020 0.2288736 0.3718715
3 -0.0964501 0.2364177 -0.3443055

(6,1) (1,6) 1 (O,O) 1 -0.4364358
(6, 1) (1,6) 1 (2,2) 1 -1.5681394 -0.6823224 0.1815724

2 -0.8573655 1.3578570 -0.2644187
(8, O) (0,8) O (0,0) 1 -0.7666519
(8, O) (0,8) O (2,2) 1 -2.2391842 -0.4562323 0.0972367
(8,0) (2,4) O (2,2) 1 0.1512867 -0.2464468 0.1664138

where the indexes i and j indicate the spherical single-partide states available for the
nudeons, corresponding to the total quantum number r¡i of the three dimensional har-
monic oscillator potential, the angular momentum /i and its projection mi, and the spin
and isospin Si and ti with their projections m,i and m". The upper and lower indices
are introduced in order to distinguish different transformation properties others than
cartesiano The range of allowed orbital angular momenta is given by

/ = '1, '1 - 2, ... , 1 or O.

The number of orbital states r, restricted to a single shell is just

"
r = ¿ (2/ + 1) = t(r¡ + 1)('1 + 2).

1=0 or 1

(43)

(44)

Induding spin we have n = 2r, and using that the U(2r) group contains the direct
produet of U(r) x U(2), we will eonstruet the raising, lowering, and weight operators
in U(r) and relate them with the 5U(3) group, following the ehain introdueed in the
introduetion. In the following diseussion we will refer only to one generic type of nudeon
since we are working with separate proton and neutron subspaees, which later will be
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TABLEV. The same as Table IV, for n = 6 particles

111[23]{18,0);S=0)p

(A,I') (A', 1") S (Ao,l'o) Po p=1

(4,2) (0,8) ° (2,2) 1 0.5629625
(4,2) (2,4) ° (0,0) 1 -0.3319700
(4,2) (2,4) ° (2,2) 1 -0.7957149

2 -0.6107404
3 -0.4175957

(6,1) (1,6) 1 (0,0) 1 -1.3093073
(6,1) (1,6) 1 (2,2) 1 -2.5798182

2 -3.3046949
(8,0) (0,8) ° (0,0) 1 -1.4055284
(8,0) (0,8) ° (2,2) 1 -2.7327545
(8,0) (2,4) ° (2,2) 1 0.5629625

strongly coupled, and we will differentiate the spatial Ji. = ('I,l,m) and spinorial (s)
labels.

The generators of the U(2r) group are

CJi'!J1 - t J/tI' (45)
j.l!J = a¡.ua ,

and from these we built those associated with the U(r) group by adding over the spinorial
índices

(46)
s s

There are r states, ¡.e., r different spatial labels for '1 fixed.
\Ve will now introduce the cylindrical SU(3) c1assification scheme of these states, which

is alternative to the ('1,1, m) defined above. \Ve start by reviewing sorne properties of the
three dimensional harmonic oscillalor. \Ve shall use units in which n, the mass of lhe
nucleon m, and lhe oscillalor frequency w, are taken as 1, ¡.e.,

h=m=w=I.

Denoting by f the coordinale and by p lhe momenlum vectors, the crealion ii and anni-
hilalion { phonon operators are

- 1 (- ._)'1 = v'2 r - lp , (48)
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TABLE VI. The same as Table IV, for n = 8 partic1es

{ (,1,"),5 (,\' '"'),5} po(,\0,"0);50

( [2'J (18, 4); 5 = 0111 { a!"O),1 a!"o).! } { '\0"),1 ''lo,,).! }

111[2'J(18,4);5=0),

(,\,1') (,\',¡/) 5 (,\0, ¡lO) Po p=1 p=2 p=3

(0,4) (2,4) O (2,2) 1 0.1633815 -0.2488914 0.1492112
(0,4) (4,0) O (0,0) 1 -0.1032796
(0,4) (4,0) O (2,2) 1 -0.1576147 -0.25686~.8 -0.2985258
(2,3) (1, 6) 1 (2,2) 1 0.4823643 -0.5169284 0.1007830
(2,3) (3,2) 1 (0,0) 1 -0.4276180
(2,3) (3,2) 1 (2,2) 1 -1.0915135 -0.5261541 0.0163226

2 -0.1993259 0.7211192 0.2988647
3 -0.0183487 0.1908910 -0.6693222

(4,2) (0,8) O (2,2) 1 0.7783691 -0.3410843 -0.0347611
(4,2) (2,4) O (0,0) 1 -0.7745967
(4,2) (2,4) O (2,2) 1 -1.2909502 -0.4042324 -0.1744572

2 -0.9502132 0.1601879 0.2404646
3 -0.6032437 0.5083000 -0.1099279

(4,2) (4, O) O (2,2) 1 0.1633815 -0.2488914 0.1492112
(6,1) (1,6) 1 (0,0) 1 -2.2694661
(6,1) (1,6) 1 (2,2) 1 -3.3034587 -0.7984070 -0.2097556

2 -3.4395178 0.6700114 0.6297066
(6,1) (3,2) 1 (2,2) 1 0.4823643 -0.5169284 0.1007830
(8,0) (0,8) O (0,0) 1 -2.0273683
(8,0) (0,8) O (2,2) 1 -2.6416542 -0.7782408 0.0366824
(8,0) (2,4) O (2,2) 1 0.7783691 -0.3410843 -0.0347611

In cylindrical coordinatcs q = 1,0, -1 wc have the metric 9qq' = (-I)q Óq,_q" and the rule
for raising alld lowcring indices is

(49)

This operators satisfy the cOllllllutation rules

[(q, 'Iq' 1 = (q'lq' - 'Iq,(q = Ó:"
[(q,(q'¡ = ['lq,'lq,j = O.

