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ABSTRACT. We present a method for evaluating reduced matrix elements of two particle transfer,
one and two-body operators which are necessary for many applications within the SU(3) scheme.
The procedure is applicable for nuclear states with an even number of particles which are coupled
at spin zero and belong to the leading SU(3) irreps. Explicit expressions of the highest-weight
states are constructed and a Mathematica code is used for evaluating the matrix elements.

RESUMEN. Se presenta un método para evaluar los elementos de matriz de los operadores de
transferencia de dos particulas, de uno y de dos cuerpos, que son necesarios en varias aplicaciones
dentro del esquema SU(3). El procedimiento es aplicable a estados nucleares con un niimero par de
particulas, que estén acoplados a espin cero y pertenezcan a la irrep lider de SU(3). Se construyen
expresiones explicitas para los estados de maximo peso, y se usa un programa en Mathematica
para evaluar los elementos de matriz.

PACS: 02.20.Qs; 02.70.Rw; 03.65.Fd

1. INTRODUCTION

The standard problem in analyzing the structure of heavy deformed nuclei within the
nonrelativistic spherical shell model is how to reduce the dimensionality of the Hilbert
space. In the past decade various truncation schemes [1] have been proposed which ex-
ploit symmetries of the interactions that dominate the low-energy structure. There is
experimental evidence that strongly supports the view that the nuclear effective interac-
tion appropriate to low-energy excitations must have strong correlation with the pairing
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and quadrupole-quadrupole (@ - Q) interactions. Uncovering an SU(3) symmetry in the
structure of the higher major shells is therefore crucial to the truncation issue.

The nuclear shell structure is not much different from the three-dimensional harmonic
oscillator (HO) up to the ds-shell, thus SU(3) was proposed by Elliott [2] as a reasonable
ds-shell symmetry, which has proven to be useful for truncating the full space down to
a tractable size. The quadrupole-quadrupole interaction @ - @ is dominant when many
valence nucleons are present, and can be expressed in terms of Cy which is the second order
Casimir invariant of SU(3) and L? which is the square of the orbital angular momentum,
as Q-Q = 4Cy — 3L2. Considering the quadrupole-quadrupole interaction with a negative
sign, the states which lie lowest in energy belong to the irreducible representation (irrep)
of SU(3) with the largest eigenvalues of Cy, which is called the leading irrep. These basis
states are those which have the largest intrinsic quadrupole deformation and represent a
severe truncation of the shell model space. The SU(3) coupling scheme is a good approx-
imation when the asymptotic Nilsson quantum numbers [gn;A]Q for the single particle
states are approximately good and when the Nilsson spin-orbit doublets with Q@ = A £ %
are nearly degenerate. Full space ds-shell model calculations have confirmed that the
leading irrep do indeed comprise 60 — 80% of the yrast (lowest state of a given spin)
eigenstates [2].

For higher shells the magnitude of the spin-orbit splitting is so large that the deformed
Nilsson Q = A + § levels are widely separated and SU(3) is not a good symmetry. In ad-
dition, the spin-orbit interaction pushes the state of maximum j down into the next lower
shell. But the normal parity levels that remain have the same total angular momentum
content as the levels of an oscillator shell of one less quantum and the orbits with j = [ — -é—
and j' = (1 -2)+ % are nearly degenerated [3]. The pseudo SU(3) scheme exploits this
degeneracy. As an example consider the # = 4 harmonic oscillator shell. The gy, orbital
is pushed down by the spin-orbit interaction into the n = 3 oscillator shell. This accounts
for the fact that 50 rather than 40 defines a shell closure. The remaining normal parity
levels are relabeled by the mapping

(97/2, ds /2, d3ja, 8172) — (f172, 3720 P3j2:Brj2) (1)

where 1l +s8 = j = 1+ § and the pairs of orbits (97/2:ds5/2) and (d3/2,351/2) are close

in energy. This mapping defines the pseudo (fﬁ,ﬁ = 3) shell. The hy;/, intruder orbit
of the next (np = 5) harmonic oscillator shell that is pushed down into this region by
the spin-orbit term is called the unique or abnormal parity level [4]. The mathematical
formalism necessary for performing these transformations was developed recently [5] and
the mapping is related with a supersymmetry transformation [6].

It has been shown [7] that diagonalizing a general one plus two-body interactions in a
space with frozen unique parity states is equivalent to diagonalizing a phenomenological
Hamiltonian comprised of products of generators of SU(3) coupled to angular momentum
zero, which in the SU(3) — O(3) basis contains only five independent operators, two of
them independent of K and L, one which produces the L(L + 1) splitting of L states but
remains independent of K, and two with both K and L dependence. Slow variations in‘the
five parameters associated with the above mentioned operators are able to give a complete
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and very accurate description of the ground and gamma band rotational structure of rare
earth and actinide nuclei, with the concomitant interband and intraband E2 strengths,
as well as the 17 states with strong M1 transitions, and the E2 and M3 transitions of
these nuclei, providing a rigourous test for the pseudo SU(3) model [7,8].

In this work we will give the mathematical formalism needed in addition to that given
in [7,8] in order to evaluate the matrix elements of a general two-body interaction. The
necessary technology for performing calculations in the SU(3) scheme has been widely
developed in the past years. Clebsch-Gordan [9], Wigner and Racah [10] and 9-(Ap) [11]
coefficients are available. Expansion of one and two-body operators in terms of their
SU(3) components are given explicitly in the Appendix of the work of Draayer et al. (7]
and Castanios et al. [8]. The Wigner-Eckart theorem allows one to evaluate any matrix
elements of tensorial operators in terms of SU(2) and SU(3) Clebsch-Gordan coefficients
and a reduced matrix element. Reduced matrix elements are explicitly given in [8] for
some one-body operators. In the general case, these can be evaluated in terms of triple-
barred reduced matrix elements of the creation operators using the coeflicients of fractional
parentage introduced by Hecht [12]. A special computer code is also available, where the
highest weight states are obtained solving a system of linear equations [13].

