Investigacién Revista Mezicana de Fisica 41, No. 2 (1995) 229-254

Lagrangian and Hamiltonian formulations
of geometrical anisotropic optics

G.F. TORRES DEL CASTILLO

Departamento de Fisica Matemdtica, Instituto de Ciencias
Universidad Autonoma de Puebla
72000 Puebla, Pue., Mézico

Recibido el 14 de julio de 1994; aceptado el 2 de febrero de 1995

ABSTRACT. A Lagrangian function for the time evolution of light rays in an anisotropic medium
is obtained, the corresponding hamiltonian function is also given and it is shown that the resulting
evolution equations are equivalent to impose the Fermat principle.

RESUMEN. Se obtiene una funcién lagrangiana para la evolucién temporal de los rayos de luz en
un medio anisétropo, se da también la funcién hamiltoniana correspondiente y se muestra que las
ecuaciones de evolucién resultantes equivalen a imponer el principio de Fermat.

PACS: 42.15.-i

1. INTRODUCTION

In a recent paper (1], the Lie-Hamilton optics has been extended to anisotropic media
starting from Fermat’s principle of least time, which determines the paths followed by the
light rays also in the case of anisotropic media (see, e.g., Ref. [2]). The Lagrangian and
Hamiltonian functions obtained in Ref. [1] give the evolution of the light rays with the
coordinate along the optical axis of the system as parameter.

In this paper we obtain Lagrangian and Hamiltonian functions for the light rays in
anisotropic media, using the time as evolution parameter. In Sect. 2, we start from some
known relations valid in the case of isotropic media and we find a Lagrangian function for
the light rays in an anisotropic medium. We show that the evolution determined by this
Lagrangian satisfies the Fermat principle. In Sect. 3 we obtain the Hamiltonian function
that generates the evolution of the light rays parametrized by one of the coordinates, thus
reproducing some results of Ref. [1].

2. VARIATIONAL PRINCIPLES

The evolution of the geometrical optical rays satisfies Fermat’s principle of least time
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where n is the refractive index of the optical medium and ds is the line element of three-
dimensional space. In the case of an isotropic medium, n may be a function of position, n =
n(g'), where the ¢* are cartesian coordinates (i = 1,2, 3); while in an anisotropic medium,
the refractive index depends on the direction of the light ray. Despite the resemblance of

Eq. (1) to Hamilton’s principle
t2
6 / Ldt=0 (2)
ty

of classical mechanics, the refractive index n, appearing in Eq. (1), cannot be taken as
a Lagrangian for the light rays since the arc length s cannot be used as an independent
variable in the variational problem (1) (see, e.g., Ref. [3]). Whereas all curves considered
in the variation (2) have the same endpoints at the same times t; and t;, the curves
considered in the variation (1) may not have the same arc length limits (unless they have
the same length). (Note also that in the case of Eq. (1) the variable s is restricted by the
condition |dq/ds| = 1.) Rather, Fermat’s principle is the analogue of Jacobi’s principle
(or, equivalently, of the principle of least action) (see, e.g., Refs. [3,4]).

In the case of an isotropic medium, one can define a momentum three-vector p of length
n tangent to the light ray (see, e.g., Refs. [5,6]). Since the velocity of light is given by ¢/n,
where ¢ is the velocity of light in vacuum, the norm of the velocity three-vector

dq
= — 3
s (3)
is equal to ¢/n. Therefore,

2

n
= —v. 4
p=—_Vv (4)

Recalling that the canonical momentum is defined by

aL

L= %{a (5)

where L is the Lagrangian function of the system, and taking into account that in the
present case n may be a function of ¢* only, we can recover Eq. (4) by choosing

n2

Lzﬂv-v. (6)

Using Eqgs. (4) and (6) we can obtain the Hamiltonian function in the usual manner:

H=p-v-1L

n2

=—Vv-Vv

2¢c

C
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which, except for an inessential additive constant, agrees with the Hamiltonian given in
Ref. [6] (see also Ref. [7]).

