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ABSTRACT. A Lagrangian function for the time evolution of Iight rays in an anisotropic medium
is obtained, the corresponding hamiltonian function is also given and it is shown that the resulting
evoIution equations are equivalent to impose the Fermat principIe.

RESUMEN. Se obtiene una función lagrangiana para la evolución temporal de los rayos de luz en
un medio anisótropo. se da también la función hamiltoniana correspondiente y se muestra que las
ecuaciones de evolución resultantes equivalen a imponer el principio de Fermat.

PACS: 42.15.-i

1. INTRODUCTION

In a recent paper [1], the Lie-Hamilton optics has been extended to anisotropic media
starting from Fermat's principie of least time, which determines the paths followed by the
light rays also in the case of anisotropic media (see, e.g., Ref. [2]). The Lagrangian and
Hamiltonian functions obtained in Ref. [11 give the evolution of the Iight rays with the
coordinate along the optica] axis of the system as parameter.

In this paper we obtain Lagrangian and Hamiltonian functions for the light rays in
anisotropic media, using the time as evolution parameter. In Sec!. 2, we start from some
known relations valid in the case of isotropic media and we find a Lagrangian function for
the light rays in an anisotropic medium. \Ve show that the evo]ution determined by this
Lagrangian satisfies the Fermat principIe. In Sec!. 3 we obtain the Hami]tonian function
that generates the evolution of the light rays parametrized by one of the coordinates, thus
reproducing some resu]ts of Ref. [1).

2. VARIATIONALPRINCII'LES

The evolution of the geometrical optical rays satisfies Fermat's principie of least time

Ó lB nds = o, (1)



230 G.F. TORRES DEL CASTILLO

where n is the refractive index of the optical medium and ds is the line element of three-
dimensional space. In the case of an isotropic medium, n may be a function of position, n =
n(qi), where the qi are cartesian coordinates (i = 1,2,3); while in an anisotropic medium,
the refractive index depends on the direction of the light rayo Despite the resemblance of
Eq. (1) to Hamilton's principIe

1',6 Ldt = O
'1

(2)

of classical mechanics, the refractive index n, appearing in Eq. (1), cannot be taken as
a Lagrangian for the light rays since the arc length s cannot be used as an independent
variable in the variational problem (1) (see, e.9., Ref. [3]). Whereas all curves considered
in the variation (2) have the same endpoints at the same times tI and t2, the curves
considered in the variation (1) may not have the same arc length limits (unless they have
the same length). (Note also that in the case of Eq. (1) the variable s is restricted by the
condition Idq/dsl = 1.) Rather, Fermat's principIe is the analogue of Jacobi's principIe
(or, equivalently, of the principie of least action) (see, e.9., Refs. [3,4]).
In the case of an isotropic medium, one can define a momentum three-vector p of length

n tangent to the light ray (see, e.9., Refs. [5,6]). Since the velocity of light is given by c/n,
where c is the velocity of light in vacuum, the norm of the velocity three-vector

dq
v:=:-

dt

is equal to c/n. Therefore,
n2

p= -Y.
e

Recalling that the canonical momentum is defined by

aL
Pi = 8vi'

(3)

(4)

(5)

where L is the Lagrangian funetion of the system, and taking into account that in the
present case n may be a funetion of qi only, we can recover Eq. (4) by choosing

n2
L= -Y'Y.

2e

Using Eqs. (4) and (6) we can obtain the Hamiltonian function in the usual manner:

H=p.y-L

n2
= -v.v
2e
e

= 2n2 p. p,

(6)
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which, except for an inessential additiYe constant, agrees with the Hamiltonian giyen in
Ref. [61 (see also Ref. [7]).
As we shall show, expression (6) also applies to the case of anisotropic media. The

refractiye index of an anisotropic medium depends on the direction of Y, but not on its
magnitude; this implies that

Vi on = Oavl 1
(8)

as can be seen by writing the left-hand side in terms of the spherical coordinates of y or
using the Euler theorem for homogeneous functions. From Eqs. (5-6) we now obtain

n2 i n on
Pi = -v + -v. V-,

e e OV' (9)

which reduces to Eq. (4) if n does not depend on vi. Following Ref. [1], we introduce the
anisotropy vector

n onA¡:= -v.v-.,
e ov'

which, owing to Eq. (8), is orthogoual to y:

A.y = o.