The main contribution of this work is to give a simple method for evaluating reduced
matrix elements for one and two-body operators in the SU(3) scheme. The method is valid
for states with even number of particles, coupled pairwise to spin zero, and belonging to
the leading SU(3) irrep (Au). Although this may seem quite restrictive, these states are
the most important ones for even-even nuclei. Our method utilizes the SU(3) cylindrical
basis for explicitly constructing the highest-weight state for a given number of particles,
in a way making simple the evaluation of the matrix elements. This procedure has been
intensively used in the recent years [14].

The structure of this paper is the following: In Sec. 2 the necessary notation for describ-
ing the states and the SU(3) tensorial expansion of the operators is given, together with
a brief review of the Wigner-Eckart theorem. The highest weight states are constructed
explicitly in Sec. 3, Sec. 4 contains the expressions for the matrix elements of the two-
particle transfer, and one and two-body operators between the highest-weight states. In
Sec. 5 these matrix elements are used to obtain the reduced matrix elements, including
some numerical examnles. Final conclusions are drawn in Sec. 6. Appendix A resumes the
U(3) group properties and the cylindrical basis, in Appendix B we include the formulas
describing the cylindrical to spherical transformation brackets and in Appendix C some
SU(3) multiplicities are discussed.

2. STATES AND OPERATORS IN THE SU(3) SCHEME

The many-particle states of N nucleons in a shell of dimension § are characterized by a
totally antisymmetric irrep of a unitary group of dimension 2, that is [15],

U(§2) « group symbol,
(2)

[1¥] « irrep label.
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The basis states are specified in terms of the group chains

u(Qg) — U(Q4/2) x U(2) — SU(3) x SU(2) — O(3) x SU(2) — SU(2)
[ln'{’] [fO] [fa] Po(Aotta) Seo K,L, Jf{;-

Under each group the quantum numbers that characterize its irreps are given. The indices
p and [ are the multiplicity labels of the indicated reductions. Note that the decomposition
of U(Qn) into U(2n/2) x U(2) is a factorization of the normal parity space into orbital
and spin degrees of freedom. This is an LS-coupling scheme, where O(3) is the orbital
angular momentum group and the final SU(2) refers to the total angular momentum.

In the description of even-even nuclei it is usual to make the following additional as-
sumptions [8]:

i) The most important normal parity configurations are those with highest spatial sym-
metry, [f] = [2"¥/2]. This implies that S, = S, = 0; that is, only real (light nuclei)
or pseudo (heavy nuclei) spin zero configurations are taken into account.

ii) Leading SU(3) irreps in the proton and neutron spaces will dominate. For these
representations pr = p, = 1.

One-body and two-body operators acting in a single harmonic oscillator shell 7 can be
expanded in terms of their SU(3) tensorial components using the SU(3) Clebsch-Gordan
coefficients and usual SU(2) algebra [7,8].

We obtain for the one-body terms

l Ta
(i} = 7 U{z‘;‘ j,,}
J

L5 L
x> (0,00 OmbI WKLY, {al o .0
(MK

U vol—ea1—~

}(/\,.u)KL,S;JM

, (4)

where { }* means standard angular momentum coupling (o = JM or LM]), spin cou-
pling (a« = SMg) or SU(3), spin and angular momentum coupling (o = (A, ) KLS, JM),
the sub-index in the creation and annihilation operators represent a whole set of single
particle labels (@ = 74,04, jo) and the others symbols are explained below.

There is a similar expression for the two-particle transfer operator

la Ja
algl P = U{l jb}
™= b 1%

L,§
x 3 (0.0 (LI WKLY, {af, ol o))
(A p)K

Uny vol—ao|—

(Mp)KL, S JM
J , )



REDUCED MATRIX ELEMENTS FOR THE LEADING SPIN. .. 185

The two-body operator has a more involved expression [7]:

{alol}” - {ocaa}” =

la % J a lc '%‘ J ¢ Lab Sa.b J
Z Us b 5 3 pUq la 5 JjapUSLa Sa J
LapLcdLoSapSed Lap Sap J Leag Sca J Ly Ly O

Z <(n50)la; (1, 0)1b || (Aab, #’ab)KabLab>P=1

(Aab nual‘.-)Kub;(Acd WHed )ch

<(01 W)ch (01 n)ld”(Acd1 ﬂcd)chLcd)p:I

Z ((Aabaﬂab)I{abLab;('\cda.ucd)-chLcd“(/\Oa#O)I(OL(J)pO
po(Xo,p0)Ko

t t (Aabuftab)iSas [ i (Aed tted) Sea | P00} Ko Lo, Lo; 00
{ {“(n.m.% Yn0),1 } {%m.% o). } (6)

We have introduced the @ annihilation operator which has the appropriate transforma-
tion properties under the SU(3) — O(3) schemes, i.e.

= (_1)n+l+m+]5+m.a

(0 n)trm; Lm, (n,0)t—m; L —m, " (7)

The U{—} are SU(2) unitary (Jahn-Hope) 9-j coefficients; in Eq. (6) the first two
of them allow the to recoupling of the pairs of creation or annihilation operators from
the jj to the L-S scheme, respectively, and the third one gives the total coupling to zero
angular momentum, in order to assure the interaction is a scalar under rotations (spherical
symmetry). This last assumption has important effects: it implies Ly = Sy and restricts
the available orbital angular momentum. Additionally, for even-even nuclei the normal
parity states have zero total spin, and this requires that only Ly = 0 tensor contribute.
The (—;—||—) are isoscalar SU(3) coupling coefficients, giving each pair of operators
definite SU(3) tensorial properties, and coupling them to a total SU(3) irrep (Ag, uo)-

In order to evaluate the matrix elements of the above operators between states of the
leading SU(3) irreps, for any weights K,L,M, we will use the Wigner-Eckart theorem.