\Ve define the operators

cq' = '1 ,q'q q~,

(50)

(51 )
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TABLEVII. The same as Tahle IV, for n = 10 partides

{ t (>,"),S (A' '"'),S} po(>o,"o);So
([2'] (20,4); S = 0111 { a(.,O),\ a!.,oq } {'\o,.),\ '\0,.),\ }

1[1 [2'](20,4);S = O),

(A,!,) (A',!,') S Po, !'o) Po p=I p=2 p=3
(0,4) (2,4) O (2,2) 1 0.4948643 -0.4491177 0.1427133
(0,4) (4,0) O (0,0) 1 -0.2754121
(0,4) (4,0) O (2,2) 1 -0.3198218 -0.2037963 0.1254624
(2,3) (1,6) 1 (2,2) 1 1.1988845 -0.9512515 0.4457706
(2,3) (3,2) 1 (0,0) 1 -1.0690450
(2,3) (3,2) 1 (2,2) 1 -1.8505548 -0.3025016 0.2631156

1 2 -0.8018603 0.6491143 -0.4464200
1 3 -0.1280897 0.7779431 0.1465049

(4,2) (0,8) O (2,2) 1 1.1711899 -0.4161026 0.4338491
(4,2) (2,4) O (0,0) 1 -1.3524704
(4,2) (2,4) O (2,2) 1 -1.4874251 -0.3263928 0.2820416

O 2 -1.2393744 0.1292542 0.0348390
O 3 -1.0135904 0.4485234 -0.4103062

(4,2) (4, O) O (2,2) 1 0.4948643 -0.4491177 0.1427133
(6,1) (1,6) 1 (0,0) 1 -3.4914862
(6,1) (1,6) 1 (2,2) 1 -3.2557850 -0.9292884 0.9034818

1 2 -3.9900043 -0,1614718 -0.6614311
(6,1) (3,2) 1 (2,2) 1 1.1988845 -0.9512515 0.4457706
(8, O) (0,8) O (0,0) 1 -2.7514284
(8,0) (0,8) O (2,2) 1 -2.2028964 -1.0208818 0.4796497
(8,0) (2,4) O (2,2) 1 1.1711899 -0.4161026 0.4338491

which, from the aboye commutation relations, satisfy

[q' q"'] - qlll 8Q' q' bqflf (52)cq , cq" - cq q" - cq" q ,

exhibiting these operators as generators of U(3),
The sta tes of the harmonic oscillator could be expressed in terms of creation operators

acting on the ground state 10) (state of no excitation) defined by

~qIO) = O, q=l,O,-1. (53)

The states can be characterized by the three commuting integrals of motion c~, for which
the states become

(54)
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where the nq are the eigenvalues of e~ and the numerical factor is for normalization. The
sum of the nq must be egual to '1 [15].
These generators can be divided into three sets:

(1) o -¡ -1
Cl,C1 ,co ; (2) 1 o -¡

Cl'cO'C_1; (55)

which respectively raise, give and lower the weight of the state.
The weight of the one-particle state (54) is then given by (n¡non_d, and with the

help of the raising generators eY,e11 we can transform it into one and only one state of
maximum weight (11 O O), which charaeterize the irrep. The state (54) eorresponds to a
single-particle basis for an irrep of U(3) in the ehain U(3) ::J U(2) ::J U(I).
Both the spherieal and cylindrical sets are complete and therefore can be expanded one

in terms of one another using the transformation brackets (nlnon_¡lr¡lm).

ApPENDlX S: TlIE TRANSFORMATION BI1ACKETS BETWEEN TlIE SPlIEIlICAL AND CYLIN-
DRICAL [lASIS

These brackets will be zero unless

n¡ + no + n_¡ = 1), (56)

and they are real. They can be evaluated using the formula [16]:

2m(21 + 1)(1 - m)!n¡!no!
('1 + 1+ 1)!!(11 -l)!!(l + m)!n_l!

which is valid for m 2: O. For the case m < Owe have

1 (-1)'(~ +s)!(21- 2s)!
x óno,lJ-2n_l-m 8nl,n_l+m ¿--l---~--~-------

,~o (!1?+s-n_¡)!s!(l-s)!(1-2s-m)!

(57)

(58)

ApPENDIX C: TlIE ANGULAR MOMENTUM MULTIPLICITY

The maximum value of the label /(, in the (>-',J1.)/(LM notation is the total number of
occurrences d(>-', J1.; L) of L in the irrep, given by [9]

where 1-] means the largest integer contained in the argument and is to be interpreted
as zero if the argument is negative. Note that /(, as used here, has no! the same meaning
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as the one introduced by Elliott [21 but is just a running multiplicity label (see Ref. [10))
starting from 1.

This is a very useful formula for computational purposes. It also shows that for L = O
there is only one state for each irrep (i.e. K = 1) if A and Ji. are both even, and there is
no L = O state if at least one of them is odd. This results implies that if the operators
are coupled to Lo = So = Oonly even values for A and Ji. are allowed. These are the only
ones listed in Tables IV, V, VI and VII.
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