As we shall show, expression (6) also applies to the case of anisotropic media. The
refractive index of an anisotropic medium depends on the direction of v, but not on its
magnitude; this implies that

i an
v -
avt

=0, (8)

as can be seen by writing the left-hand side in terms of the spherical coordinates of v or
using the Euler theorem for homogeneous functions. From Egs. (5-6) we now obtain

n? ; n on

D = ?'U + —C'V ' V%, (9)

which reduces to Eq. (4) if n does not depend on v'. Following Ref. [1], we introduce the
anisotropy vector

n an
Ai = = 2 =
Cv vav‘ (10)
which, owing to Eq. (8), is orthogonal to v:
A.-v=0 (11)
Thus,
¥
p= 1—::—\' +A, (12)
and, using Egs. (6) and (11-12), one finds that the Hamiltonian is given by
2 2
H = (?—v+A) v-"y.v
¢ 2c
h 2cv i
c
= 53(P—A)-(p-A). (13)

Since H does not depend explicitly on ¢, H is a conserved quantity. In fact, from
Eq. (12) it follows that

Ip— A> =n? (14)



232 G.F. ToRRES DEL CASTILLO

hence, H has the constant value c/2 for all light rays. As is well known, for a conservative
system, Hamilton’s principle

6](p-v-—H)dt=0 (15)

is equivalent to the principle of least action

6fp-vdt=0, (16)

where the variation is restricted to paths on the hypersurface H = const., i.e., such that
Eq. (14) holds (see, e.g., Refs. [3,4]). Substituting Eq. (12) into Eq. (16), making use of
Eq. (11), we find the condition

2
5/-’1—v-vdt=5/2Hdt=2H5/dt=o, (17)

which is just Fermat’s principle [Eq. (1)], thus showing that the Lagrangian (6) leads to
the right evolution equations in isotropic or anisotropic media.
Substituting Eq. (16) into Lagrange’s equations one obtains

dpi n 6n(qj1vj) c 8n(qj!vj)
— T — 0 - e - 18
dt e Y aqt n Od¢ ()

or, equivalently,

dn _Sle.v) (19)

ds aqt
which mean that the change of p is parallel to the ordinary gradient of the refractive index
expressed as a function of ¢' and v'. (Note that dn(¢?,v7)/dq* are, in general, different
from dn(¢’,p;)/0¢'.) In the case of an isotropic medium, Eq. (18) leads to Snell’s law in
its usual form. (Recall that in an anisotropic medium, in general, p is not tangent to the
light rays [Eq. (12)].)

3. ALTERNATIVE PARAMETRIZATION
Instead of the time, we can use any coordinate as a parameter for the evolution of the
light rays. For instance, considering the coordinate z as the independent variable, we can

write Eq. (16) as

dx dy
6/ (p.ra + pya == (_pz)) dz =0, (20)
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where, in order to take into account the constraint H = const., p, is the function of Dz
Py, T, Y, 2 determined by Eq. (14). By comparing Eqgs. (20) and (15), we see that, in the
present parametrization,

h=-p,=—y/n2—|p. - AL|? - 4,, (21)

where p; = (pg,py) and A = (Ag, Ay), plays the role of the Hamiltonian function.
Therefore, from Eq. (20) we obtain the evolution equations (see also Refs. [4,8])

dg” oh dpa oh
L Tk o —1,2). 22
e 5 3’ (c ) (22)

Making use of Egs. (11-12) and (14) one finds that

(pL—AL)-A)
Vn?—|pL— AL

A= -

hence, the Hamiltonian function (21) is also given by

(PL - A.L) .7
Vni-pL - AL

h=—y/n?—|p. - ALl +

which agrees with the expression found in Ref. [1] (Eq. (3.4)).

4. CONCLUDING REMARKS

As we have seen, in order to find the evolution equations for the light rays in an anisotropic
medium, it is convenient to use the Lagrangian formalism since one can obtain the
Lagrangian function for anisotropic media by simply replacing n(g') by n(g*,v*) in the
Lagrangian function for isotropic media.

As stressed in Ref. [1], an anisotropic medium is characterized by the fact that, in
general, the momentum p is not tangent to the light rays, owing to the presence of the
anisotropy vector A [Eq. (12)]. At a given point of space, the anisotropy vector A is a
function of v/|v| only, which ranges over a sphere of unit radius; thus, owing to Eq. (11),
A can be regarded as a vector field on the sphere and, therefore, has at least one zero (a
critical point of the restriction of n to this sphere), where p is parallel to v.
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