Representing any SU(3) tensor operator by T;z(i\;ﬁ;’u):ﬁ’so, the Wigner-Eckart theorem for
the SU(3) algebra states that

((\u), KLM; § = OjT,‘}‘;(Ij\;ffo);‘ffsu |(V,u'), K'L'M’; S = 0)
= 85,0 Z((Mu’), K'L’; (Ao, o), KoLoll(A p), I(L)p(L’M’, LoMy|LM)
p

X((A )i S = 0f|[ToRorokSe|||(X', '), § = 0) ,  (8)
where p and pgp are multiplicity labels.
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In the rest of this work we will describe a method to evaluate the reduced matrix
elements that enter in this expression. The next step is the explicit construction of the
highest-weight state in each irrep, in a form that allows us to evaluate the full matrix
elements. Then by means of the Wigner-Eckart theorem we will obtain from these results
the reduced matrix elements.

3. THE HIGHEST-WEIGHT STATES

The generators of the U(r) group can be expressed in the cylindrical basis as

J n' n nhn'
0 1’
ﬂlﬂnﬂ 1 == E n1non 1.10' E Cnlngn._l,s, (9)

assuming we are dealing with configuration space states in a single shell 7. Using the
second quantization formalism the generators of U(3) given in (51) of Appendix A can be
expressed in terms of those of U(r) as

cf =S(uelyct = S (mnonoile] Ingngnl, YO . (10)
B!

-
ningn-—1 'nl "0"’—1

The weight generators have the simple form

Cg = Z Mg C::ll::g:::u ¢g=10,-1, (11)

ningn-1

exhibiting the weights as additive quantities for multiparticle systems. As an example,
the 10 one-particle states of the n = 5 shell are enumerated and listed in the first two
columns of Table I. They are ordered in the usual way, giving the maximum weight to the
state which has the highest n; weight; given they were equal, the highest ng weight and
so on. The first column enumerates the states and the second one gives their cylindrical
weights.

We can now construct the state of maximum weight of a given irrep [22] n even) of
the group U(r). In as much as the states are coupled to spin S = 0, we introduce here the
following operator, antisymmetric under permutation of the spin s [15]:

12 — ot .t 1
A##a = aula,u’? == a#2ap’1’ (12)
where the p are spatial labels, and the numbers 1 and 2 account for the two possible spin
projections mg = —é— and —% respectively.

The two-particle system includes all the irreps available by the direct product (7,0,0)®
(n,0,0). Continuing with the = 5 example we have

(5,0,0) ® (5,0,0) = (10,0,0) & (9,1,0) & (8,2,0) ®(7,3,0) & (6,4,0) & (5,5,0). (13)
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TABLE I. Weights of the 10 one-particle and 10 one-hole states in the n = 5 shell. The first and
third columns ennumerate the weights, columns 2 and 4 give the cylindrical weights n,,ng,n_,
for particles and holes, respectively.

i u(i) h u(h)

ny no n_i ny g n-1
1 5 0 0 1 0 0 5
2 4 1 0 2 0 1 4
3 4 0 1 3 1 0 4
1 3 2 0 4 0 2 3
5 3 1 1 5 1 1 3
6 3 0 2 6 2 0 3
7 2 3 0 7 0 3 2
8 2 2 1 8 1 2 2
9 2 1 2 9 2 1 2
10 2 0 3 10 3 0 2

or, in the more familiar (A, ) notation,

(5,0) @ (5,0) = (10,0) & (8,1) & (6,2) & (4,3) & (2,4) & (0, 5). (14)

We have stated above that there are physical reasons, related with the operator Q - Q
and its expression in terms of the Casimir Cy, for selecting from this set of irreps only
the irrep with highest (A + ) value. In this case, for two particle in the n = 5 shell, this
means the (10,0) irrep. We will show now that the state of highest weight of this irrep,
i.e., the state with weight (10,0,0) is

Aty uml) = B8 o0s00) ) (15)

where u(i) are the cylindrical labels ny,ng,n_; of the i-th one-particle state, as listed in
Table I. It is easy to show that this state is of highest weight of U(21), because the raising

operators c‘u cannot further raise the label (5,0,0) (it is the state of highest weight for
one-partxcle) This state must also be the highest-weight state of SU(3), in the leading
irrep for two particles in the fifth oscillator she]l In this particular case this is also easy
to show because the raising operators c?, c1 y Cg 1 all give zero when acting on it, the first
two because it is not possible to raise the n; label above 10, given we have twice n=2>5
phonons, and the third because it is not possible to lower the n_; label below 0.
Systems with more particle pairs present slightly more difficulties. Given the additivity
of the welghts the state of highest weight must have a pair of particles in the state 1,
another in the state 2, and so on, up to complete their total number. And because the
particles are fermions, one can put only two in each state, one with spin up and the
other with spm down. But one can have combinations of pairs giving the same weight,

for example A(s 0,0)(5,0 O)A(4.l.0)(4 1,0) and A(5 0,0)(4,1 O)A(S 0,0)(4,1,0)" There is an important
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TABLE II. The maximum weights, characterizing the leading irreps in the 7 = 5 shell for n = 2
to n = 16 even particle states. Columns 2, 3 and 4 give their cylindrical weights n;, ng, n_;
respectively, while columns 5, 6 give their associated labels A, fi,.

n ny ng n_y A Hm
2 10 0 0 10 0
4 18 2 0 16 2
6 26 2 2 24 0
8 32 6 2 26 4
10 38 8 4 30 4
12 44 8 8 36 0
14 48 14 8 34 6
16 52 18 10 34 8
result which will help us solve this ambiguity:
12 12 _ 12 A 12

The proof of this statement can be obtained by expressing the A’s in their creation and
annihilation operator components, rearranging them, and recognizing that two identical
creation operators acting over the vacuum give zero.