Thus,

n2
p= -Y+A,

e

and, using Eqs. (6) and (11-12), oue fiuds that the Hamiltonian is giyen by

(n
2

) n2H = -y + A . y - -y . y
e 2e

n2= -v.v
2e

e
= 2n2(P-A),(p-A).

(lO)

(11)

(12)

( 13)

Sínce H does not depend explicitly ou t, H is a conseryed quantity. In fact, from
Eq. (12) it follows that

(14)
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hence, H has the constant value e/2 for al! light rays. As is wel! known, for a conservative
system, Hamilton's principie

fJ J (p . v - H) dt = °
is equivalent to the principie of least action

fJ J p' v dt = 0,

(15)

(16)

where the variation is restrictcd to paths on the hypcrsurface H = const., ¡.e., such that
Eq. (14) holds (scc, e.9., Refs. 13,4]). Substituting Eq. (12) into Eq. (16), making use of
Eq. (11), we find the condition

fJ J ,~2V . v dt = fJ J 2H dt = 211 fJ J dt = 0, (17)

which is just Fermat's principie [Eq. (1)]' thus showing that the Lagrangian (6) leads to
thc right evolution cquations in isotropic or anisotropic media.

Substituting Eq. (16) into Lagrange's cquations one obtains

or, cquivalently,

dpi n On(qi, vi) c On(qi, vi)- = -v.v . =
dt e Oq' 71 Oqi

dPi 07l(qi, vi)
=ds Oqi

(18)

(19)

which mean that thc change of p is paral!el to the ordinary gradient of the refractive index
expressed as a function of qi and vi. (Note that On(qi, vi)/ Oq; are, in general, different
frol11On(qi,Pi)/Oqi.) In the case of an isotropic mcdium, Eq. (18) leads to Snel!'s law in
its usual formo (Recal! that in an anisotropic medium, in general, p is not tangent to the
light rays [Eq. (12)1.)

3. ALTERNATIVE I'ARAMETllIZATION

Instead of the time, we can use any coordinate as a para meter for the evolution of the
light rays. For instance, considcring the coordinate z as the indepcndent variable, we can
write Eq. (16) as

J (dX dy )
fJ PXdz +PYdz -(-p,) dz=O, (20)
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where, in order to take into account the constraint II = const., p, is the function of p"
Py, x, y, z determined by Eq. (14). Ily comparing Eqs. (20) and (15), we see that, in the
present parametrization,

(21 )

where Pol == (Px, Py) and Aol == (Ax, Ay), plays the role of the Hamiltonian function.
Therefore, from Eq. (20) we obtain the evolution equations (see also Refs. [4,8))

Dh
=

Dpa 1
(o = 1,2). (22)

Making use of Eqs. (11-12) and (14) one finds that

A, = (pol - Aol)' Aol

Vn2 -Ipol - Aol12'

hence, the Hamiltonian function (21) is also given by

which agrees with the expression found in ReL [1) (Eq. (3.4)).

4. CO¡';CLUDlNG REMAIlKS

(23)

As we have seen, in order to find the evolution equations for the light rays in an anisotropic
medium, it is convenient to use the Lagrangian formalism since one can obtain the
Lagrangian function for anisotropic media by simply replacing n(qi) by n(qi, Vi) in the
Lagrangian function for isotropic media.

As stressed in ReL [1]' an anisotropic medium is characterized by the fact that, in
general, the momentum p is not tangent to the light rays, owing to the presence of the
anisotropy vector A [Eq. (12)]. At a given point of space, the anisotropy vector A is a
function of v/lvl only, which ranges over a sphere of unit radius; thus, owing to Eq. (11),
A can be regarded as a vector field on the sphere and, therefore, has at least one zero (a
critical point of the restriction of n to this sphere), where p is parallel to v.
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