The above result gives us the form of the four-particle highest-weight state (hws) of
U(r). Generalizing this result we obtain, for a system of n (even) particles

Autiyu| ) (17)

: 1»]:

n 1
|[22], bws) = -

i=1

Acting with the raising operators of the U(r) group onto this state will give zero by
construction. There exist only one state of highest weight, therefore we have constructed
its wave function explicitly. The determination of the SU(3) weights of this state is easy.
We need only to sum twice the weights of the single-particle states, up to the numbers of
pairs in the state, i.e.,

7
n‘?I(n) = Zan(i), q= 1101 —11
i=1

Am(n) =ni(n) —no(n),  pm(n) = no(n) —n-1(n). (18)

For the example in the = 5 shell, in Table II we show the highest weights characterizing
the leading irreps for one to eight pairs of particles.

The leading irrep (Am,/tm) contains once and only once the state with the highest
angular momentum Lyax = Am + fm, and magnetic projection Mmax = Lmax. Again,
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using the uniqueness of this highest-weight state and the fact that it has spin S = 0, we
have

|[2%], bws) = [[23], (Am, tm) K = 1 Linax Mma, S = 0. (19)
If the shell is more than half filled, i.e., /2 = r < n < Q the above described formalism

does not describe the highest-weight state. Instead, it is necessary to replace particles by
holes. We start with a completely filled ground state |h), and the highest-weight state is

|[2%72], hws) = [ [2%/2], (A, ttm) K = 1 Linax Ml S = 0)

n, /2

1 12 t
- ona/2 H{An(h)#(h)} |h), (20)
h=1
where we defined ny = Q — n and M. = —Lpax. The hole states are inversely ordered

than the particles one and, for the u~th one particle-state weight, with Q/2 < 4 < Q

(n1(h),no(h),n_y(R)), . = (n1(3),ma(i), n-1(2)) i=r—h (21

holes particles’

These one-hole state weights are also exhibited in the last two columns of Table I.
An additional useful relationship is

(Am(1n), m(nn)) = (hm(n), Am(n)). (22)

These are the key results in our construction. Using the Wigner-Eckart theorem we will
be able to evaluate any matrix elements between states in these irreps (Am, 1), whatever
the weights K, L, M they could have.

4. THE MATRIX ELEMENTS FOR THE HIGHEST-WEIGHT STATES

In order to evaluate the matrix elements for the highest-weight states of the operators
introduced in Eqs. (4), (5) and (6) we reexpand them in the cylindrical basis. The wanted
expressions are:

t » (A,u),5=0
ot Zan }KLM
1 —-m
= 5 D (O OB WKLY | 3™ (1) (ms, by—rma|L0)

Lyl myma

T.1
z: (nllmlIn}.'ngn_l)(7]127’”-2]”%713712_1) E :O’i}nén’ ;2o Tninzn? 1139 (23)
a
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and

1. 1, (’\lf")ns = . (A‘,H‘),S
{“(nm.% % (n,0),3 } {“(o.n),% %o, }

= Y (WKL X, 1)K'L|(, #o)KoLo)
KK'LL'MM'

> (@0)1l, (m0) 2 |(A)K L) _ ((0m)Lls, (0n)1La|(X' ) K'L")

hilalals

po(Ao,k0);S0

KoLo=SoMp,=—Ms,

p=1

ST (ama, lama| LM) (sms, lama| L'M') (LM, L' = M'|LoMo) (-1)% ="

M1m2m3amy

Z (nl;mﬂnlngn )(nlgm2|n1n0n 1)

1,,1 2,22
Bl _1M B

Z (nhmﬂn{'n%nil)(nl4m4|n%nén4_1>

. 4
t t ¥ s %
a a } {a a } (24)
10,1 1@ 2 2.2 1 3,33 1Q 4 4.4 .1 3
{ LT CE T L o TMptiis Mi%etiiia

&
nyingn _l,nlnoﬂ._1
Ms,

1
L1

where the (nlm|ninon_,) are the transformation brackets between the spherical and cylin-
drical basis [16] and are given in Appendix B. It must be noted that, using Eq. (17),

5=0
1 t _ =2 Al2
{ap.%au’.%} =2724,. (25)

Using the above expression, we obtain

- = (An),5=0
{a(ﬂﬂ)% a(Uﬂ)% }K[,M

=-% (=1)E=M S " ((On)1ty, ()1l (A )KL > (ima, lymo|L - M)

lil2 m1ma2

'
Z (nllm1|n1n0n )(nlgm2|n1n0n 1>(A%i nind )(nZ n’n’l) . (26)

nin})nl_l ﬂzﬂgﬂ.z i
The second step is to calculate the matrix elements of the spatially decoupled cylindrical
operators which appear in the right hand of Egs. (23), (24) and (26) between the highest-
weight states defined in Eq. (17). As we work only with states coupled to S = 0, it follows
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that the above operators will have matrix elements different from zero only if Sy = 0. For
the one-body operator we obtain

2
<[2%], hws [23], h“'s> = 2 D Suanti) 20
i=1

where if y; # 2 when the one-body operator acts over the hws state generates a state
which is orthogonal to it and the matrix element becomes null, and if u; = ps it counts
the two nucleons occupying the state or gives zero for unoccupied states.

For the two particle transfer operator we need to evaluate

([2%], hwsf(/_'k12 )t| [2%“], hws)

a' jo - g
H1:39 H2i39

(4

H1H2

= %([2%]’ hws| (A:‘?#Z)TAL%%+1)#(%+1)| [2%}’ hws) = 26#1#26#1#(%+1)' (28)

In this case we used the definition (12) of A2 ~and (17) of the highest-weight state,

H1p2
evaluated the commutator and recognized that ([2%], hws|a' . .. = 0. The u(z+1) are
u(G 2

+1)
the cylindrical labels of the % + 1 one-particle state.
The matrix element of the spatially decoupled two body operator is

T 1. Sf S.l SU "
[2 {{am;% am;%} {am;% am;%} } [22]’ s

2
= 5500(‘5;11:14‘5#2#3 - 5#1#36#2#4) Z (5;11;1(1')‘5;12;10) +* 6#1#(1')5#2#(:'))' (29)
1<7=1

Wl

], hws

3

The + sign in the above expression holds for intermediate spin S’ = 0, the — sign for
§' = 1. Evaluating the above matrix elements implied the iterative use of the commutation
relationships between a and a'. This task is difficult when there are, for example, eight
creation operators in the maximum weight state on the right, plus two creation and two
annihilation operators in the two-body operator, plus another eight annihilation operators
in the state on the left. A Mathematica [17] code was developed to do for us this algebraic
manipulation. This code is available under request.

Finally the desired matrix elements for the coupled operators given in Eqs. (23), (24)
and (26) are evaluated. Given Ly = Sy due to the spherical symmetry of the interaction
and Sp = 0, we obtain important simplifications in this expression. Specifically, as shown
in Appendix C, this implies that only even A and pg are allowed.

For one-body coupled operators the matrix elements are

[23]) (A, ), 1L . PowoloLoMo=0:y
myﬂ‘m 3 max max, ( 0) 1

7,0}, (0m).%

| (2] s ), 1 Lens Mo = 0
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= —\/56300 Z((no)llla (0"7)”2 ”(/\05 MO)KQLO)p:l

lila
D (1™ (lmy b = mlLe0) x Y (nlymlu(i)) (nlamlu(i)),  (30)
m =1

and for the two-particle transfer operators

= _ . (Ao.t0)KoLoMo;So
< [25] (’\ma #"m.)» 1Lma.meax1 S — 0‘ {a(o‘n)% a{O,n).%}

|[28+2] s ), 1 s M ' = 0)

=—850vV2 D ((0n)1l, (0n)1all(Mo, o) KoLo),_,

lylz,myms

(=1)fo=Mo(1ymy, lymy| Ly — Mo)(nlima|pu(3 + 1)) {nlama|n(% + 1)). (31)

In these expressions the u(3 4 1) are again the cylindrical labels of the 5 +1 one-particle
state, and Lo and My must respectively satisfy My = Mpax — M] .. and Ly > | My,
otherwise the matrix element is zero.

The matrix elements of the two-body coupled operators become

<[2%] (Am, nu'm)leameax; S = O!

(Nu))5 (A u"),8 ) Po(Aosk0) Ko Lo Mo=0;So
(A, {ZomiFoms)
(1.0).3 ~ (n.0).5 ©m).3 (0m).%

| [2%] (/\maﬂ'm)leameax; S = 0)

=650 Y (KL, (N, )K'L||(Ao, 10)10)
KK'LM

1
Po2L +1
VZS+1 Y {(n0)1h, (n0)10; IAWKL),_, ((Om)ls, (0n)Lial|(Ni)K'L)

lilal3ly

n

Z (lymy, lame| LM)(l3m3, lamg| LM) Z (ntvma|n(i) ) (nlama|u(s))

mypmamamy 1,j=1

((nlamalu(5)) (nlamalu(i)) = (nlsms|u(i)) (nlamalu(s))). (32)
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5. THE REDUCED MATRIX ELEMENTS

As it was mentioned in Sec. 3, using the Wigner-Eckart theorem, Eq. (8), it is easy to
obtain the reduced matrix elements. In matrix notation, one must solve the linear system

AKX =B, (33)
with

Aij = ((A:rm Ju:n)lL;nax: (/\Oa #O)KOLOH(/\ma ﬂm)leax)p(L:naxM:naxa LOMﬂleameax)
i KDy j—ep (34)

Bik = <(’\m; U'rn), 1Lmameax;S = OIT}%(;(["\:A#&);}\S}JSO |(/\;n,p;,,),lL' M, (8= 0)

L st
Y 0 N - (35)
Xjk = ((Amy pm); § = 0||7PComolSo||(\! ut); S = 0),
J—=p k— po. (36)

The U(3) multiplicity appears twice in the above expression: in the number N of times
the coupling (Am, m) ® (Aopo) = (A, ki) can occur, labeled with p; and in the number
Nop associated with the operator irrep (Ag, s10) and labeled by po- The latter multiplicity
Nop is always equal to one for the one-body and two-particle transfer operators, but can
have values greater than one for the two-particle transfer operators. The A is a Ny x Ny
matrix, while B and X are Ny x Ny, matrices. The A matrix must be an invertible
matrix. This property is obtained by construction. System (33) is solved for shell number
1, number of particle n and operator T?0(%H0)iS0 each column in A belongs to a different
p, the operator labels K, and Ly characterize the rows and are selected taking care of
that there are no two linearly dependent ones. Thus A is non-singular.

As an example let us consider the case of n = 4 particles in the 7 = 4 shell. The
highest-weight state (19) is

[[2%], hws) = |[22],(12,2) K =1 Linax = 14 Mo = 14, = 0). (37)

For the tensor operator we select

po(Aoko):So t f (42),5=0 (_ ) (0,8),5=0) P0=1(2:2)iS0=0
S :{{“(4.0),%“(4.0).%} {004 %0m4) (38)

In this particular example, the direct product (4,2) ® (0,8) contains only once the irrep
(2,2). Then Nop = 1 and pg can only take the value pg = 1. By the other side, the coupling
(12,2) ® (2,2) = (12,2) can occur Ny = 3 times, and the values p = 1,2,3 are allowed.
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We are looking for the reduced matrix elements and need to solve the linear equations

> ((12,2)114, (2,2) Ko Lo|(12,2)1 14) (14 14,2 2[14 14)
P

(4,2),5=0 (0,8),5=0) 1(2:2):0
2 .G — i - .
(,02.2:5 =00 {{aluory o} {iwan o)}

2%, (12,2); 5 = 0),

= ([2%,(12,2)11414; S = 0|

1 t (4,2),5=0 (0,8),5=0
{“(4,0),%“(4.0},%} { %0.4).1 H04),} } }

2%, (12,2)11414; S = 0).

1(2,2);0

Ko Lo Mg=0

Given Ng = 3 we need three independent equations. They are obtained selecting Ko =
1, Ly = 0,2, 3, which were found numerically to generate linear independent equation. The
right side of the above equation was evaluated using Eq. (32), while the SU(3) and SU(2)
Clebsch-Gordan coefficientes are available as computer codes (10]. The wanted reduced
matrix elements are exhibited in the first row of Table IV.

The values of many reduced matrix elements for one-body operators are explicitly
given in Ref. [8] and we will not repeat them here. Table III exhibits some reduced
matrix elements of two-particle transfer operators. In order to check the correctness of
the reduced matrix elements for the two-body operators obtained in the way described
above, we have performed the evaluation of the matrix elements of the two-body operators
N? and Q- Q, which have the well know values n? and 4Cy — 3L(L + 1) respectively. We
used the expressions

([23] Ao ) K LM 8 = O|N?|[2% ] (Am, ) KLM; S = 0)

(n,0)  (0,n) (0,0) 1
(n+1)(n+2) Z (n,0)  (0,n) (0,0) 1
(Ap) (N, p) (0 0) 1

(Ap)(A ") 1 1

S VEST 28] o i, § =

S
T 1, (’\1#)15 = - (A‘,p‘),s
{“(-m).% “(n.n),%} {“(o,m,% %om.3 }

l1[23] Ay ), S = 0}, (40)

1(0,0);0
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TaBLE III. The reduced matrix elements for the two-particle transfer operator

n (2nu),S arid
(2JOnmis =0l {aon s dans ) NEE)O0mSs=0),

The first two columns show 7 and the irrep [2%], the following three columns give the (A, u)’s
and the final columns exhibit the reduced matrix elements for the different values of the external
multiplicity p.

7? %] Opwp) Qom) (g p=1 p =2 p=3
3 [2?] (8,2) (12,0) (0,6) -2.10051

3 [2%] (8,2) (12,0) (2.2 1.16110

4 (21 (8,0) (i2.2) (0,8) —5.45108

4 (2Y) (8,0) (12,2) (2,4) 2.43780

4 (2] (12,2) (18,0) (0,8) —-2.14322

4 [22] (12,2) (18,0) (2,4) 1.25137

4 [2°] (0,24) (4,20) (0,8) —3.33789

4 [2°] (0,24) (4,20) (2,4) 1.89737

4 [2°] (0,24) (4, 20) (4,0) ~1.41421

4 [219] (4,20) (4,18) (0,8) —2.43504

4 [219] (4, 20) (4,18) (2,4) —-0.37391 —0.12955 —4.05720
4 [2'9] (4,20) (4,18) (4,0) —0.96609

5 2°] (30,4) (36,0) (0,10) -1.60155

5 2] (30,4) (36,0) (2,6) 0.93853

5 (2°] (30,4) (36,0) (4,2) —0.80494

and

([22] A, um) KLM; S = 01Q - QI [25] (A, i) KLM; S = 0)

~-1)"V2 Z V20 +1[4C,(n,0) = 31(1 + 1)) E{((n, 0)14, (0, m)11||(A, ,u)m)p,:1
l

(Ap)

Y (o ) KLy (A, )10 (A, )KL

P
(Am)i0
&'( 0, ),%] g l“( m!ﬂm = 0) }

V5 (7 + 3)!
VB +3) Z{((1,1)12,(1,2)1241(A,u>10>p

(O‘m'“m = Ol“ [ Gy,

1
12

2 - 1)
( ) (A u)p
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(n,0) (0,7) (1,1) 1
Z (m,0)  (0,7) (1,1) 1

N Az, A,
(A1,41)(A2,42)p1 (11”1) (21ﬂ2) (pﬂ-) £

V25 +1
ZS: 2 Z((r\ms#m)KL, (A,p)10|](Am’#m)KL)p2
P2
2% ,\ S — 0 t t (XI,FI),S (’\2,#2)“9 PI(A,[J);O
<[ ]( m,#m)’ - ||| {a(nlo)‘% a(n,O),-;-} {a(om'% a(ovn),%}

([ [CPRIEN S

In Table IV numerical results are shown for n = 4 particles in the shell = 4, and
intermediate spins S = 0 or 1, for the reduced matrix elements of the two-body operators,
coupled to (Ao, po) = (0,0) and (2,2), the only ones needed in the evaluation of N? and
Q- Q. Tables V, VI and VII exhibit the same matrix elements for n = 6,8 and 10 particles
respectively. Only nonzero values are exhibited. The first columns show the coupled (A, u)
for the pair of creation operators and the pair of annihilation operators, respectively, the
intermediate spin S their final coupling (Ao, o) and the multiplicity label pg of this
coupling. The other columns depict the reduced matrix elements for different values of
the external multiplicity p.

6. CONCLUSIONS

In this contribution we gave an explicit, analytic construction of the reduced matrix
elements of the one-body, two-body operators and two-particle transfer operators within
the leading SU(3) irrep in one oscillator shell. Partly we used already known results as
SU(3) coupling and recoupling coefficients and transformation brackets from the spherical
to the cylindrical basis. A Mathematica code was developed and used in order to evaluate
the reduced matrix elements, and it is available under request. We gave several numerical
examples and tabulated various coefficients.

Our contribution has also to be seen as a useful reference for people not being familiar
with the group theoretical manipulation but which want to use these results in order to
treat many particle systems in the SU(3) or pseudo SU(3) models.

APPENDIX A: A SHORT REVIEW OF SU(3)

We follow the formalism introduced by Moshinsky [15], which we briefly review here.
We start with the creation operators a:-r and annihilation operators a; which satisfy anti-
commutation relations,

{az,aj} = afaj - ajaz = 6{, {a:r,a;} = {ai,aj} =0, (42)
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TABLE IV. Reduced matrix elements for states with n = 4 particles in the n = 4 shell

(An),8 (M u"),8 Y Po(R0,H0)iS0
2 ¢ 1 1 = -
(1210225 =0l {{ey s} {ims )"}

[z (12,23 =0) .

The first five columns give the coupled (A, 1)'s for the pair of creation operators and the pair of
annihilation operators, the intermediate spin S, their final coupling (Ao, sto) and their multiplicity
label pg, respectively. The others columns exhibit the reduced matrix elements for the different
values of the external multiplicity p.

(A, 1) (A, ') S (Ao, 1o) Po p=1 p=2 p=3

(4,2) (0,8) 0 (2,2) 1 0.1512867 —0.2464468 0.1664138

(4,2) (2,4) 0 (2,2) 1 —0.3482455 —0.2757678 —0.1008070
2 —0.1834020 0.2288736 0.3718715
3 —0.0964501 0.2364177 —0.3443055

(6,1) (1,6) 1 (0,0) 1 —0.4364358

(6,1 (1,6) 1 (2,9) 1 -1.5681394 —0.6823224 0.1815724
g —0.8573655 1.3578570 —0.2644187

(8,0) (0,8) 0 (0,0) 1 ~0.7666519

(8,0) (0,8) 0 (2,2) 1 —2.2391842 ~0.4562323 0.0972367

(8,0) (2,4) 0 (2,2) 1 0.1512867 —0.2464468 0.1664138

where the indexes i and j indicate the spherical single-particle states available for the
nucleons, corresponding to the total quantum number 7n; of the three dimensional har-
monic oscillator potential, the angular momentum I; and its projection m;, and the spin
and isospin s; and t; with their projections mg; and my;. The upper and lower indices
are introduced in order to distinguish different transformation properties others than
cartesian. The range of allowed orbital angular momenta is given by

l=nm-2,...,1 or 0. (43)

The number of orbital states r, restricted to a single shell is just

n
r= Y (@+1)=in+1)@n+2) (44)
I=0or1

Including spin we have Q = 2r, and using that the U(2r) group contains the direct
product of U(r) x U(2), we will construct the raising, lowering, and weight operators
in U(r) and relate them with the SU(3) group, following the chain introduced in the
introduction. In the following discussion we will refer only to one generic type of nucleon
since we are working with separate proton and neutron subspaces, which later will be
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TABLE V. The same as Table IV, for n = 6 particles

(Ap),S (3,8 Y Po(Po.p0)iSo
(Elosors =0l { {aumsouns} " fBomstons) )

||| [23](18,0);5 = o)p.

(Ap)  (Nye) S (Aoymo)  po p=1
(4,2) (0,8) 0 (2,2) 1 0.5629625
(4,2) (2,4) 0 (0,0) 1 —0.3319700
(4,2) (2,4) 0 (2,2) 1 —0.7957149
2 —0.6107404
3 —0.4175957
(6,1) (1,6) 1 (0,0) 1 —1.3093073
(6,1) (1,6) 1 (2,2) 1 —2.5798182
2 —3.3046949
(8,0) (0,8) 0 (0,0) 1 —1.4055284
(8,0) (0,8) 0 (2,2) 1 —2.7327545
(8,0) (2,4) 0 (2,2) 1 0.5629625

strongly coupled, and we will differentiate the spatial x4 = (n,l,m) and spinorial (s)
labels.
The generators of the U(2r) group are

cL = al,a*?, (45)

and from these we built those associated with the U(r) group by adding over the spinorial
indices

C¥ =Y al,0 = Zc;:;’. (46)

8

There are r states, i.e., r different spatial labels for 7 fixed.

We will now introduce the cylindrical SU(3) classification scheme of these states, which
is alternative to the (1,1, m) defined above. We start by reviewing some properties of the
three dimensional harmonic oscillator. We shall use units in which &, the mass of the
nucleon m, and the oscillator frequency w, are taken as 1, 1.e.,

h=m=w=1.

Denoting by 7 the coordinate and by 7 the momentum vectors, the creation 77 and anni-
hilation £ phonon operators are

—

i=2(F-ip), &= J(F+ip). (48)

Sl-
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TABLE VI. The same as Table IV, for n = 8 particles

(Am),S (Au'),8 po(Ao,10):So
4 - t t - -
({2 ](18,4),5'_ O”l {{&(4,0),;F 0(4_0),§} {a(o‘“'%a(w)‘%} }

||| [2*](18,4); S = o)p.

(A, p) (N, 1) S (Ao, o) Po p=1 p=2 p=3

(0,4) (2,4) 0 (2,2) 1 0.1633815 -0.2488914 0.1492112

(0,4) (4,0) 0 (0,0) 1 -0.1032796

(0,4) (4,0) 0 (2,2) 1 -0.1576147  —0.2568678 —0.2985258

(2,3) (1,6) 1 (2,2) 1 0.4823643 —0.5169284 0.1007830

(2,3) (3,2) 1 (0,0) 1 —0.4276180

(2,3) (3,2) 1 (2,2) 1 -1.0915135 —0.5261541 0.0163226
2 —0.1993259 0.7211192 0.2988647
3 —0.0183487 0.1908910 —0.6693222

(4,2) (0,8) 0 (2:9) 1 0.7783691 —0.3410843 ~0.0347611

(4,2) (2,4) 0 (0,0) 1 —0.7745967

(4,2) (2,4) 0 (8:9) 1 —1.2909502 —0.4042324 —0.1744572
2 —0.9502132 0.1601879 0.2404646
3 —0.6032437 0.5083000 —0.1099279

(4,2) (4,0) (2,2) 1 0.1633815 —0.2488914 0.1492112

(6,1) (1,6) 1 (0,0) 1 —2.2694661

(6, (1,6) 1 (2,2) 1 —3.3034587 —0.7984070 ~0.2097556
2 —3.4395178 0.6700114 0.6297066

(6,1) (3,2) 1 (2,2) 1 0.4823643 —0.5169284 0.1007830

(8,0) (0,8) 0 (0,0) 1 -2.0273683

(8,0) (0,8) 0 (2,2) 1 —2.6416542 —0.7782408 0.0366824

(8,0) (2,4) 0 (2,2) 1 0.7783691 —0.3410843 —0.0347611

In cylindrical coordinates ¢ = 1,0, —1 we have the metric gg¢ = (—1)%8, _¢, and the rule
for raising and lowering indices is

= (-1-g  E=(-D%,  ()'=n,. (49)
This operators satisfy the commutation rules

[§% ng] = &g — ng€" = &},
(50)
[fq,ﬁq] = [nqanq'] =0.
We define the operators

cg =net?, (51)
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TABLE VII. The same as Table IV, for n = 10 particles

(Mu),S (M,u'),S
<[25] (20,4); 5 = 0”| {{ %(4,0), 3 (4 0), %} {&(0,4),} &(0,4),{;} }

po(Xo.k0)iSo

I[2°] (20,4); 8 =0} .

I

(A, 1) (A, p') S (Ao, ko) Po p=1 p=2 p=3

(0,4) (2,4) 0 (2,2) 1. 0.4948643 —0.4491177 0.1427133

(0,4) (4,0) 0 (0,0) 1 —0.2754121

(0,4) (4,0) 0 (2,2) 1 —0.3198218  —0.2037963 0.1254624

(2,3) (1,6) 1 (2,2) 1 1.1988845  —0.9512515 0.4457706

(2,3) (3,2) 1 (0,0) 1 —1.0690450

(2,3) (3,2) 1 (2,2) 1 —1.8505548 —0.3025016 0.2631156
1 2 —0.8018603 0.6491143 —0.4464200
1 3 —0.1280897 0.7779431 0.1465049

(4,2) (0,8) 0 (2,2) 1 11711899  —0.4161026 0.4338491

(4,2) (2,4) 0 (0,0 1 —1.3524704

(4,2) (2,4) 0 (2,2) 1 —14874251  —0.3263928 0.2820416
0 2 —1.2393744 0.1292542 0.0348390
0 3 —1.0135904 0.4485234 —0.4103062

(4,2) (4,0 0 (2,2) 1 0.4948643 —0.4491177 0.1427133

(6,1) (1,6) 1 (0,0) 1 —3.4914862

(6,1) (1,6) 1 (2,2) 1 —3.2557850  —0.9292884 0.9034818
1 2 —3.9900043 —0.1614718 —0.6614311

(6,1) (3,2) 1 (2,2) 1 1.1988845  —0.9512515 0.4457706

(8,0) 0,8) 0 (0,0) 1 27514284

(8,0) (0,8) 0 (2:2) 1 —2.2028964 —1.0208818 0.4796497

(8,0) (2,4) 0 (2,2) 1 1.1711899  —0.4161026 0.4338491

which, from the above commutation relations, satisfy
[g,c ”]—Cq 6 ""Cgrrég 3 (52)

exhibiting these operators as generators of U(3).
The states of the harmonic oscillator could be expressed in terms of creation operators
acting on the ground state |0) (state of no excitation) defined by

£100)=0, ¢=1,0-1. (53)

The states can be characterized by the three commuting integrals of motion ¢}, for which
the states become

Ininon_1) = [n1!ng! n_1!] 72 ()™ (o)™ (n-1)"-*10), (54)
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where the ng are the eigenvalues of ¢] and the numerical factor is for normalization. The
sum of the ny must be equal to 7 [15].
These generators can be divided into three sets:

() efuei iy @ chidiel: (8) bl gy (55)

which respectively raise, give and lower the weight of the state.

The weight of the one-particle state (54) is then given by (nyngn—1), and with the
help of the raising generators c(f,cl‘1 we can transform it into one and only one state of
maximum weight (7 0 0), which characterize the irrep. The state (54) corresponds to a
single-particle basis for an irrep of U(3) in the chain U(3) D U(2) > U(1).

Both the spherical and cylindrical sets are complete and therefore can be expanded one
in terms of one another using the transformation brackets (ningn_q|nlm).

APPENDIX B: THE TRANSFORMATION BRACKETS BETWEEN THE SPHERICAL AND CYLIN-
DRICAL BASIS

These brackets will be zero unless
ny+ng+n_y =1, ny—n_i=m (56)

and they are real. They can be evaluated using the formula [16]:

2"‘(21.’ + 1)(l - m)!nl!no!

—1fnim) = 2nrt
(ninon_y|nim) @+ 1+ D — DU + m)tn_]

(—1)* (L + 5)! (21 — 2s)!
L 4 s —noy)lst(l — s)! (I — 25 — m)!
(57)

]
X 6n0,n—2n_1—m énl,n_1+m E
=

which is valid for m > 0. For the case m < 0 we have

<n1n0n_1|nl - m) = (n_1n0n1|n1m>. (58)

APPENDIX C: THE ANGULAR MOMENTUM MULTIPLICITY

The maximum value of the label K, in the (A, u)KLM notation is the total number of
occurrences d(A, y; L) of L in the irrep, given by [9]

dAp:L)=[JA+u+2-L)] - [%(A+1—L)] - [3(p+1-10)],

where [—] means the largest integer contained in the argument and is to be interpreted
as zero if the argument is negative. Note that K, as used here, has not the same meaning
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as the one introduced by Elliott (2] but is just a running multiplicity label (see Ref. [10])
starting from 1.

This is a very useful formula for computational purposes. It also shows that for L = 0
there is only one state for each irrep (i.e. K = 1) if A and p are both even, and there is
no L = 0 state if at least one of them is odd. This results implies that if the operators
are coupled to Lo = Sp = 0 only even values for A and u are allowed. These are the only
ones listed in Tables IV, V, VI and VII.
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